201
|
Bogdan M, Drenjancevic D, Harsanji Drenjancevic I, Bedenic B, Zujic Atalic V, Talapko J, Vukovic D. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates. J Chemother 2017; 30:16-24. [PMID: 28956494 DOI: 10.1080/1120009x.2017.1378835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.
Collapse
Affiliation(s)
- Maja Bogdan
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia.,b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Domagoj Drenjancevic
- b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia.,c Department of Transfusion Medicine , Osijek University Hospital , Osijek , Croatia
| | - Ivana Harsanji Drenjancevic
- d Department of Anesthesiology, Reanimatology and Intensive Medicine , Osijek University Hospital , Osijek , Croatia.,e Faculty of Medicine, Department of Anesthesiology, Reanimatology and Intensive Medicine , University of Osijek , Osijek , Croatia
| | - Branka Bedenic
- f Department of Clinical and Molecular Microbiology , University Hospital Center Zagreb , Zagreb , Croatia.,g Department of Microbiology and Parasitology , School of Medicine, University of Zagreb , Zagreb , Croatia
| | - Vlasta Zujic Atalic
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia.,b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Jasminka Talapko
- b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Dubravka Vukovic
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia
| |
Collapse
|
202
|
Krzyściak P, Chmielarczyk A, Pobiega M, Romaniszyn D, Wójkowska-Mach J. Acinetobacter baumannii isolated from hospital-acquired infection: biofilm production and drug susceptibility. APMIS 2017; 125:1017-1026. [PMID: 28913903 DOI: 10.1111/apm.12739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
Acinetobacter baumannii cause opportunistic nosocomial infections and is often multidrug resistant. It has ability to form biofilm. The possession of drug resistance mechanism and ability of biofilm formation seems to be the different way to enhancement of viability in stressful environment. In this study, we evaluate relation between these two factors. The biofilm formation was investigated in M63 medium with casein in microtiter plates, and the drug susceptibility was performed by disk diffusion methods. We found that 80-98% strains formed a biofilm. Strains showing sensitivity to amikacin and tobramycin from ICU produced more biofilm than strains showing resistance to these antibiotics. Ceftazidime-sensitive strains formed a smaller biofilm than resistant. The logistic regression shows association between drug resistance and strains originating from ICU. In case of ceftazidime, strong biofilm formation and descending from ICU reduced the likelihood of drug sensitivity. For other drugs such as aminoglycosides, fluoroquinolones, trimethoprim/sulfamethoxazole, and tetracycline, we found opposite relation (but it was not statistically significance). However, generally it seems that strong biofilm producers from ICUs are often more susceptible to antibiotics. This situation can be explained by the fact that bacteria protected in biofilm do not need mechanisms responsible for resistance of planktonic cells.
Collapse
Affiliation(s)
- Paweł Krzyściak
- Department of Mycology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Chmielarczyk
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Pobiega
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Romaniszyn
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| | - Jadwiga Wójkowska-Mach
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
203
|
Bardoloi V, Yogeesha Babu KV. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance. J Med Microbiol 2017; 66:927-936. [PMID: 28703700 DOI: 10.1099/jmm.0.000525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. METHODOLOGY OBJECTIVES (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. METHOD isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. RESULTS 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). CONCLUSIONS BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.
Collapse
Affiliation(s)
- Vishwajeet Bardoloi
- Department of Microbiology, Azeezia Institute of Medical Sciences and Research, Kollam, Kerala, India
| | - K V Yogeesha Babu
- Department of Microbiology, Azeezia Institute of Medical Sciences and Research, Kollam, Kerala, India
| |
Collapse
|
204
|
Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC. Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: The favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:770-777. [PMID: 28732564 DOI: 10.1016/j.jmii.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/04/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/PURPOSE Globally, multidrug-resistant Acinetobacter baumannii (MDRAB) has emerged as an important pathogen in nosocomial outbreaks. This study aimed to investigate the correlation between the biofilm formation and survival of MDRABs, and to investigate the antiseptic efficacy of hand sanitizers for the MDRABs, embedded with biofilm (MDRAB-Bs). METHODS The MDRABs were selected randomly after pulsed-field gel electrophoresis (PFGE), and their biofilm formation was analyzed. Desiccation and ethanol tolerances were assayed to test the bacterial survival. The antiseptic efficacy of combined chlorhexidine gluconate (CHG) and 70% ethanol agents against MDRAB-Bs were compared with the 70% ethanol cleanser. RESULTS Eleven MDRABs, which varied in biofilm formation (MRDAB-B) and planktonic type (MDRAB-P), were tested. In desiccation survival, the mean survival time for the MDRAB-Bs was 49.0 days which was significantly higher than that of their planktonic type (17.3 days) (P < 0.005). The MDRAB-Ps could be eliminated after a 10 min contact with a 30% ethanol agent, however, it took 10 min of 70% ethanol to eliminate the MDRAB-Bs. On the other hand, a 2% CHG in 70% ethanol solution completely eliminated all MDRAB-Bs after 1 min contacted time. The 2% CHG in 70% ethanol agent provided a significantly superior efficacy than the 70% ethanol solution at eliminating the MDRAB-Bs (P < 0.005). CONCLUSION MDRAB with biofilm-formation presented significantly higher desiccation and ethanol resistances than their planktonic type. Moreover, the 2% CHG in 70% ethanol agent provided a superior antiseptic efficacy for MDRAB-Bs than that of the 70% ethanol agent.
Collapse
Affiliation(s)
- Shyh-Ren Chiang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan; Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Fang Jung
- Department of Respiratory Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan; Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Chung-Hua Chen
- Department of Medicine, En Chu Kong Hospital, Taipei County, Taiwan.
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan; Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan.
| | - Hsiu-Yin Chou
- Department of Pathology, Chi Mei Medical Center, Tainan City, Taiwan.
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan; Department of Medicine, Chi Mei Medical Center-Liou Ying, Tainan City, Taiwan.
| |
Collapse
|
205
|
Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int J Mol Sci 2017; 18:ijms18051077. [PMID: 28513576 PMCID: PMC5454986 DOI: 10.3390/ijms18051077] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype.
Collapse
|
206
|
Ranjith K, Arunasri K, Reddy GS, Adicherla H, Sharma S, Shivaji S. Global gene expression in Escherichia coli, isolated from the diseased ocular surface of the human eye with a potential to form biofilm. Gut Pathog 2017; 9:15. [PMID: 28392838 PMCID: PMC5379667 DOI: 10.1186/s13099-017-0164-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 01/10/2023] Open
Abstract
Background Escherichia coli, the gastrointestinal commensal, is also known to cause ocular infections such as conjunctivitis, keratitis and endophthalmitis. These infections are normally resolved by topical application of an appropriate antibiotic. But, at times these E. coli are resistant to the antibiotic and this could be due to formation of a biofilm. In this study ocular E. coli from patients with conjunctivitis, keratitis or endophthalmitis were screened for their antibiotic susceptibility and biofilm formation potential. In addition DNA-microarray analysis was done to identify genes that are involved in biofilm formation and antibiotic resistance. Results Out of 12 ocular E. coli isolated from patients ten isolates were resistant to one or more of the nine antibiotics tested and majority of the isolates were positive for biofilm formation. In E. coli L-1216/2010, the best biofilm forming isolate, biofilm formation was confirmed by scanning electron microscopy. Confocal laser scanning microscopic studies indicated that the thickness of the biofilm increased up to 72 h of growth. Further, in the biofilm phase, E. coli L-1216/2010 was 100 times more resistant to the eight antibiotics tested compared to planktonic phase. DNA microarray analysis indicated that in biofilm forming E. coli L-1216/2010 genes encoding biofilm formation such as cell adhesion genes, LPS production genes, genes required for biofilm architecture and extracellular matrix remodeling and genes encoding for proteins that are integral to the cell membrane and those that influence antigen presentation are up regulated during biofilm formation. In addition genes that confer antimicrobial resistance such as genes encoding antimicrobial efflux (mdtM and cycA), virulence (insQ, yjgK), toxin production (sat, yjgK, chpS, chpB and ygjN), transport of amino-acids and other metabolites (cbrB, cbrC, hisI and mglB) are also up regulated. These genes could serve as potential targets for developing strategies for hacking biofilms and overcoming antibiotic resistance. Conclusions This is the first study on global gene expression in antibiotic resistant ocular E. coli with a potential to form biofilm. Using native ocular isolates for antibiotic susceptibility testing, for biofilm formation and global gene expression is relevant and more acceptable than using type strains or non clinical strains which do not necessarily mimic the native isolate. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0164-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India.,Research Scholar, Manipal University, Manipal, Karnataka 576104 India
| | - Kotakonda Arunasri
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | | | | | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| |
Collapse
|
207
|
Gallo SW, Donamore BK, Pagnussatti VE, Ferreira CAS, de Oliveira SD. Effects of meropenem exposure in persister cells of Acinetobacter calcoaceticus-baumannii. Future Microbiol 2017; 12:131-140. [DOI: 10.2217/fmb-2016-0118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the influence of meropenem in the Acinetobacter calcoaceticus-baumannii (ACB) persister levels. Methods: Persister levels in planktonic and biofilm cultures from ACB isolates were evaluated after exposure to different meropenem concentrations. Results: A high variability of persister fractions was observed among the isolates cultured under planktonic and biofilm conditions. Meropenem concentration did not influence persister fractions, even when far above the MIC. No correlation was found between persister levels and biofilm biomass. Conclusion: The magnitude of persister levels from ACB planktonic and, particularly, biofilm cultures exposed to meropenem was independent of the antibiotic concentration, dosing regimen and biofilm biomass. These findings, in a context of meropenem failure to treat chronic infections, strengthen the importance of understanding persister behavior.
Collapse
Affiliation(s)
- Stephanie Wagner Gallo
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Bruna Kern Donamore
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Vany Elisa Pagnussatti
- Departamento de Microbiologia, Laboratório de Patologia Clínica, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Sílvia Dias de Oliveira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|
208
|
A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains. Sci Rep 2016; 6:37811. [PMID: 27892531 PMCID: PMC5124939 DOI: 10.1038/srep37811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
Carbapenems are a class of last-resort antibiotics; thus, the increase in bacterial carbapenem-resistance is a serious public health threat. Acinetobacter baumannii is one of the microorganisms that can acquire carbapenem-resistance; it causes severe nosocomial infection, and is notoriously difficult to control in hospitals. Recently, a machine-learning approach was first used to analyze the genome sequences of hundreds of susceptible and resistant A. baumannii strains, including those carrying commonly acquired resistant mechanisms, to build a classifier that can predict strain resistance. A complementary approach is to explore novel genetic elements that could be associated with the antimicrobial resistance of strains, independent of known mechanisms. Therefore, we carefully selected A. baumannii strains, spanning various genotypes, from public genome databases, and conducted the first genome-wide association study (GWAS) of carbapenem resistance. We employed a recently developed method, capable of identifying any kind of genetic variation and accounting for bacterial population structure, and evaluated its effectiveness. Our study identified a surface adhesin gene that had been horizontally transferred to an ancestral branch of A. baumannii, as well as a specific region of that gene that appeared to accumulate multiple individual variations across the different branches of carbapenem-resistant A. baumannii strains.
Collapse
|
209
|
Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, Gallo MT, Pimpinelli F, Bordignon V, Bernardi T, Ensoli F. Development of an in vitro Assay, Based on the BioFilm Ring Test ®, for Rapid Profiling of Biofilm-Growing Bacteria. Front Microbiol 2016; 7:1429. [PMID: 27708625 PMCID: PMC5030256 DOI: 10.3389/fmicb.2016.01429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023] Open
Abstract
Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.
Collapse
Affiliation(s)
- Enea G Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Christian Provot
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome Rome, Italy
| | - Isabella Sperduti
- Biostatistics, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Maria T Gallo
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Thierry Bernardi
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| |
Collapse
|
210
|
Maspi H, Mahmoodzadeh Hosseini H, Amin M, Imani Fooladi AA. High prevalence of extensively drug-resistant and metallo beta-lactamase-producing clinical Acinetobacter baumannii in Iran. Microb Pathog 2016; 98:155-9. [PMID: 27448835 DOI: 10.1016/j.micpath.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
Acinetobacter species particularly Acinetobacter baumannii (A. baumannii) have been widely reported as broad-spectrum antibiotic resistant pathogens. Expression of various types of metallo beta-lactamases (MBL), classified as Ambler class B, has been associated with carbapenem resistance. Here, we attempted to assess the frequency of extensively drug-resistant (XDR) and MBL-producing A. baumannii among clinical isolates. 86 clinical A. baumannii strains were collected from 2014 to 2015 and their susceptibility to meropenem (10 μg), imipenem (10 μg), azteronem (30 μg), pipracillin (100 μg) tazobactam (110 μg), tobramycin (10 μg), fosfomycin (200 μg), rifampicin (5 μg), colistin (10 μg), tigecycline (15 μg), sulbactam/ampicillin (10 μg + 10 μg) and polymixin B (300 U) was evaluated using disk diffusion method. The MBL-producing isolates were screened using combined disc diffusion method. Furthermore, the presence of blaVIM, blaIMP, blaSPM, blaGIM, blaSIM and blaNDM was detected by PCR. 34.9% of isolates were recovered from bronchoalveolar lavage (BAL). 81 (94.2%) and 62 (71.2%) isolates were multidrug resistance (MDR) and XDR, respectively. 44 (51.2%) and 65 (75.6%) isolates were MBL-producing strains with resistance to imipenem and meropenem, respectively. 2 (2.3%), 13 (15.1%), 2 (2.3%), 4 (4.7%) and 2 (2.3%) isolates carried blaVIM, blaIMP, blaSPM, blaGIM and blaSIM genes, respectively. Our data showed that the rate of XDR and MBL A. baumannii is on the rise.
Collapse
Affiliation(s)
- Hossein Maspi
- Department of Biology, College of Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|