201
|
Minimum Determinants of Transmissible Gastroenteritis Virus Enteric Tropism Are Located in the N-Terminus of Spike Protein. Pathogens 2019; 9:pathogens9010002. [PMID: 31861369 PMCID: PMC7168613 DOI: 10.3390/pathogens9010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506–655 and 145–155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.
Collapse
|
202
|
Identification of a Novel Betacoronavirus ( Merbecovirus) in Amur Hedgehogs from China. Viruses 2019; 11:v11110980. [PMID: 31653070 PMCID: PMC6893546 DOI: 10.3390/v11110980] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
While dromedaries are the immediate animal source of Middle East Respiratory Syndrome (MERS) epidemic, viruses related to MERS coronavirus (MERS-CoV) have also been found in bats as well as hedgehogs. To elucidate the evolution of MERS-CoV-related viruses and their interspecies transmission pathway, samples were collected from different mammals in China. A novel coronavirus related to MERS-CoV, Erinaceus amurensis hedgehog coronavirus HKU31 (Ea-HedCoV HKU31), was identified from two Amur hedgehogs. Genome analysis supported that Ea-HedCoV HKU31 represents a novel species under Merbecovirus, being most closely related to Erinaceus CoV from European hedgehogs in Germany, with 79.6% genome sequence identity. Compared to other members of Merbecovirus, Ea-HedCoV HKU31 possessed unique non-structural proteins and putative cleavage sites at ORF1ab. Phylogenetic analysis showed that Ea-HedCoV HKU31 and BetaCoV Erinaceus/VMC/DEU/2012 were closely related to NeoCoV and BatCoV PREDICT from African bats in the spike region, suggesting that the latter bat viruses have arisen from recombination between CoVs from hedgehogs and bats. The predicted HKU31 receptor-binding domain (RBD) possessed only one out of 12 critical amino acid residues for binding to human dipeptidyl peptidase 4 (hDPP4), the MERS-CoV receptor. The structural modeling of the HKU31-RBD-hDPP4 binding interphase compared to that of MERS-CoV and Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) suggested that HKU31-RBD is unlikely to bind to hDPP4. Our findings support that hedgehogs are an important reservoir of Merbecovirus, with evidence of recombination with viruses from bats. Further investigations in bats, hedgehogs and related animals are warranted to understand the evolution of MERS-CoV-related viruses.
Collapse
|
203
|
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
204
|
Pascual-Iglesias A, Sanchez CM, Penzes Z, Sola I, Enjuanes L, Zuñiga S. Recombinant Chimeric Transmissible Gastroenteritis Virus (TGEV) - Porcine Epidemic Diarrhea Virus (PEDV) Virus Provides Protection against Virulent PEDV. Viruses 2019; 11:v11080682. [PMID: 31349683 PMCID: PMC6723174 DOI: 10.3390/v11080682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.
Collapse
Affiliation(s)
- Alejandro Pascual-Iglesias
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Carlos M Sanchez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Zoltan Penzes
- Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, 1107 Budapest, Hungary
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
205
|
Markotter W, Geldenhuys M, Jansen van Vuren P, Kemp A, Mortlock M, Mudakikwa A, Nel L, Nziza J, Paweska J, Weyer J. Paramyxo- and Coronaviruses in Rwandan Bats. Trop Med Infect Dis 2019; 4:tropicalmed4030099. [PMID: 31269631 PMCID: PMC6789848 DOI: 10.3390/tropicalmed4030099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023] Open
Abstract
A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geoffroy’s horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa.
Collapse
Affiliation(s)
- Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa.
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Petrus Jansen van Vuren
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Antoine Mudakikwa
- Rwanda Development Board, Department of tourism and Conservation, P.O Box 6239, Kigali, Rwanda
| | - Louis Nel
- Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Julius Nziza
- Mountain Gorilla Veterinary Project, P.O Box 115, Musanze, Rwanda
| | - Janusz Paweska
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| |
Collapse
|
206
|
Lau SKP, Wong ACP, Zhang L, Luk HKH, Kwok JSL, Ahmed SS, Cai JP, Zhao PSH, Teng JLL, Tsui SKW, Yuen KY, Woo PCY. Novel Bat Alphacoronaviruses in Southern China Support Chinese Horseshoe Bats as an Important Reservoir for Potential Novel Coronaviruses. Viruses 2019; 11:v11050423. [PMID: 31067830 PMCID: PMC6563315 DOI: 10.3390/v11050423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
While bats are increasingly recognized as a source of coronavirus epidemics, the diversity and emergence potential of bat coronaviruses remains to be fully understood. Among 1779 bat samples collected in China, diverse coronaviruses were detected in 32 samples from five different bat species by RT-PCR. Two novel alphacoronaviruses, Rhinolophus sinicus bat coronavirus HKU32 (Rs-BatCoV HKU32) and Tylonycteris robustula bat coronavirus HKU33 (Tr-BatCoV HKU33), were discovered from Chinese horseshoe bats in Hong Kong and greater bamboo bats in Guizhou Province, respectively. Genome analyses showed that Rs-BatCoV HKU32 is closely related to BatCoV HKU10 and related viruses from diverse bat families, whereas Tr-BatCoV HKU33 is closely related to BtNv-AlphaCoV and similar viruses exclusively from bats of Vespertilionidae family. The close relatedness of Rs-BatCoV HKU32 to BatCoV HKU10 which was also detected in Pomona roundleaf bats from the same country park suggests that these viruses may have the tendency of infecting genetically distant bat populations of close geographical proximity with subsequent genetic divergence. Moreover, the presence of SARSr-CoV ORF7a-like protein in Rs-BatCoV HKU32 suggests a common evolutionary origin of this accessory protein with SARS-CoV, also from Chinese horseshoe bats, an apparent reservoir for coronavirus epidemics. The emergence potential of Rs-BatCoV HKU32 should be explored.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Antonio C P Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Libao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510000, China.
| | - Hayes K H Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jamie S L Kwok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Syed S Ahmed
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Pyrear S H Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jade L L Teng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Stephen K W Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
207
|
Peel AJ, Field HE, Aravena MR, Edson D, McCallum H, Plowright RK, Prada D. Coronaviruses and Australian bats: a review in the midst of a pandemic. AUST J ZOOL 2019. [DOI: 10.1071/zo20046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health.
Collapse
|