201
|
Padayachee T, Nzuza N, Chen W, Nelson DR, Syed K. Impact of lifestyle on cytochrome P450 monooxygenase repertoire is clearly evident in the bacterial phylum Firmicutes. Sci Rep 2020; 10:13982. [PMID: 32814804 PMCID: PMC7438502 DOI: 10.1038/s41598-020-70686-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme thiolate proteins, are well known for their role in organisms' primary and secondary metabolism. Research on eukaryotes such as animals, plants, oomycetes and fungi has shown that P450s profiles in these organisms are affected by their lifestyle. However, the impact of lifestyle on P450 profiling in bacteria is scarcely reported. This study is such an example where the impact of lifestyle seems to profoundly affect the P450 profiles in the bacterial species belonging to the phylum Firmicutes. Genome-wide analysis of P450s in 972 Firmicutes species belonging to 158 genera revealed that only 229 species belonging to 37 genera have P450s; 38% of Bacilli species, followed by 14% of Clostridia and 2.7% of other Firmicutes species, have P450s. The pathogenic or commensal lifestyle influences P450 content to such an extent that species belonging to the genera Streptococcus, Listeria, Staphylococcus, Lactobacillus, Lactococcus and Leuconostoc do not have P450s, with the exception of a handful of Staphylococcus species that have a single P450. Only 18% of P450s are found to be involved in secondary metabolism and 89 P450s that function in the synthesis of specific secondary metabolites are predicted. This study is the first report on comprehensive analysis of P450s in Firmicutes.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa.
| |
Collapse
|
202
|
Wang G, Chen P, Yu X, Xia Y, Yan LT, Ai L. C18:1 Improves the Freeze-Drying Resistance of Lactobacillus plantarum by Maintaining the Cell Membrane. ACS APPLIED BIO MATERIALS 2020; 3:4933-4940. [PMID: 35021737 DOI: 10.1021/acsabm.0c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasing knowledge about lactic acid bacteria as fermentation starters and probiotics to improve health has led to a growing awareness of their application potential. Despite a long history of applying cryoprotectants, the maintenance of probiotic viability is still a major challenge. In this study, we implemented a strategy and explored its mechanisms in detail. We found that the survival rates after freeze-drying were positively correlated with the relative concentration of the octadecenoic acid (C18:1) and with the ratio of unsaturated to saturated FAs (U/S ratio). The addition of C18:1 significantly improved the survival of L. plantarum after freeze-drying. Contrary to the most commonly used cryoprotectants, the addition of C18:1 did not affect the glass transition temperature or collapse temperature. We predicted that the cell membrane characteristics would be significantly degraded during the drying stage, but C18:1 can effectively maintain the cell membrane integrity and fluidity. Our experiments confirmed those predictions, and simultaneously found that the enzyme activities of key enzymes of glucose metabolism were increased compared with the control group. These finding indicate that C18:1 might serve as a lyoprotectant to maintain the cell membrane integrity and fluidity, and thereby increasing the survival rate of L. plantarum after freeze-drying. This study constitutes a strategy to safeguard bacterial viability.
Collapse
Affiliation(s)
- Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
203
|
Margalho LP, Feliciano MD, Silva CE, Abreu JS, Piran MVF, Sant'Ana AS. Brazilian artisanal cheeses are rich and diverse sources of nonstarter lactic acid bacteria regarding technological, biopreservative, and safety properties-Insights through multivariate analysis. J Dairy Sci 2020; 103:7908-7926. [PMID: 32684468 DOI: 10.3168/jds.2020-18194] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
In this study a total of 220 isolates of lactic acid bacteria (LAB) recovered from 10 types of Brazilian artisanal cheeses marketed in 4 main regions of Brazil were evaluated regarding their safety and ability to produce diacetyl (a precursor of aromatic compounds), exopolysaccharides (EPS; from different sugar sources), and antagonistic activity against Listeria monocytogenes and Staphylococcus aureus. The results indicated that 131 isolates (59.6%) were classified as strong (40.5%) and moderate (19.1%) diacetyl producers; 28 isolates (12.7%) stood out due to their remarkable production of EPS from different sugars, including sucrose (3.2%), fructose (2.3%), lactose (2.3%), and glucose (6%). Furthermore, 94.1% and 95.9% of isolates presented antagonistic activity against S. aureus and L. monocytogenes, respectively, even though only 27 isolates (12.3%) exhibited positive results in the bacteriocin production test. None of the isolates tested presented hemolytic activity, and 117 were classified as safe, due to their intrinsic resistance to a maximum of 4 different antibiotics. The data obtained for assessment of antibiogram profile and technological potential (moderate and high production of diacetyl, EPS, and bacteriocins) were submitted to a multiple correspondence analysis to correlate them with the cheese of isolation. Regarding the antimicrobial profile of LAB strains, it was possible to verify an association between isolates from Minas artisanal cheeses from Araxá and resistance to tetracycline; Minas artisanal cheeses from Serro and resistance to erythromycin; Coalho and Minas artisanal cheese from Cerrado and resistance to penicillin; and isolates from Serrano and Colonial cheeses with clindamycin and ceftazidime resistance. Although the susceptibility of strains to these antibiotics was considered high (71.8-80.5%), these data may be related to the horizontal transfer of genes in the production chain of these cheeses. Results of multiple correspondence analysis also showed that isolates with antagonistic activity were mostly isolated from Manteiga, Colonial, and Coalho cheeses. The isolates with high or moderate EPS-producer ability from sucrose, glucose, and fructose were mainly associated with Minas artisanal cheeses from Cerrado. In contrast, isolates with high or moderate EPS-producer ability from lactose were isolated from Serrano, Minas artisanal cheeses from Canastra, and Campo das Vertentes microregions. Finally, isolates from Minas artisanal cheeses (from Araxá microregion), Coalho, and Caipira cheeses were associated with moderate/high diacetyl production. To the best of the authors' knowledge, this study provides, for the first time, data indicating that the dominant technological, biopreservative, and safety properties of LAB isolates can be correlated with the type of Brazilian artisanal cheeses, which denotes its singularity. This knowledge is of utmost relevance for the development of starter or adjunct cultures with tailored properties.
Collapse
Affiliation(s)
- Larissa P Margalho
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Marcelo D'Elia Feliciano
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Christian E Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Júlia S Abreu
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
204
|
Borremans A, Smets R, Van Campenhout L. Fermentation Versus Meat Preservatives to Extend the Shelf Life of Mealworm ( Tenebrio molitor) Paste for Feed and Food Applications. Front Microbiol 2020; 11:1510. [PMID: 32760364 PMCID: PMC7373731 DOI: 10.3389/fmicb.2020.01510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Freshly prepared pastes from blanched mealworms (Tenebrio molitor) are highly perishable and prone to microbial and chemical changes upon storage due to their high water activity, near-neutral pH, and their rich nutrient profile. Their shelf life is short unless preservation methods are used. In this study, the effects of preservatives (sodium nitrite and sodium lactate) and lactic acid fermentation (with the starter cultures Bactoferm® F-LC and Lactobacillus farciminis) on the microbiological and the chemical stability of mealworm pastes stored at 4°C were compared. During the storage experiment, the pH, water activity, color, microbial counts, and fat oxidation were monitored. In addition, the prevalence of the pathogens Bacillus cereus, Salmonella spp., and Listeria monocytogenes were studied. Microbial quality evaluation of the mealworm pastes showed that the addition of preservatives did not inhibit microbial growth during refrigerated storage, reaching the upper limits for consumption between seven and 14 days. By contrast, the acid medium (pH < 4.50) created by fermentation stabilized all microbial populations investigated, indicating that these pastes could be consumed up to (at least) 8 weeks of refrigerated storage. L. monocytogenes, Salmonella, and B. cereus were not detected in any of the samples and lipid oxidation of the samples was minimal. Altogether, this study shows that lactic acid fermentation can be used successfully to inhibit microbial growth, to maintain chemical quality, and to extend the shelf life of mealworm pastes stored at 4°C.
Collapse
Affiliation(s)
- An Borremans
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium
| | | | | |
Collapse
|
205
|
Angarita-Díaz MDP, Arias JC, Bedoya-Correa C, Cepeda MJ, Arboleda MF, Chacón JM, Leal Y. The effect of commercial functional food with probiotics on microorganisms from early carious lesions. Sci Rep 2020; 10:10732. [PMID: 32612198 PMCID: PMC7329877 DOI: 10.1038/s41598-020-67775-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/10/2020] [Indexed: 11/15/2022] Open
Abstract
Caries rates in school-age children are still high enough to be the cause of serious concern for health systems in different countries. The biotechnology strategies studied to decrease these rates include the consumption of probiotics—available via a variety of functional foods obtainable on the market—that are able to inhibit bacteria associated with this disease. In this vein, the purpose of this study was to determine the effect of these foods on the growth of microorganisms in early carious lesions in children aged between 6 and 12. In the first phase, an agar well diffusion method was applied to selected foods, available in supermarkets, which contain probiotics that have already been shown to inhibit Streptococcusmutans (ATCC 25175), and to lower the pH in liquid culture media. In a second phase, these foods (n = 4) were examined in terms of their ability to inhibit the microorganisms in contact with early carious lesions in children and to reduce the pH of mixed cultures combined with the food. The results revealed that, of the foods tested, three inhibit the growth of microorganisms in carious lesions and, at the same time, lower the pH of the culture by more than 2.5 units. The food with the highest inhibitory capacity (14 mm, IQR 13–14) showed a similar effect among patients (P > 0.05), which together with the fact that its sugar concentration is less than 10%, makes it an ideal candidate for clinical study.
Collapse
Affiliation(s)
| | - Johanna C Arias
- School of Dentistry, Universidad Cooperativa de Colombia, Carrera 22 # 7-06 Sur, Villavicencio, Colombia
| | | | - María J Cepeda
- School of Dentistry, Universidad Cooperativa de Colombia, Carrera 22 # 7-06 Sur, Villavicencio, Colombia
| | - María F Arboleda
- School of Dentistry, Universidad Cooperativa de Colombia, Carrera 22 # 7-06 Sur, Villavicencio, Colombia
| | - Juan M Chacón
- School of Dentistry, Universidad Cooperativa de Colombia, Carrera 22 # 7-06 Sur, Villavicencio, Colombia
| | - Yenny Leal
- School of Dentistry, Universidad Cooperativa de Colombia, Carrera 22 # 7-06 Sur, Villavicencio, Colombia
| |
Collapse
|
206
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
207
|
Hernandez-Valdes JA, Solopova A, Kuipers OP. Development of Lactococcus lactis Biosensors for Detection of Diacetyl. Front Microbiol 2020; 11:1032. [PMID: 32523575 PMCID: PMC7261850 DOI: 10.3389/fmicb.2020.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some secondary metabolites of fermentative bacteria are desired compounds for the food industry. Examples of these compounds are diacetyl and acetaldehyde, which are produced by species of the lactic acid bacteria (LAB) family. Diacetyl is an aromatic compound, giving the buttery flavor associated with dairy products, and acetaldehyde is the compound responsible for the yogurt flavor and aroma. The quantification of these compounds in food matrices is a laborious task that involves sample preparation and specific analytical methods. The ability of bacteria to naturally sense metabolites has successfully been exploited to develop biosensors that facilitate the identification and quantification of certain metabolites (Mahr and Frunzke, 2016). The presence of a specific metabolite is sensed by the biosensors, and it is subsequently translated into the expression of one or more reporter genes. In this study we aimed to develop fluorescence-based biosensors to detect diacetyl and acetaldehyde. Since the metabolic pathways for production and degradation of these compounds are present in Lactococcus lactis, the sensing mechanisms in this bacterium are expected. Thus, we identified diacetyl and acetaldehyde responsive promoters by performing transcriptome analyses in L. lactis. The characterization of the biosensors showed their response to the presence of these compounds, and a further analysis of the diacetyl-biosensors (its dynamics and orthogonality) was performed. Moreover, we attempted to produce natural diacetyl from producer strains, namely L. lactis subsp. lactis biovar diacetylactis, to benchmark the performance of our biosensors. The diacetyl-biosensors responded linearly to the amounts of diacetyl obtained in the bacterial supernatants, i.e., the increases in GFP expression were proportional to the amounts of diacetyl present in the supernatants of L. lactis subsp. lactis biovar diacetylactis MR3-T7 strain. The biosensors developed in this study may eventually be used to engineer strains or pathways for increased diacetyl and acetaldehyde production, and may facilitate the detection of these metabolites in complex food matrices.
Collapse
Affiliation(s)
- Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ana Solopova
- School of Microbiology, APC Microbiome, University College Cork, Cork, Ireland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
208
|
Martín C, Fernández-Vega I, Suárez JE, Quirós LM. Adherence of Lactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands. Front Immunol 2020; 10:3019. [PMID: 31998306 PMCID: PMC6962182 DOI: 10.3389/fimmu.2019.03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The attachment of a variety of Lactobacilli to the mucosal surfaces is accomplished through the interaction of OppA, a superficial bacterial protein also involved in oligopeptide internalization, and the glycosaminoglycan moiety of the proteoglycans that form the epithelial cell glycocalyx. Upon the interaction of the vaginal isolate Lactobacillus salivarius Lv72 and HeLa cell cultures, the expression of oppA increased more than 50-fold over the following 30 min, with the overexpression enduring, albeit at a lower rate, for up to 24 h. Conversely, transcriptional analysis of 62 genes involved in proteoglycan biosynthesis revealed generalized repression of genes whose products catalyze different steps of the whole pathway. This led to decreases in the superficial concentration of heparan (60%) and chondroitin sulfate (40%), although the molecular masses of these glycosaminoglycans were higher than those of the control cultures. Despite this lowering in the concentration of the receptor, attachment of the Lactobacilli proceeded, and completely overlaid the underlying HeLa cell culture.
Collapse
Affiliation(s)
- Carla Martín
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan E Suárez
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
209
|
Draft Genome Sequences of Lactobacillus helveticus, Lactobacillus fermentum, and Lactobacillus delbrueckii Strains from African Fermented Nono. Microbiol Resour Announc 2020; 9:9/1/e01342-19. [PMID: 31896647 PMCID: PMC6940299 DOI: 10.1128/mra.01342-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of predominant Lactobacillus helveticus, Lactobacillus fermentum, and Lactobacillus delbrueckii strains from fermented nono were sequenced. The genome sizes were 2.1, 1.9, and 1.7 Mbp, respectively, and the GC contents were 36.5%, 51.5%, and 49.7%, respectively. Annotation revealed some genes for bacteriocin and for the potential production of aroma compounds.
Collapse
|
210
|
Doyle N, Mbandlwa P, Kelly WJ, Attwood G, Li Y, Ross RP, Stanton C, Leahy S. Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front Microbiol 2019; 10:2207. [PMID: 31632365 PMCID: PMC6781651 DOI: 10.3389/fmicb.2019.02207] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Enteric fermentation in ruminants is the single largest anthropogenic source of agricultural methane and has a significant role in global warming. Consequently, innovative solutions to reduce methane emissions from livestock farming are required to ensure future sustainable food production. One possible approach is the use of lactic acid bacteria (LAB), Gram positive bacteria that produce lactic acid as a major end product of carbohydrate fermentation. LAB are natural inhabitants of the intestinal tract of mammals and are among the most important groups of microorganisms used in food fermentations. LAB can be readily isolated from ruminant animals and are currently used on-farm as direct-fed microbials (DFMs) and as silage inoculants. While it has been proposed that LAB can be used to reduce methane production in ruminant livestock, so far research has been limited, and convincing animal data to support the concept are lacking. This review has critically evaluated the current literature and provided a comprehensive analysis and summary of the potential use and mechanisms of LAB as a methane mitigation strategy. It is clear that although there are some promising results, more research is needed to identify whether the use of LAB can be an effective methane mitigation option for ruminant livestock.
Collapse
Affiliation(s)
- Natasha Doyle
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Graeme Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Yang Li
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sinead Leahy
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|