201
|
Crabtree EV, Martínez RF, Nakagawa S, Adachi I, Butters TD, Kato A, Fleet GWJ, Glawar AFG. Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of β-N-acetylhexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4-iminopentitols. Org Biomol Chem 2014; 12:3932-43. [DOI: 10.1039/c4ob00097h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
202
|
Trajkovic M, Balanac V, Ferjancic Z, Saicic RN. Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Adv 2014. [DOI: 10.1039/c4ra11978a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enantioselective total synthesis of (+)-swaisonine that hinges on a combination of organocatalyzed aldolization and reductive amination, affords the title compound in 9 steps, with 24% overall yield.
Collapse
Affiliation(s)
- Milos Trajkovic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Vesna Balanac
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Zorana Ferjancic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| | - Radomir N. Saicic
- Faculty of Chemistry
- University of Belgrade
- 11158 Belgrade 118, Serbia
| |
Collapse
|
203
|
Désiré J, Mondon M, Fontelle N, Nakagawa S, Hirokami Y, Adachi I, Iwaki R, Fleet GWJ, Alonzi DS, Twigg G, Butters TD, Bertrand J, Cendret V, Becq F, Norez C, Marrot J, Kato A, Blériot Y. N- and C-alkylation of seven-membered iminosugars generates potent glucocerebrosidase inhibitors and F508del-CFTR correctors. Org Biomol Chem 2014; 12:8977-96. [DOI: 10.1039/c4ob00325j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and biological evaluation of a library of novel seven-membered iminosugars is reported.
Collapse
Affiliation(s)
- J. Désiré
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - M. Mondon
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - N. Fontelle
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - S. Nakagawa
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - Y. Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - I. Adachi
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - R. Iwaki
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - G. W. J. Fleet
- Chemistry Research Laboratory
- Oxford University
- Oxford OX1 3TA, UK
| | - D. S. Alonzi
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - G. Twigg
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - T. D. Butters
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - J. Bertrand
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - V. Cendret
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - F. Becq
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - C. Norez
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - J. Marrot
- Institut Lavoisier de Versailles
- UMR CNRS 8180
- 78035 Versailles cedex, France
| | - A. Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - Y. Blériot
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| |
Collapse
|
204
|
Hu XG, Hunter L. Stereoselectively fluorinated N-heterocycles: a brief survey. Beilstein J Org Chem 2013; 9:2696-708. [PMID: 24367435 PMCID: PMC3869242 DOI: 10.3762/bjoc.9.306] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023] Open
Abstract
The stereoselective incorporation of fluorine atoms into N-heterocycles can lead to dramatic changes in the molecules’ physical and chemical properties. These changes can be rationally exploited for the benefit of diverse fields such as medicinal chemistry and organocatalysis. This brief review will examine some of the effects that fluorine substitution can have in N-heterocycles, including changes to the molecules’ stability, their conformational behaviour, their hydrogen bonding ability, and their basicity. Finally, some methods for the synthesis of stereoselectively fluorinated N-heterocycles will also be reviewed.
Collapse
Affiliation(s)
- Xiang-Guo Hu
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
205
|
Ayers BJ, Jenkinson SF, Fleet GWJ, Thompson AL. 2-N-Benzyl-2,6-dide-oxy-2,6-imino-3,4-O-iso-propyl-idene-d-allono-nitrile. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1772. [PMID: 24454220 PMCID: PMC3885044 DOI: 10.1107/s1600536813030584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/07/2013] [Indexed: 11/20/2022]
Abstract
X-ray crystallography firmly established the relative stereochemistry of the title compound, C16H20N2O3. The acetonide ring adopts an envelope conformation with one of the O atoms as the flap and the piperidine ring adopts a slightly twisted boat conformation. The absolute configuration was determined by use of d-ribose as the starting material. The compound exists as O—H⋯O hydrogen-bonded chains of molecules running parallel to the b axis.
Collapse
Affiliation(s)
- Benjamin J Ayers
- Department of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England
| | - Sarah F Jenkinson
- Department of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England
| | - George W J Fleet
- Department of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England
| | - Amber L Thompson
- Department of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England
| |
Collapse
|
206
|
Synthesis and biological evaluation of N-(2-fluorophenyl)-2β-deoxyfuconojirimycin acetamide as a potent inhibitor for α-l-fucosidases. Bioorg Med Chem 2013; 21:6565-73. [DOI: 10.1016/j.bmc.2013.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
|
207
|
Silva S, Sánchez-Fernández EM, Ortiz Mellet C, Tatibouët A, Pilar Rauter A, Rollin P. N-Thiocarbonyl Iminosugars: Synthesis and Evaluation of Castanospermine Analogues Bearing Oxazole-2(3H)-thione Moieties. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
208
|
Abstract
Gaucher disease is a progressive lysosomal storage disorder caused by a deficiency in the activity of β-glucocerebrosidase and is characterized by the accumulation of the glycosphingolipid glucosylceramide in the lysosomes of macrophages that leads to dysfunction in multiple organ system. An emerging strategy for the treatment of Gaucher disease is pharmacological chaperone therapy, based on the use of β-glucocerebrosidase inhibitors that are capable of enhancing residual hydrolytic activity at subinhibitory concentrations. In this article, the most common lysosomal storage disorder, Gaucher disease, is introduced and the current therapeutic strategies based on the use of enzyme inhibitors to ameliorate this disease are discussed, with a focus on the efforts being made toward finding and optimizing novel molecules as pharmacological chaperones for Gaucher disease that offer the promise to remedy this malady.
Collapse
|
209
|
Corkran HM, Munneke S, Dangerfield EM, Stocker BL, Timmer MSM. Applications and Limitations of the I2-Mediated Carbamate Annulation for the Synthesis of Piperidines: Five- versus Six-Membered Ring Formation. J Org Chem 2013; 78:9791-802. [DOI: 10.1021/jo401512h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hilary M. Corkran
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Stefan Munneke
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Emma M. Dangerfield
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| |
Collapse
|
210
|
Decroocq C, Joosten A, Sergent R, Mena Barragán T, Ortiz Mellet C, Compain P. The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Valency, Peripheral Ligand Structure, and Topology with Cyclodextrin-Based Iminosugar Click Clusters. Chembiochem 2013; 14:2038-49. [DOI: 10.1002/cbic.201300283] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 01/03/2023]
|
211
|
Sudar M, Findrik Z, Vasić-Rački Đ, Clapés P, Lozano C. Mathematical model for aldol addition catalyzed by two d-fructose-6-phosphate aldolases variants overexpressed in E. coli. J Biotechnol 2013; 167:191-200. [DOI: 10.1016/j.jbiotec.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
212
|
Martínez RF, Araújo N, Jenkinson SF, Nakagawa S, Kato A, Fleet GW. (3R,4S,5R,6R,7S)-3,4,5,7-Tetrahydroxyconidine, an azetidine analogue of 6,7-diepicastanospermine and a conformationally constrained d-deoxyaltronojirimycin, from l-arabinose. Bioorg Med Chem 2013; 21:4813-9. [DOI: 10.1016/j.bmc.2013.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/14/2013] [Accepted: 03/06/2013] [Indexed: 11/29/2022]
|
213
|
Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, Uhl K, Walden CM, Rahim AA, Waddington SN, Platt FM, van der Spoel AC. β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem 2013; 288:26052-26066. [PMID: 23880767 DOI: 10.1074/jbc.m113.463562] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (k(inact)). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5-6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.
Collapse
Affiliation(s)
- Christina M Ridley
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karen E Thur
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jessica Shanahan
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Ann Shen
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karly Uhl
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Charlotte M Walden
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Ahad A Rahim
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Simon N Waddington
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Frances M Platt
- the Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Aarnoud C van der Spoel
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada,.
| |
Collapse
|
214
|
Kumar KSA, Rathee JS, Subramanian M, Chattopadhyay S. Divergent Synthesis of 4-epi-Fagomine, 3,4-Dihydroxypipecolic Acid, and a Dihydroxyindolizidine and Their β-Galactosidase Inhibitory and Immunomodulatory Activities. J Org Chem 2013; 78:7406-13. [DOI: 10.1021/jo400448p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K. S. Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - J. S. Rathee
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - M. Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S. Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
215
|
Chang J, Block TM, Guo JT. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res 2013; 99:251-60. [PMID: 23816430 PMCID: PMC7114303 DOI: 10.1016/j.antiviral.2013.06.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
ER α-glucosidases are essential host factors for the morphogenesis of many enveloped viruses. Imino sugars are competitive inhibitors of the ER α-glucosidases I and II. Broad-spectrum antiviral efficacies of imino sugars have been demonstrated in vitro, and in vivo. Strategies for development of potent and specific ER α-glucosidase inhibitors have been proposed. Targeting glucosidase is promising for viral hemorrhagic fever and respiratory infections.
Endoplasmic reticulum (ER)-resident α-glucosidases I and II sequentially trim the three terminal glucose moieties on N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most viral envelope glycoproteins contain N-linked glycans, inhibition of ER α-glucosidases with derivatives of 1-deoxynojirimycin (DNJ) or castanospermine (CAST), two well-studied pharmacophores of α-glucosidase inhibitors, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. Moreover, both DNJ and CAST derivatives have been demonstrated to prevent the death of mice infected with several distinct flaviviruses and filoviruses and suppress the multiplication of several other species of viruses in infected animals. N-Butyl derivative of DNJ (NB-DNJ) and 6 O-bytanoyl prodrug of CAST (Bu-CAST) have been evaluated in human clinical trials for their antiviral activities against human immunodeficiency virus and hepatitis C virus, and there is an ongoing trial of treating dengue patients with Bu-CAST. This article summarizes the current status of ER α-glucosidase-targeted antiviral therapy and proposes strategies for development of more efficacious and specific ER α-glucosidase inhibitors as broad-spectrum, drug resistance-refractory antiviral therapeutics. These host function-targeted, broad-spectrum antiviral agents do not rely on time-consuming etiologic diagnosis, and should therefore be particularly promising in the management of viral hemorrhagic fever and respiratory tract viral infections, medical conditions that can be caused by many different enveloped RNA viruses, with a short window for medical intervention.
Collapse
Affiliation(s)
- Jinhong Chang
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | | | | |
Collapse
|
216
|
Reed JH, Turner P, Kato A, Houston TA, Simone MI. 1-O-Benzyl-2,3-O-iso-propyl-idene-6-O-tosyl-α-l-sorbo-furan-ose. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1069-70. [PMID: 24046637 PMCID: PMC3772494 DOI: 10.1107/s1600536813015638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
IN THE TITLE COMPOUND (SYSTEMATIC NAME {(3aS,5S,6R,6aS)-3a-[(benz-yloxy)meth-yl]-6-hy-droxy-2,2-di-methyl-tetra-hydro-furo[2,3-d][1,3]dioxol-5-yl}methyl 4-methyl-benzene-sulfonate), C23H28O8S, the absolute structure and relative stereochemistry of the four chiral centres have been established by X-ray crystallography, with the absolute configuration inferred from the use of l-sorbose as the starting material. The central furan-ose ring adopts a slightly twisted envelope conformation (with the C atom bearing the methyl-benzene-sulfonate substituent as the flap) from which three substituents depart pseudo-axially (-CH2-O-benzyl, -OH and one acetonide O atom) and two substituents pseudo-equatorially (-CH2-O-tosyl and second acetonide O atom). The dioxalane ring is in a flattened envelope conformation with the fused CH C atom as the flap. In the crystal, mol-ecules pack in columns along [010] linked by O-H⋯O hydrogen bonds involving the furan-ose hy-droxy group and furan-ose ether O atom.
Collapse
Affiliation(s)
- John H. Reed
- School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| | - Peter Turner
- Crystal Structure Analysis Facility, School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| | - Todd A. Houston
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Michela I. Simone
- School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| |
Collapse
|
217
|
Perry ST, Buck MD, Plummer EM, Penmasta RA, Batra H, Stavale EJ, Warfield KL, Dwek RA, Butters TD, Alonzi DS, Lada SM, King K, Klose B, Ramstedt U, Shresta S. An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Res 2013; 98:35-43. [DOI: 10.1016/j.antiviral.2013.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/26/2022]
|
218
|
Okaki T, Fujimura R, Sekiguchi M, Zhou D, Sugimoto K, Minato D, Matsuya Y, Kato A, Adachi I, Tezuka Y, Saporito RA, Toyooka N. Stereoselective Total Synthesis of (-)-Batzellasides A, B, and C. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
219
|
Rajender A, Rao JP, Rao BV. A Divergent and Stereoselective Approach for the Syntheses of Some Polyhydroxylated Indolizidine and Pyrrolizidine Iminosugars. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
220
|
The ‘mirror-image’ postulate as a guide to the selection and evaluation of pyrrolidines as α-l-fucosidase inhibitors. Carbohydr Res 2013; 367:29-32. [DOI: 10.1016/j.carres.2012.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 11/20/2022]
|
221
|
Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 2013; 7:979-90. [PMID: 22913356 DOI: 10.2217/fmb.12.68] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The increasing incidence of drug-resistant pathogens has drawn the attention of the pharmaceutical and scientific communities towards studies on the potential antimicrobial activity of plant-derived substances, an untapped source of antimicrobial chemotypes, which are used in traditional medicine in different countries. The aim of this review is to provide recent insights regarding the possibilities of the most important natural antimicrobial compounds derived from plant sources containing a wide variety of secondary metabolites, which are useful as alternative strategies to control infectious diseases. This review will focus on natural plant products as a useful source of antimicrobial molecules, active in particular, on bacteria and fungi. When considering that many of these compounds, which have been used for centuries, are a source of new drugs and that there are ever-increasing technical breakthroughs, it can be envisaged that in the next years some different molecules discovered by ingenious screening programs and obtained from different plant oils and extracts will become useful therapeutic tools.
Collapse
Affiliation(s)
- Dianella Savoia
- Department of Clinical & Biological Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
222
|
Jiangseubchatveera N, Bouillon ME, Liawruangrath B, Liawruangrath S, Nash RJ, Pyne SG. Concise synthesis of (−)-steviamine and analogues and their glycosidase inhibitory activities. Org Biomol Chem 2013; 11:3826-33. [DOI: 10.1039/c3ob40374b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
223
|
Díez JA, Gálvez JA, Díaz-de-Villegas MD, Badorrey R, Bartholomew B, Nash RJ. Stereoselective synthesis and biological evaluation of D-fagomine, D-3-epi-fagomine and D-3,4-epi-fagomine analogs from D-glyceraldehyde acetonide as a common building block. Org Biomol Chem 2012; 10:9278-86. [PMID: 23104470 DOI: 10.1039/c2ob26732b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of D-fagomine, D-3-epi-fagomine, and D-3-epi-fagomine analogs starting from readily available D-glyceraldehyde acetonide has been achieved. The synthesis involves diastereoselective anti-vinylation of its homoallylimine, ring-closing metathesis, and stereoselective epoxidation followed by regioselective ring-opening or stereoselective dihydroxylation. The lack of a strong activity as glycosidase inhibitors of these compounds could be advantageous for their therapeutic use as chaperones.
Collapse
Affiliation(s)
- J Alberto Díez
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
224
|
Dal Piaz F, Vassallo A, Chini MG, Cordero FM, Cardona F, Pisano C, Bifulco G, De Tommasi N, Brandi A. Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of hsp90. PLoS One 2012; 7:e43316. [PMID: 22916240 PMCID: PMC3423353 DOI: 10.1371/journal.pone.0043316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/19/2012] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential.
Collapse
Affiliation(s)
- Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Antonio Vassallo
- Dipartimento di Chimica, Università degli Studi della Basilicata, Potenza, Italy
| | - Maria Giovanna Chini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Franca M. Cordero
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| | - Francesca Cardona
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| | | | - Giuseppe Bifulco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
- * E-mail:
| | - Alberto Brandi
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
225
|
Araújo N, Jenkinson SF, Martínez RF, Glawar AFG, Wormald MR, Butters TD, Nakagawa S, Adachi I, Kato A, Yoshihara A, Akimitsu K, Izumori K, Fleet GWJ. Synthesis from d-Altrose of (5R,6R,7R,8S)-5,7-Dihydroxy-8-hydroxymethylconidine and 2,4-Dideoxy-2,4-imino-d-glucitol, Azetidine Analogues of Swainsonine and 1,4-Dideoxy-1,4-imino-d-mannitol. Org Lett 2012; 14:4174-7. [DOI: 10.1021/ol301844n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Noelia Araújo
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Sarah F. Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - R. Fernando Martínez
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Andreas F. G. Glawar
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Mark R. Wormald
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Terry D. Butters
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Shinpei Nakagawa
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Isao Adachi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Atsushi Kato
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Akihide Yoshihara
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Kazuya Akimitsu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - Ken Izumori
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795,
| |
Collapse
|
226
|
Abstract
We have recently found that 𝒟(−)lentiginosine, a synthetic iminosugar exerting glucosidase inhibitory activity, but not its natural enantiomer lentiginosine, is endowed with an unexpected, pro-apoptotic activity. Here, we investigated mechanisms involved in apoptosis induced by 𝒟−)lentiginosine in MOLT-3, HT-29 and SH-SY5Y tumour cell lines. The results showed that 𝒟−)lentiginosine increased caspase 9 expression at 18 h in all the cell lines from 1.5–3.1 folds. Cytochrome c in the cytoplasm was found to be increased from 2.3–2.6 folds in treated cells with respect to control cells. These effects were accompanied by a remarkable collapse of the mitochondrial membrane potential and by the downregulation of anti-apoptotic genes, as well as the upregulation of pro-apoptotic genes of the Bcl-2 family. U937Bcl-2 transfectants, highly expressing Bcl-2, were reluctant to undergo apoptosis even following treatment with 500 μM 𝒟−)lentiginosine, whereas apoptosis by 𝒟−)lentiginosine was induced also in U937 cells, naturally deficient in P53. Thus, our study establishes that the enantiomer of a natural iminosugar is endowed with a possible anti-tumorigenic effect that might be ascribed not only to their capacity to inhibit glycosidases but also to other unknown mechanisms. These data encourage further investigation on similar compounds to make them an interesting platform for the generation of new anticancer drugs.
Collapse
|
227
|
Stocker BL, Win-Mason AL, Timmer MS. I2-mediated carbamate annulation: scope and application in the synthesis of azasugars. Carbohydr Res 2012; 356:163-71. [DOI: 10.1016/j.carres.2012.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
228
|
Hottin A, Dubar F, Steenackers A, Delannoy P, Biot C, Behr JB. Iminosugar-ferrocene conjugates as potential anticancer agents. Org Biomol Chem 2012; 10:5592-7. [PMID: 22717621 DOI: 10.1039/c2ob25727k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared a series of new iminosugar-ferrocene hybrids displaying potent inhibition of fucosidase (bovine kidney) and inactivation of MDA-MB-231 breast cancer cells proliferation at low micromolar concentrations. The synthetic route brought to light an unprecedented isomerisation of a 2-ethanalylpyrrolidine.
Collapse
Affiliation(s)
- Audrey Hottin
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France
| | | | | | | | | | | |
Collapse
|
229
|
Ayers BJ, Jenkinson SF, Fleet GWJ, Thompson AL. 2-N-Benzyl-2,6-dide-oxy-2,6-imino-3,4-O-isopropyl-idene-3-C-methyl-d-allono-nitrile. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o1474. [PMID: 22590347 PMCID: PMC3344585 DOI: 10.1107/s1600536812016273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 11/10/2022]
Abstract
X-ray crystallography firmly established the relative stereochemistry of the title compound, C17H22N2O3. The absolute configuration was determined by use of 2-C-methyl-d-ribonolactone as the starting material. The compound exists as O—H⋯N hydrogen-bonded chains of molecules running parallel to the a-axis.
Collapse
|
230
|
Lee JC, Francis S, Dutta D, Gupta V, Yang Y, Zhu JY, Tash JS, Schönbrunn E, Georg GI. Synthesis and evaluation of eight- and four-membered iminosugar analogues as inhibitors of testicular ceramide-specific glucosyltransferase, testicular β-glucosidase 2, and other glycosidases. J Org Chem 2012; 77:3082-98. [PMID: 22432895 PMCID: PMC3431965 DOI: 10.1021/jo202054g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eight- and four-membered analogues of N-butyldeoxynojirimycin (NB-DNJ), a reversible male contraceptive in mice, were prepared and tested. A chiral pool approach was used for the synthesis of the target compounds. Key steps for the synthesis of the eight-membered analogues involve ring-closing metathesis and Sharpless asymmetric dihydroxylation and for the four-membered analogues Sharpless epoxidation, epoxide ring-opening (azide), and Mitsunobu reaction to form the four-membered ring. (3S,4R,5S,6R,7R)-1-Nonylazocane-3,4,5,6,7-pentaol (6) was moderately active against rat-derived ceramide-specific glucosyltransferase, and four of the other eight-membered analogues were weakly active against rat-derived β-glucosidase 2. Among the four-membered analogues, ((2R,3S,4S)-3-hydroxy-1-nonylazetidine-2,4-diyl)dimethanol (25) displayed selective inhibitory activity against mouse-derived ceramide-specific glucosyltransferase and was about half as potent as NB-DNJ against the rat-derived enzyme. ((2S,4S)-3-Hydroxy-1-nonylazetidine-2,4-diyl)dimethanol (27) was found to be a selective inhibitor of β-glucosidase 2, with potency similar to NB-DNJ. Additional glycosidase assays were performed to identify potential other therapeutic applications. The eight-membered iminosugars exhibited specificity for almond-derived β-glucosidase, and the 1-nonylazetidine 25 inhibited α-glucosidase (Saccharomyces cerevisiae) with an IC(50) of 600 nM and β-glucosidase (almond) with an IC(50) of 20 μM. Only N-nonyl derivatives were active, emphasizing the importance of a long lipophilic side chain for inhibitory activity of the analogues studied.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Soengas RG, Simone MI, Hunter S, Nash RJ, Evinson EL, Fleet GWJ. Hydroxymethyl-Branched Piperidines from Hydroxymethyl-Branched Lactones: Synthesis and Biological Evaluation of 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imino-D-mannitol, 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imino-L-gulitol and 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imi. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
232
|
Simone MI, Soengas RG, Jenkinson SF, Evinson EL, Nash RJ, Fleet GW. Synthesis of three branched iminosugars [(3R,4R,5S)-3-(hydroxymethyl)piperidine-3,4,5-triol, (3R,4R,5R)-3-(hydroxymethyl)piperidine-3,4,5-triol and (3S,4R,5R)-3-(hydroxymethyl)piperidine-3,4,5-triol] and a branched trihydroxynipecotic acid [(3R,4R,5R)-3,4,5-trihydroxypiperidine-3-carboxylic acid] from sugar lactones with a carbon substituent at C-2. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|