201
|
Thanaboonyawat I, Chantrapanichkul P, Petyim S, Kaewjunun C, Laokirkkiat P, Choavaratana R. Application of testosterone supplementation in semen to improve sperm motility in asthenozoospermic males. Arch Gynecol Obstet 2017; 296:589-596. [PMID: 28707057 DOI: 10.1007/s00404-017-4451-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/26/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate the effect of different concentrations and durations of seminal testosterone supplementation upon the motility of sperm from asthenozoospermic males. METHODS Semen was collected from 41 infertile men with asthenozoospermia. After liquefaction, 200 μL was extracted from each semen sample and divided equally into five groups for a negative control, a vehicle control, and three experimental portions mixed with 4.75, 7.75, and 17.75 nmol/L of testosterone, respectively. The sperm motility was evaluated at 5, 15, 30, and 45 min following the addition of testosterone. The supernatant from remaining samples were sent for testosterone assay. Sperm viability was also evaluated after 45 min. RESULTS There was no difference in the number of samples in each group which showed a 20% improvement in sperm motility. Group 3 showed a significant retardation in the reduction of motility compared with Group 5 (P < 0.05). Semen samples with a final testosterone concentration of 4.51-10 nmol/L showed a significant improvement in sperm motility when measured 5 min after addition. In contrast, samples showing a rise in testosterone level above 10 nmol/L were associated with a reduction in both sperm motility and viability. CONCLUSION Despite sperm motility decreasing over time, supplementation of semen samples with 4.75 nmol/L of testosterone could delay such reduction. A final seminal testosterone concentration of 4.51-10 nmol/L appears to be optimal for the best sperm motility.
Collapse
Affiliation(s)
- Isarin Thanaboonyawat
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Panicha Chantrapanichkul
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Somsin Petyim
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Chidchanok Kaewjunun
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Pitak Laokirkkiat
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Roungsin Choavaratana
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
202
|
Hansen CH, Larsen LW, Sørensen AM, Halling-Sørensen B, Styrishave B. The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line. Toxicol In Vitro 2017; 41:1-11. [DOI: 10.1016/j.tiv.2017.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/05/2017] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
|
203
|
Garon G, Bergeron F, Brousseau C, Robert NM, Tremblay JJ. FOXA3 Is Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates Pdgfra Expression in Leydig Cells. Endocrinology 2017; 158:1886-1897. [PMID: 28379539 DOI: 10.1210/en.2016-1736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
The three FOXA transcription factors are mainly known for their roles in the liver. However, Foxa3-deficient mice become progressively sub/infertile due to germ cell loss. Because no data were available regarding the localization of the FOXA3 protein in the testis, immunohistochemistry was performed on mouse testis sections. In the fetal testis, a weak but consistent staining for FOXA3 is detected in the nucleus of Sertoli cells. In prepubertal and adult life, FOXA3 remains present in Sertoli cells of some but not all seminiferous tubules. FOXA3 is also detected in the nucleus of some peritubular cells. From postnatal day 20 onward, FOXA3 is strongly expressed in the nucleus of Leydig cells. To identify FOXA3 target genes in Leydig cells, MLTC-1 Leydig cells were transfected with a series of Leydig cell gene reporters in the presence of a FOXA3 expression vector. The platelet-derived growth factor receptor α (Pdgfra) promoter was significantly activated by FOXA3. The Pdgfra promoter contains three potential FOX elements and progressive 5' deletions and site-directed mutagenesis revealed that the most proximal element at -78 bp was sufficient to confer FOXA3 responsiveness. FOXA3 from Leydig cells could bind to this element in vitro (electrophoretic mobility shift assay) and was recruited to the proximal Pdgfra promoter in vivo (chromatin immunoprecipitation). Finally, endogenous Pdgfra messenger RNA levels were reduced in FOXA3-deficient MLTC-1 Leydig cells. Taken together, our data identify FOXA3 as a marker of the Sertoli cell lineage and of the adult Leydig cell population, and as a regulator of Pdgfra transcription in Leydig cells.
Collapse
Affiliation(s)
- Gabriel Garon
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
- Centre for Research in Reproduction, Development, and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
204
|
Horibe A, Eid N, Ito Y, Hamaoka H, Tanaka Y, Kondo Y. Upregulated Autophagy in Sertoli Cells of Ethanol-Treated Rats Is Associated with Induction of Inducible Nitric Oxide Synthase (iNOS), Androgen Receptor Suppression and Germ Cell Apoptosis. Int J Mol Sci 2017; 18:ijms18051061. [PMID: 28505146 PMCID: PMC5454973 DOI: 10.3390/ijms18051061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate the autophagic response of Sertoli cells (SCs) to acute ethanol toxicity using in vivo and in vitro models. Adult Wistar rats were intraperitoneally injected with either 5 g/kg ethanol or phosphate-buffered saline (for the control group) and sacrificed 0, 3, 6 and 24 h after injection. Compared to the control group, enhanced germ cell apoptosis was observed in the ethanol-treated rats (ETRs) in association with upregulation of iNOS and reduced expression of androgen receptor protein levels in SCs, which were resistant to apoptosis. Meanwhile, autophagy was upregulated in ETR SCs (peaking at 24 h) compared to the control group, as evidenced by transcription factor EB (TFEB) nuclear translocation, enhanced expression of microtubule-associated protein 1 light chain3-II (LC3-II), lysosome-associated membrane protein-2 (LAMP-2), pan cathepsin protein levels and reduced expression of p62. This upregulation of SC autophagy was confirmed ultrastructurally by enhanced formation of autophagic vacuoles and by immunofluorescent double labelling of autophagosomal and lysosomal markers. Study of cultured SCs confirmed enhanced autophagic response to ethanol toxicity, which was cytoprotective based on decreased viability of SCs upon blocking autophagy with 3-methyladenine (3-MA). The results highlighted the molecular mechanisms of prosurvival autophagy in ETR SCs for the first time, and may have significant implications for male fertility.
Collapse
Affiliation(s)
- Akio Horibe
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoshihisa Tanaka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
205
|
Knock-Out Serum Replacement and Melatonin Effects on Germ Cell Differentiation in Murine Testicular Explant Cultures. Ann Biomed Eng 2017; 45:1783-1794. [PMID: 28488216 PMCID: PMC5489632 DOI: 10.1007/s10439-017-1847-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Finding robust culture conditions for in vitro maturation (IVM) of male germ cells is still a challenge. Recently, a testis organ culture method, using Knockout Serum Replacement (KSR), was suggested as a promising approach. However, the efficiency of that model is still not optimal. Hence, we have tried to establish the culture conditions in two laboratories, and to improve the reliability of the culture system to generate mature germ cells. Male mice at three days of age were sacrificed. Testes were cut into small pieces which were cultured atop agarose stands, using Minimum Essential Medium alpha supplemented with different supplements; melatonin, Glutamax, and different concentrations of KSR. The results showed that the duration of culture beyond 18 days had an impact on the number of differentiated germ cells. Supplementation with melatonin and Glutamax revealed a positive influence on the efficiency of male germ cell differentiation in vitro. Furthermore, the results confirmed that KSR had a positive effect on germ cell maturation and testosterone production, with a concentration of at least 10%. In conclusion, this study emphasizes the beneficial role of at least 10% KSR in the IVM of germ cells.
Collapse
|
206
|
Jeremy M, Gurusubramanian G, Roy VK. Localization pattern of visfatin (NAMPT) in d -galactose induced aged rat testis. Ann Anat 2017; 211:46-54. [DOI: 10.1016/j.aanat.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/17/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023]
|
207
|
A high-fat diet impairs reproduction by decreasing the IL1β level in mice treated at immature stage. Sci Rep 2017; 7:567. [PMID: 28373640 PMCID: PMC5428732 DOI: 10.1038/s41598-017-00505-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/28/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity causes low-grade inflammation that is involved in male infertility. Interleukin 1 beta (IL1β) plays an important role in this process. A high-fat diet (HFD) is the most common cause of obesity. However, the effect of a HFD on IL1β and its consequence in reproduction remain unclear. We established a HFD model in mice treated at immature stage (mice-TIS) and mice treated at mature stage (mice-TMS). Surprisingly, we found that a HFD decreased IL1β levels and was accompanied by an increase in testosterone in mice-TIS, while the reverse results were observed in mice-TMS. In addition, a HFD caused a reduction in testis macrophages and in the expression of inflammasome-related genes and proteins in mice-TIS. Furthermore, we found that IL1β inhibited testosterone secretion through down-regulating the gene expression of P450SCC and P450c17. However, the influence on mice-TIS that were induced by a HFD was recovered by stopping the HFD. In this study, we are the first to report that a HFD impairs the reproductive system by decreasing IL1β and enhancing testosterone levels in mice-TIS, which are different from the effects in mice-TMS. This provides new ideas for the treatment of obesity-induced infertility.
Collapse
|
208
|
Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid. Theriogenology 2017; 92:69-74. [DOI: 10.1016/j.theriogenology.2017.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
|
209
|
Giribabu N, Reddy PS. Protection of male reproductive toxicity in rats exposed to di-n-butyl phthalate during embryonic development by testosterone. Biomed Pharmacother 2017; 87:355-365. [DOI: 10.1016/j.biopha.2016.12.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/10/2016] [Accepted: 12/26/2016] [Indexed: 02/05/2023] Open
|
210
|
Effect of extracellular matrix on testosterone production during in vitro culture of bovine testicular cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2017; 8:7-13. [PMID: 28473891 PMCID: PMC5413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/05/2016] [Indexed: 11/06/2022]
Abstract
Testosterone is believed to play a significant role in spermatogenesis, but its contribution to the process of spermatogenesis is not completely understood. Given that extracellular matrix (ECM) facilitates differentiation of spermatogonial stem cells (SSCs) during culture, the present study was conducted to elucidate whether testosterone contribute to the permissive effect of ECM on SSCs differentiation. In experiment 1, testosterone production was measured in testicular cells cultured for 12 days on ECM or plastic (control). In experiment 2, testosterone production was assessed in testicular cells cultured on ECM or plastic (control) and exposed to different concentrations of hCG. In experiment 3, the gene expression of factors involved in testosterone production was analyzed. Testosterone concentration was lower in ECM than in the control group in experiment 1 (p < 0.05). In experiment 2, testosterone concentration was increased in response to hCG in both groups but cells cultured on ECM were more responsive to hCG than those cultured on plastic (p < 0.05). In the experiment 3, qRT-PCR revealed the inhibitory effect of ECM on the gene expression of steroidogenic acute regulatory protein (StAR) (p < 0.05). Nevertheless, the expression of LH receptor was greater in ECM-exposed than in unexposed cells (p < 0.05). In conclusion, the present study showed that inhibiting the expression of StAR, ECM could lower testosterone production by Leydig cells during in vitro culture. In addition, the results indicated that ECM could augment the responsiveness of Leydig cells to hCG through stimulating the expression of LH receptor.
Collapse
|
211
|
Tiya S, Sewani-Rusike CR, Shauli M. Effects of treatment with Hypoxis hemerocallidea extract on sexual behaviour and reproductive parameters in male rats. Andrologia 2016; 49. [PMID: 28000943 DOI: 10.1111/and.12742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 11/29/2022] Open
Abstract
Hypoxis hemerocallidea is used in traditional medicine in South Africa, for the treatment of male reproductive ailments and various chronic illnesses. Despite chronic use, its effects on male reproductive system are unknown. Male Wistar rats were treated orally daily for 28 (n = 18) and 56 days (n = 18). Treatment groups (n = 6/group) per treatment period were as follows: untreated control, 150 mg/kg and 300 mg/kg 70% ethanolic extract of H. hemerocallidea. Sexual behaviour observations were performed on days 17 and 42 of the study. Sperm, biochemical and testicular histopathological studies were carried out. Arousal and libido and serum testosterone increased after 56 days of treatment. There was an increase in epididymal sperm count at both treatment doses, with the 300 mg/kg dose showing a higher sperm count (p < .05) compared to the 150 mg/kg treatment group. The higher 300 mg/kg dose also showed an increase (p < .05) in sperm motility after 56 days of treatment. Histology showed an increase in germinal layer thickness, consistent with the observed increase in sperm count. Testicular oxidative status improved after 56 days of treatment. Results suggest that chronic treatment with H. hemerocallidea may improve male sexual function and fertility parameters and may protect testes from oxidative damage.
Collapse
Affiliation(s)
- S Tiya
- Faculty of Health Sciences, Department of Human Biology, Walter Sisulu University, Mthatha, South Africa
| | - C R Sewani-Rusike
- Faculty of Health Sciences, Department of Human Biology, Walter Sisulu University, Mthatha, South Africa
| | - M Shauli
- Faculty of Health Sciences, Department of Human Biology, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
212
|
Geng Q, Ni LW, Ouyang B, Hu YH, Zhao Y, Guo J. Alanine and arginine rich domain containing protein, Aard, is directly regulated by androgen receptor in mouse Sertoli cells. Mol Med Rep 2016; 15:352-358. [PMID: 27959439 DOI: 10.3892/mmr.2016.6028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
Alanine and arginine rich domain containing protein (Aard) is specifically expressed in Sertoli cells (SCs) of mouse testis and the expression increases in an age‑dependent manner. A number of previous studies have indicated that androgen and androgen receptor (AR) signaling pathways are particularly important for spermatogenesis in mouse SCs, however, the association between Aard and AR remain to be elucidated. The present study identified Aard as a gene that is directly regulated by AR in mouse SCs, which is important in spermatogenesis. The expression of AARD was significantly downregulated in the testes of Sertoli cell‑selective AR knockout mice compared with wild‑type mice as analyzed by western blotting and immunofluorescence analyses. Quantitative polymerase chain reaction and western blotting indicated that AARD was predominantly expressed in adult mouse testis and its expression was increased in an age-dependent manner. In addition, AARD expression was upregulated by testosterone in primary SCs in vitro, which was confirmed by bioinformatics analysis and a dual‑luciferase reporter assay. Finally, chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that the ligand‑bound AR activated Aard transcription via directly binding to the androgen‑responsive element of the Aard promoter. To the best of our knowledge, the present study is the first to document that Aard is directly regulated by AR in mouse Sertoli cells.
Collapse
Affiliation(s)
- Qiang Geng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Li-Wei Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Bin Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yan-Hua Hu
- Union Stem Cell & Gene Engineering Co., Ltd, Tianjin 300384, P.R. China
| | - Yu Zhao
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Science, Beijing 100091, P.R. China
| |
Collapse
|
213
|
Age and gender effects on bone mass density variation: finite elements simulation. Biomech Model Mechanobiol 2016; 16:521-535. [PMID: 27659482 DOI: 10.1007/s10237-016-0834-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
Abstract
Bone remodeling is a physiological process by which bone constantly adapts its structure to changes in long-term loading manifested by interactions between osteoclasts and osteoblasts. This process can be influenced by many local factors, via effects on bone cells differentiation and proliferation, which are produced by bone cells and act in a paracrine or autocrine way. The aim of the current work is to provide mechanobiological finite elements modeling coupling both cellular activities and mechanical behavior in order to investigate age and gender effects on bone remodeling evolution. A series of computational simulations have been performed on a 2D and 3D human proximal femur. An age- and gender-related impacts on bulk density alteration of trabecular bone have been noticed, and the major actors responsible of this phenomenon have been then discussed.
Collapse
|
214
|
Akmal M, Siregar TN, Wahyuni S, Hamny, Nasution MK, Indriati W, Panjaitan B, Aliza D. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration. Vet World 2016; 9:1001-1005. [PMID: 27733803 PMCID: PMC5057020 DOI: 10.14202/vetworld.2016.1001-1005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023] Open
Abstract
Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells.
Collapse
Affiliation(s)
- Muslim Akmal
- Laboratory of Histology, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Tongku Nizwan Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Sri Wahyuni
- Laboratory of Research, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia; Laboratory of Anatomy, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Hamny
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Mustafa Kamal Nasution
- Department of PGMI, Faculty of Tarbiyah, STAIN Gajah Putih Takengon, Aceh Tengah, Aceh, Indonesia
| | - Wiwik Indriati
- Student at Veterinary Public Health Graduate Program, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Budianto Panjaitan
- Laboratory of Clinic, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| | - Dwinna Aliza
- Laboratory of Pathology, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
215
|
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Protective role of Aloe vera against X-ray induced testicular dysfunction. Andrologia 2016; 49. [PMID: 27620003 DOI: 10.1111/and.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
The present investigation was carried out to evaluate the possible radioprotective potential of an Aloe vera extract against whole-body X-ray irradiation-induced testicular alterations in mice. Male balb/c mice were divided into four groups: control, A. vera, X-ray and A. vera pre-treated + X-ray irradiated. Histopathological examination revealed significant structural alterations in testes after X-ray exposure, which was also associated with the presence of apoptotic cells as assessed by TUNEL assay. X-ray irradiation resulted in elevation in the levels of reactive oxygen species, lipid peroxidation, a reduction in glutathione concentration and enhanced activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, catalase, superoxide dismutase and glutathione-S-transferase. Sperm count/motility and testosterone levels were significantly decreased in the irradiated group. Irradiated animals pre-treated with A. vera extract revealed an improvement in antioxidant status, inhibition of lipid peroxides, apoptotic cell formation and enhanced testicular parameters when compared to the X-ray-exposed group. These findings suggest that A. vera extract could ameliorate X-ray-induced damage due to its free radical scavenging properties and its potential to boost cellular antioxidant defence machinery.
Collapse
Affiliation(s)
- S Bala
- Department of Biophysics, Panjab University, Chandigarh, India
| | - N A Chugh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - S C Bansal
- Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh, India
| | - M L Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | - A Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
216
|
Upmanyu N, Dietze R, Kirch U, Scheiner-Bobis G. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2809-2819. [PMID: 27599714 DOI: 10.1016/j.bbamcr.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 01/18/2023]
Abstract
In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ulrike Kirch
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
217
|
Kasimanickam VR. Expression of retinoic acid-metabolizing enzymes, ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, CYP26B1 and CYP26C1 in canine testis during post-natal development. Reprod Domest Anim 2016; 51:901-909. [PMID: 27569851 DOI: 10.1111/rda.12756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Mammalian spermatogenesis involves highly regulated temporal and spatial dynamics, carefully controlled by several signalling processes. Retinoic acid (RA) signalling could have a critical role in spermatogenesis by promoting spermatogonia differentiation, adhesion of germ cells to Sertoli cells, and release of mature spermatids. An optimal testicular RA concentration is maintained by retinaldehyde dehydrogenases (ALDHs), which oxidize RA precursors to produce RA, whereas the CYP26 class of enzymes catabolizes (oxidize) RA into inactive metabolites. The objective was to elucidate gene expression of these RA-metabolizing enzymes (ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, CYP26B1 and CYP26C1) and their protein presence in testes of young, peripubertal and adult dogs. Genes encoding RA-synthesizing isozymes ALDH1A1, ALDH1A2 and ALDH1A3 and RA-catabolizing isomers CYP26A1, CYP26B1 and CYP26C1 were expressed in testis at varying levels during testicular development from birth to adulthood in dogs. Based on detailed analyses of mRNA expression patterns, ALDH1A2 was regarded as a primary RA-synthesizing enzyme and CYP26B1 as a critical RA-hydrolysing enzyme; presumably, these genes have vital roles in maintaining RA homeostasis, which is imperative to spermatogenesis and other testicular functions in post-natal canine testis.
Collapse
Affiliation(s)
- V R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
218
|
Leisegang K, Bouic PJD, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol 2016; 76:155-63. [DOI: 10.1111/aji.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine; University of the Western Cape; Bellville South Africa
| | - Patrick J. D. Bouic
- Division of Medical Microbiology; Department of Pathology; Stellenbosch University & Synexa Life Sciences; Cape Town South Africa
| | - Ralf R. Henkel
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
| |
Collapse
|
219
|
Dumasia K, Kumar A, Deshpande S, Sonawane S, Balasinor NH. Differential roles of estrogen receptors, ESR1 and ESR2, in adult rat spermatogenesis. Mol Cell Endocrinol 2016; 428:89-100. [PMID: 27004961 DOI: 10.1016/j.mce.2016.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 02/01/2023]
Abstract
Estrogens, through their receptors, play an important role in regulation of spermatogenesis. However, the precise role of the estrogen receptors (ESR1 and ESR2) has been difficult to determine as in vivo estradiol treatment would signal through both the ESRs. Hence we had developed in vivo selective ESR agonist administration models in adult male rats to decipher the individual roles of the ESRs. Treatment with both ESR1 and ESR2 agonists decreased sperm counts after 60 days of treatment. The present study aimed to delineate the precise causes of decreased sperm counts following treatment with the two ESR agonists. Treatment with ESR1 agonist causes an arrest in differentiation of round spermatids into elongated spermatids, mainly due to down-regulation of genes involved in spermiogenesis. ESR2 agonist administration reduces sperm counts due to spermiation failure and spermatocyte apoptosis. Spermiation failure observed is due to defects in tubulobulbar complex formation because of decrease in expression of genes involved in actin remodelling. The increase in spermatocyte apoptosis could be due to increase in oxidative stress and decrease in transcripts of anti-apoptotic genes. Our results suggest that the two ESRs regulate distinct aspects of spermatogenesis. ESR1 is mainly involved with regulation of spermiogenesis, while ESR2 regulates spermatocyte apoptosis and spermiation. Activation of estrogen signaling through either of the receptors can affect their respective processes during spermatogenesis and lead to low sperm output. Since many environmental estrogens can bind to the two ESRs with different affinities, these observations can be useful in understanding their potential effects on spermatogenesis.
Collapse
Affiliation(s)
- Kushaan Dumasia
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Anita Kumar
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Sharvari Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Shobha Sonawane
- Confocal Facility, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - N H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India.
| |
Collapse
|
220
|
Changes in rat testis morphology and androgen receptor expression around the age of puberty. Ann Anat 2016; 205:37-44. [DOI: 10.1016/j.aanat.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/25/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022]
|
221
|
Abarikwu SO, Benjamin S, Ebah SG, Obilor G, Agbam G. Oral administration of Moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rats. Andrologia 2016; 49. [PMID: 27071754 DOI: 10.1111/and.12597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to compare the effects of administration of coconut oil (CO) and Moringa oleifera oil (MO) on testicular oxidative stress, sperm quality and steroidogenesis parameters in rats treated with mercury chloride (HgCl2 ). After 15 days of oral administration of CO (2 ml kg-1 body weight) and MO (2 ml kg-1 body weight) along with intraperitoneal (i.p.) administration of HgCl2 (5 mg kg-1 body weight) alone or in combination, we found that CO treatment did not protect against HgCl2 -induced poor sperm quality (motility, count) as well as decreased testosterone level and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity. Treatment with CO alone decreased glutathione (GSH), and glutathione peroxidase (GSH-Px) activities and increased malondialdehyde (MDA) level in rat's testis, whereas MO did not change these parameters. Cotreatment with MO prevented HgCl2 -induced testicular catalase (CAT) and superoxide dismutase (SOD) activities, poor sperm quality and low testosterone level and also blocks the adverse effect of CO+HgCl2 (2 ml kg-1 body weight + 5 mg kg-1 body weight) on the investigated endpoints. In conclusion, MO and not CO decreased the deleterious effects of HgCl2 on sperm quality and steroidogenesis in rats and also strengthen the antioxidant defence of the testes. Therefore, MO is beneficial as an antioxidant in HgCl2 -induced oxidative damage.
Collapse
Affiliation(s)
- S O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - S Benjamin
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - S G Ebah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G Obilor
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G Agbam
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
222
|
Yuan Z, Matias FB, Yi JE, Wu J. T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:47-54. [PMID: 26707243 DOI: 10.1016/j.cbpc.2015.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023]
Abstract
T-2 toxin is a highly toxic mycotoxin produced by various Fusarium species, mainly, Fusarium sporotrichoides, and has been reported to have toxic effects on reproductive system of adult male animals. This study investigated the dose-dependent cytotoxicity of T-2 toxin on reproductive cells using TM3 Leydig cells. Specifically, the cytotoxic effect of T-2 toxin was assessed by measuring cell viability; lactate dehydrogenase (LDH); malondialdehyde (MDA); antioxidant activity by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and DNA damage; and cell apoptosis. Results showed that T-2 toxin is highly cytotoxic on TM3 Leydig cells. However, Trolox-treated TM3 Leydig cells showed significantly reduced oxidative damage, DNA damage, and apoptosis induced by T-2 toxin. This study proves that T-2 toxin can damage the testes and thus affects the reproductive capacity of animals and humans. Furthermore, oxidative stress plays an important role in the cytotoxic effect of T-2 toxin.
Collapse
Affiliation(s)
- Zhihang Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Froilan Bernard Matias
- Department of Animal Management, College of Veterinary Science and Medicine, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Jin-e Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jing Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
223
|
Zhang L, Ding S, Qiao P, Dong L, Yu M, Wang C, Zhang M, Zhang L, Li Y, Tang N, Chang B. n-butylparaben induces male reproductive disorders via regulation of estradiol and estrogen receptors. J Appl Toxicol 2016; 26:1223-1234. [DOI: 10.1002/jat.3291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Linyuan Zhang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Sijin Ding
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Peihuan Qiao
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Li Dong
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Miao Yu
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Chong Wang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ming Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Lixia Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Yimin Li
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ning Tang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Bing Chang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| |
Collapse
|
224
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
225
|
Chojnacka K, Zarzycka M, Mruk DD. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. Results Probl Cell Differ 2016; 58:225-251. [PMID: 27300181 DOI: 10.1007/978-3-319-31973-5_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
226
|
Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl 2015; 17:972-80. [PMID: 26067870 PMCID: PMC4814948 DOI: 10.4103/1008-682x.154994] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/26/2014] [Accepted: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
In vitro culture of spermatogonial stem cells (SSCs) has generally been performed using two-dimensional (2D) culture systems; however, such cultures have not led to the development of complete spermatogenesis. It seems that 2D systems do not replicate optimal conditions of the seminiferous tubules (including those generated by the SSC niche) and necessary for spermatogenesis. Recently, one of our laboratories has been able to induce proliferation and differentiation of mouse testicular germ cells to meiotic and postmeiotic stages including generation of sperm in a 3D soft agar culture system (SACS) and a 3D methylcellulose culture system (MCS). It was suggested that SACS and MCS form a special 3D microenvironment that mimics germ cell niche formation in the seminiferous tubules, and thus permits mouse spermatogenesis in vitro. In this review, we (1) provide a brief overview of the differences in spermatogenesis in rodents and primates, (2) summarize data related to attempts to generate sperm in vitro, (3) report for the first time formation of colonies/clusters of cells and differentiation of meiotic (expression of CREM-1) and postmeiotic (expression of acrosin) germ cells from undifferentiated spermatogonia isolated from the testis of prepubertal rhesus monkeys and cultured in SACS and MCS, and (4) indicate research needed to optimize 3D systems for in vitro primate spermatogenesis and for possible future application to man.
Collapse
Affiliation(s)
- Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Seyedmehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
227
|
Kavarthapu R, Dufau ML. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection. Mol Endocrinol 2015; 29:1792-804. [PMID: 26484580 DOI: 10.1210/me.2015-1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
228
|
MR Spectra of Normal Adult Testes and Variations with Age: Preliminary Observations. Eur Radiol 2015; 26:2261-7. [PMID: 26474986 DOI: 10.1007/s00330-015-4055-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim was to determine the proton MR (1H-MR) spectra of normal adult testes and variations with age. METHODS Forty-one MR spectra of normal testes, including 16 testes from men aged 20-39 years (group I) and 25 testes from men aged 40-69 years (group II), were analyzed. A single-voxel point-resolved spectroscopy sequence (PRESS), with TR/TE: 2000/25 ms was used. The volume of interest was placed to include the majority of normal testicular parenchyma. Association between normalized metabolite concentrations, defined as ratios of the calculated metabolite concentrations relative to creatine concentration, and age was assessed. RESULTS Quantified metabolites of the spectra were choline (Cho), creatine (Cr), myo-inositol (mI), scyllo-inositol, taurine, lactate, GLx compound, glucose, lipids, and macromolecules resonating at 0.9 ppm (LM09), around 20 ppm (LM20), and at 13 ppm (LM13). Most prominent peaks were Cho, Cr, mI, and lipids. A weak negative correlation between mI and age (P = 0.015) was observed. Higher normalized concentrations of Cho (P = 0.03), mI (P = 0.08), and LM13 (P = 0.05) were found in group I than in group II. CONCLUSIONS 1H-MR spectra of a normal adult testis showed several metabolite peaks. A decrease of levels of Cho, mI, and LM13 was observed with advancing age. KEY POINTS • Single-voxel PRESS MRS of a normal testis is feasible. • 1H-MR spectra of a normal testis showed several metabolite peaks. • Most prominent peaks were Cho, Cr, mI, and lipids. • A decrease of Cho, mI, and LM13 was seen with advancing age.
Collapse
|
229
|
Dent MP, Carmichael PL, Jones KC, Martin FL. Towards a non-animal risk assessment for anti-androgenic effects in humans. ENVIRONMENT INTERNATIONAL 2015; 83:94-106. [PMID: 26115536 DOI: 10.1016/j.envint.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Toxicology testing is undergoing a transformation from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. We review the tools and approaches that could be used to develop a non-animal safety assessment for anti-androgenic effects in humans, with a focus on the molecular initiating events (MIEs) that human disorders indicate critical for normal functioning of the hypothalamus-pituitary-testicular (HPT) axis. In vitro test systems exist which can be used to characterize the effects of test chemicals on some MIEs such as androgen receptor antagonism, inhibition of steroidogenic enzymes or 5α-reductase inhibition. When used alongside information describing the pharmacokinetics of a specific chemical exposure, these could be used to inform a pathways-based safety assessment. However, some parts of the HPT axis such as events occurring in the hypothalamus or pituitary are not well represented by accepted in vitro methods. In vitro tools to characterize perturbations in these events need to be developed before a fully integrated model of the HPT axis can be described. Knowledge gaps also exist which prevent us from using in vitro data to predict the type and severity of in vivo effect(s) that could arise from a given level of in vitro anti-androgenic activity. This means that more work is needed to reliably link an MIE with an adverse outcome. However, especially for chemicals with low anti-androgenic activity, human exposure data can be used to put in vitro mode of action data into context for risk-based safety decision-making.
Collapse
Affiliation(s)
- Matthew P Dent
- Safety and Environmental Assurance Centre, Unilever Colworth Science Park, Bedfordshire MK44 1LQ, UK.
| | - Paul L Carmichael
- Safety and Environmental Assurance Centre, Unilever Colworth Science Park, Bedfordshire MK44 1LQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
230
|
Yang Y, Ma W, Ma H, Sun M, Chang Q, Pei X, Wang Y. The spatiotemporal expression and localization implicates a potential role for SerpinB11 in the process of mouse spermatogenesis and apoptosis. J Immunoassay Immunochem 2015; 36:170-81. [PMID: 24785531 DOI: 10.1080/15321819.2014.917321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, the spatiotemporal expression of SerpinB11 in the mouse testis from postnatal 1-60 d was checked, the SerpinB11 protein strongly localized in the intermediate spermatogonia, B-type spermatogonium, preleptotene spermatocyte, leptonema spermatocyte, zygotene spermatocyte, but weakly localized in the pachytene spermatocyte, diplotene spermatocyte, sphere sperm, and the apoptotic sperm was positive stained of SerpinB11 protein, the localization of cell cycle marker CDK4 and meiosis marker SCP3 were investigated, and the SCP3 and SerpinB11 colocalized in the intermediate spermatogonia, B-type spermatogonium, preleptotene spermatocyte. Taken together, these results suggested that SerpinB11 might involved in spermatogenesis and apoptosis.
Collapse
Affiliation(s)
- Yanzhou Yang
- a Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | | | | | | | | | | | | |
Collapse
|
231
|
Li H, Zhang H, Di C, Xie Y, Zhou X, Yan J, Zhao Q. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes. Reprod Toxicol 2015; 58:45-53. [PMID: 26257270 DOI: 10.1016/j.reprotox.2015.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 01/07/2023]
Abstract
We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signaling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and therapeutic radiation.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiawei Yan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
232
|
Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo. Dev Biol 2015; 407:90-102. [PMID: 26254600 DOI: 10.1016/j.ydbio.2015.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
Spermatogonial stem cells (SSCs) must balance self-renewal with production of transit-amplifying progenitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs. differentiation spermatogonial fate decision is critical for maintaining tissue homeostasis, as imbalances cause spermatogenesis defects that can lead to human testicular cancer or infertility. A great deal of effort has been exerted to understand how the SSC population is maintained. In contrast, little is known about the essential program of differentiation initiated by retinoic acid (RA) that precedes meiosis, and the pathways and proteins involved are poorly defined. We recently reported a novel role for RA in stimulating the PI3/AKT/mTOR kinase signaling pathway to activate translation of repressed mRNAs such as Kit. Here, we examined the requirement for mTOR complex 1 (mTORC1) in mediating the RA signal to direct spermatogonial differentiation in the neonatal testis. We found that in vivo inhibition of mTORC1 by rapamycin blocked spermatogonial differentiation, which led to an accumulation of undifferentiated spermatogonia. In addition, rapamycin also blocked the RA-induced translational activation of mRNAs encoding KIT, SOHLH1, and SOHLH2 without affecting expression of STRA8. These findings highlight dual roles for RA in germ cell development - transcriptional activation of genes, and kinase signaling to stimulate translation of repressed messages required for spermatogonial differentiation.
Collapse
|
233
|
Boj M, Chauvigné F, Cerdà J. Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts. THE BIOLOGICAL BULLETIN 2015; 229:93-108. [PMID: 26338872 DOI: 10.1086/bblv229n1p93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluid homeostasis is recognized as a critical factor during the development, maturation, and function of vertebrate male germ cells. These processes have been associated with the presence of multiple members of the aquaporin superfamily of water and solute channels in different cell types along the reproductive tract as well as in spermatozoa. We present a comparative analysis of the existing knowledge of aquaporin biology in the male reproductive tissues of mammals and teleosts. Current data suggest that in both vertebrate groups, aquaporins may have similar functions during differentiation of spermatozoa in the germinal epithelium, in the concentration and maturation of sperm in the testicular ducts, and in the regulation of osmotically induced volume changes in ejaculated spermatozoa. Recent studies have also provided insight into the possible function of aquaporins beyond water transport, such as in signaling pathways during spermatogenesis or the sensing of cell swelling and mitochondrial peroxide transport in activated sperm. However, an understanding of the specific physiological functions of the various aquaporins during germ cell development and sperm motility, as well as the molecular mechanisms involved, remains elusive. Novel experimental approaches need to be developed to elucidate these processes and to dissect the regulatory intracellular pathways implicated, which will greatly help to uncover the molecular basis of sperm physiology and male fertility in vertebrates.
Collapse
Affiliation(s)
- Mónica Boj
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and
| | - François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and
| |
Collapse
|
234
|
Non-classical testosterone signaling in spermatogenic GC-2 cells is mediated through ZIP9 interacting with Gnα11. Cell Signal 2015. [PMID: 26208885 DOI: 10.1016/j.cellsig.2015.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although classical and non-classical signaling of testosterone has been documented in several investigations, the nature of the receptor involved in the non-classical pathway remains a source of controversy. While some investigators favor the exclusive participation of the cytosolic/nuclear androgen receptor (AR) in both pathways, others propose a membrane-bound receptor as the mediator of the non-classical testosterone signaling. Evidence is provided here that in the spermatogenic cell line GC-2 the non-classical signaling pathway of testosterone, characterized through the activation of Erk1/2 and transcription factors like CREB or ATF-1, is not mediated through the classical nuclear androgen receptor (AR) but rather by a membrane-associated receptor. This receptor is ZIP9, a Zn(2+) transporter from the family of the ZRT, IRT-like proteins (ZRT=zinc-regulated transporter; IRT=iron-regulated transporter), which directly interacts with the G-protein Gnα11. siRNA-induced abrogation of the expression of either of these two proteins, whose close contacts are demonstrated by an in situ proximity assay, completely prevents all non-classical signaling effects of testosterone addressed. In contrast, silencing of AR expression does not influence the same signaling events. The identification of ZIP9/Gnα11 interactions as the mediators of the non-classical testosterone signaling cascade in spermatogenic GC-2 cells might help to supplement our knowledge concerning the role of testosterone in male fertility and reproduction.
Collapse
|
235
|
Jaiswal MK, Agrawal V, Katara GK, Pamarthy S, Kulshrestha A, Chaouat G, Gilman-Sachs A, Beaman KD. Male fertility and apoptosis in normal spermatogenesis are regulated by vacuolar-ATPase isoform a2. J Reprod Immunol 2015; 112:38-45. [PMID: 26226211 DOI: 10.1016/j.jri.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/24/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
Abstract
The a2 isoform of vacuolar-ATPase (ATP6V0A2, referred to as a2V) is required for normal spermatogenesis and maturation of sperm. Treatment of male mice with anti-a2V disturbs the testicular cytokine/chemokine balance and leads to severe deficiencies of spermatogenesis. The aim of the present study was to investigate the role of a2V in male fertility and in the regulation of apoptotic pathways required for normal spermatogenesis in mice. To study the role of a2V single dose of anti-a2V monoclonal antibody or mouse IgG isotype (3μg/animal) was injected i.p. into males on alternate days for 10 days. The expression of sperm maturation-related molecules and pro-apoptotic molecules was measured by real-time PCR or immunohistochemistry in control and anti-a2V-treated testes. The caspase levels and their activity were measured by western blot and fluorometry. We found that the expression of the sperm maturation-related molecules SPAM1, ADAM1, and ADAM2 was significantly decreased in testes from anti-a2V-treated males. The expression of pro-apoptotic molecules (Bax, p53, and p21) and molecules involved in the intrinsic pathway of apoptosis (caspase-9, caspase-3, and PARP), which are crucial for normal spermatogenesis was significantly reduced in testes from anti-a2V-treated males compared with the control. The total ATP level was significantly lower in anti-a2V-treated testes. The data provide novel evidence showing that a2V can regulate the apoptotic pathways, an essential testicular feature, and is necessary for efficient spermatogenesis.
Collapse
Affiliation(s)
- Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University Health System, Evanston, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gerard Chaouat
- U976 INSERM /UMR 976CNRS Saint Louis Hospital, 75010 Paris, France
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
236
|
Sadasivam M, Ramatchandirin B, Balakrishnan S, Prahalathan C. TNF-α-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm Res 2015; 64:549-56. [DOI: 10.1007/s00011-015-0835-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 12/18/2022] Open
|
237
|
Oczkowski M, Średnicka-Tober D, Stachoń M, Kołota A, Wolińska-Witort E, Malik A, Hallmann E, Rusaczonek A, Gromadzka-Ostrowska J. The effect of red wine consumption on hormonal reproductive parameters and total antioxidant status in young adult male rats. Food Funct 2015; 5:2096-105. [PMID: 24996445 DOI: 10.1039/c4fo00108g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Very little is known about the effects of red wine consumption on male reproductive functions. Here we report the effect of regular drinking of different types of red wine on hormonal reproductive parameters and total antioxidant status in young adult male rats. Dry red wine (D-RW) exerted higher antioxidant activity and was characterized by higher concentration of phenolic compounds compared to semi-dry (SD-RW), sweet (S-RW) and semi-sweet (SS-RW) wines. No differences in total antioxidant status of rat plasma after six weeks of drinking of the wines were detected. Increased plasma follicle-stimulating hormone levels in S-RW versus control and D-RW (5.26 vs. 3.06 and 3.21 ng mL(-1)) groups were found. The plasma testosterone concentration was lower in D-RW compared to control, SD-RW, S-RW and SS-RW groups (0.25 vs. 1.12, 1.09, 1.54 and 1.25 ng mL(-1)). Higher plasma 17β-estradiol level in S-RW versus SD-RW and SS-RW (10.94 vs. 7.18 and 6.72 pg mL(-1)) group was stated. The prolactin level was higher in plasma of S-RW versus D-RW and SS-RW (17.35 vs. 9.74 and 8.59 ng mL(-1)) rats. The effects of red wine drinking on the hormonal regulation of the male reproductive system depend on the type and the dose of red wine. Chemical compounds naturally occurring in red wines (i.e. phenolics) may modulate the effects of ethyl alcohol, but also directly affect the male reproduction.
Collapse
Affiliation(s)
- Michał Oczkowski
- Chair of Nutritional Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Walker WH, Easton E, Moreci RS, Toocheck C, Anamthathmakula P, Jeyasuria P. Restoration of spermatogenesis and male fertility using an androgen receptor transgene. PLoS One 2015; 10:e0120783. [PMID: 25803277 PMCID: PMC4372537 DOI: 10.1371/journal.pone.0120783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 01/25/2023] Open
Abstract
Androgens signal through the androgen receptor (AR) to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC) was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3’ to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO) background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues.
Collapse
Affiliation(s)
- William H. Walker
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Evan Easton
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca S. Moreci
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Corey Toocheck
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Prashanth Anamthathmakula
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pancharatnam Jeyasuria
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
239
|
Ochiogu I, Ogwu D, Uchendu C, Okoye C, Ihedioha J, Mbegbu E. Effects of monosodium-L-glutamate administration on serum levels of reproductive hormones and cholesterol, epididymal sperm reserves and testicular histomorphology of male albino rats. Acta Vet Hung 2015; 63:125-39. [PMID: 25655420 DOI: 10.1556/avet.2015.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated the effects of administration of monosodium L-glutamate (MSG) on serum gonadotrophin-releasing hormone (GnRH), luteinising hormone (LH), testosterone and total cholesterol (TC), cauda epididymal sperm reserves (CESR) and testicular histomorphology of adult male albino rats. Eighty-four rats, randomly assigned to 7 groups of 12 rats each, were used for the study. Varying low doses (0.25, 0.50 or 1.00 g/kg body weight) of MSG were administered orally or subcutaneously at 48-h intervals for six weeks. Serum GnRH, LH, testosterone and TC, and CESR were evaluated on days 14, 28 and 42 of MSG administration. Testicular histomorphology was evaluated on day 42. The results showed that the mean serum GnRH, LH and testosterone levels, and the CESR of all the treated groups were significantly (P < 0.05) lower than those of the untreated control on days 14, 28 and 42 of MSG administration. The mean serum TC levels of all the treated groups were also significantly (P < 0.05) lower than those of the control group on days 14 and 28. No lesions were observed on sections of the testes. It was concluded that MSG administration for 14, 28 and 42 days led to significantly lower serum levels of GnRH, LH, testosterone and TC, and significantly lower CESR.
Collapse
Affiliation(s)
- Izuchukwu Ochiogu
- 1 University of Nigeria Department of Veterinary Obstetrics and Reproductive Diseases Nsukka Enugu State Nigeria
| | | | - Chukwuka Uchendu
- 2 University of Nigeria Department of Veterinary Physiology and Pharmacology Nsukka Enugu State Nigeria
| | - Chidozie Okoye
- 1 University of Nigeria Department of Veterinary Obstetrics and Reproductive Diseases Nsukka Enugu State Nigeria
| | - John Ihedioha
- 3 University of Nigeria Department of Veterinary Pathology and Microbiology Nsukka Enugu State Nigeria
| | - Edmund Mbegbu
- 2 University of Nigeria Department of Veterinary Physiology and Pharmacology Nsukka Enugu State Nigeria
| |
Collapse
|
240
|
Pradhan DS, Solomon-Lane TK, Grober MS. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish. Front Neurosci 2015; 9:8. [PMID: 25691855 PMCID: PMC4315020 DOI: 10.3389/fnins.2015.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates.
Collapse
Affiliation(s)
| | | | - Matthew S Grober
- Department of Biology, Georgia State University Atlanta, GA, USA ; Neuroscience Institute, Georgia State University Atlanta, GA, USA
| |
Collapse
|
241
|
Ayaz O, Howlett SE. Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ 2015; 6:9. [PMID: 25922656 PMCID: PMC4411792 DOI: 10.1186/s13293-015-0027-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
The incidence of cardiovascular disease rises dramatically with age in both men and women. Because a woman's risk of cardiovascular disease rises markedly after the onset of menopause, there has been growing interest in the effect of estrogen on the heart and its role in the pathophysiology of these diseases. Much less attention has been paid to the impact of testosterone on the heart, even though the levels of testosterone also decline with age and low-testosterone levels are linked to the development of cardiovascular diseases. The knowledge that receptors for all major sex steroid hormones, including testosterone, are present on individual cardiomyocytes suggests that these hormones may influence the heart at the cellular level. Indeed, it is well established that there are male-female differences in intracellular Ca(2+) release and contraction in isolated ventricular myocytes. Growing evidence suggests that these differences arise from effects of sex steroid hormones on processes involved in intracellular Ca(2+) homeostasis. This review considers how myocardial contractile function is modified by testosterone, with a focus on the impact of testosterone on processes that regulate Ca(2+) handling at the level of the ventricular myocyte. The idea that testosterone regulates Ca(2+) handling in the heart is important, as Ca(2+) dysregulation plays a key role in the pathogenesis of a variety of different cardiovascular diseases. A better understanding of sex hormone regulation of myocardial Ca(2+) homeostasis may reveal new targets for the treatment of cardiovascular diseases in all older adults.
Collapse
Affiliation(s)
- Omar Ayaz
- Department of Pharmacology, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Susan Ellen Howlett
- Department of Pharmacology, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, PO Box 15000, Halifax, NS B3H 4R2 Canada
- Medicine (Geriatric Medicine), Dalhousie University, 5850 College Street, PO Box 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
242
|
Lombardi APG, Royer C, Pisolato R, Cavalcanti FN, Lucas TFG, Lazari MFM, Porto CS. Physiopathological aspects of the Wnt/β-catenin signaling pathway in the male reproductive system. SPERMATOGENESIS 2014; 3:e23181. [PMID: 23687614 PMCID: PMC3644045 DOI: 10.4161/spmg.23181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Wnt/β-catenin signaling pathway controls several biological processes throughout development and adult life. Dysregulation of Wnt/β-catenin signaling underlies a wide range of pathologies in animals and humans, including cancer in different tissues. In this review, we provide an update of the Wnt/β-catenin signaling pathway and the possible roles of the Wnt/β-catenin signaling in the biology of testis, epididymis and prostate. Data from our laboratory suggest the involvement of 17β-estradiol and estrogen receptors (ERs) on the regulation of β-catenin expression in rat Sertoli cells. We also provide emerging evidences of the involvement of Wnt/β-catenin pathway in testis and prostate cancer. Our understanding of the role of Wnt/β-Catenin signaling in male reproductive tissues is still evolving, and several questions are open to be addressed in the future.
Collapse
Affiliation(s)
- Ana Paola G Lombardi
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo, SP Brazil
| | | | | | | | | | | | | |
Collapse
|
243
|
Kobayashi M, Hori T, Kawakami E. Efficacy of low-dose human chorionic gonadotropin therapy in dogs with spermatogenic dysfunction: a preliminary study. Reprod Domest Anim 2014; 49:E44-7. [PMID: 25130649 DOI: 10.1111/rda.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/31/2014] [Indexed: 11/29/2022]
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein used in the treatment of spermatogenic dysfunction. However, previous studies performed in dogs show that repeated administration of large doses of hCG produces antibodies against hCG. In this study, we examined the efficacy of low-dose injections of hCG in four male dogs with spermatogenic dysfunction and low plasma testosterone (T) levels. We administered 100 IU hCG per animal, five times at 3-day intervals, and evaluated the changes in semen quality and plasma T levels. The total number of sperm in ejaculate, the percentage of progressively motile sperm and the plasma T levels had increased by 3-5 weeks after the first injection of hCG in three of the four dogs, but were unchanged in the fourth dog. These findings indicate that temporary improvement of the semen quality of dogs with spermatogenic dysfunction and low plasma T levels is possible after five low-dose injections of hCG.
Collapse
Affiliation(s)
- M Kobayashi
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | |
Collapse
|
244
|
Non-classical testosterone signaling is mediated by a G-protein-coupled receptor interacting with Gnα11. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1172-81. [DOI: 10.1016/j.bbamcr.2014.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/26/2023]
|
245
|
Beguelini MR, Falleiros LR, Góes RM, Rahal P, Morielle-Versute E, Taboga SR. Differential expression of aromatase, estrogen receptor alpha and 17β-HSD associated with the processes of total testicular regression and recrudescence in the bat Myotis nigricans (Chiroptera: Vespertilionidae). Gen Comp Endocrinol 2014; 201:53-64. [PMID: 24726986 DOI: 10.1016/j.ygcen.2014.03.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022]
Abstract
Despite the worldwide distribution and many unique reproductive adaptations that bats present, many aspects of their reproductive hormonal regulation have not been adequately studied, especially in species that presented patterns of total testicular regression. Thus, this study aimed to evaluate the testicular expression of 17β-HSD type 1, aromatase and ERα in the bat Myotis nigricans, during the four periods of its reproductive cycle. Immunoreactivity for ERα was detected only in the cytoplasm of elongated spermatids and in the nuclei of spermatogonia and Sertoli cells. Expression of aromatase was observed in round and elongated spermatids and in Sertoli and Leydig cells. Immunoreactivity for 17β-HSD was restricted to the cytoplasm of Leydig cells. The three expression patterns varied significantly during the four periods of the reproductive cycle. Expression of ERα and aromatase in spermatids was continuous, while expression of ERα in spermatogonia occurred only in initial types (Ap). Expression of ERα and aromatase in Sertoli cells varied, with expression only in periods of spermatogenetic activities; and the same variation was observed for the expression of aromatase and 17β-HSD in Leydig cells. We, therefore, propose that the processes of total testicular regression and posterior recrudescence suffered by M. nigricans from September to January in the northwest of the São Paulo State of Brazil, are directly regulated by testosterone and estrogen. This occurs via the production of testosterone by 17β-HSD, its conversion into estrogen by aromatase, and activation/deactivation of Sertoli cells' AR and spermatogonia's ERα.
Collapse
Affiliation(s)
- Mateus R Beguelini
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Luiz R Falleiros
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Rejane M Góes
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Paula Rahal
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Eliana Morielle-Versute
- Department of Zoology and Botany, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Sebastião R Taboga
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| |
Collapse
|
246
|
Losdat S, Chang SM, Reid JM. Inbreeding depression in male gametic performance. J Evol Biol 2014; 27:992-1011. [DOI: 10.1111/jeb.12403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022]
Affiliation(s)
- S. Losdat
- Institute of Biological and Environmental Sciences; School of Biological Sciences; University of Aberdeen; Aberdeen UK
| | - S.-M. Chang
- Plant Biology Department; University of Georgia; Athens GA USA
| | - J. M. Reid
- Institute of Biological and Environmental Sciences; School of Biological Sciences; University of Aberdeen; Aberdeen UK
| |
Collapse
|
247
|
Ramaswamy S, Weinbauer GF. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. SPERMATOGENESIS 2014; 4:e996025. [PMID: 26413400 PMCID: PMC4581062 DOI: 10.1080/21565562.2014.996025] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Center for Research in Reproductive Physiology (CRRP); Department of Obstetrics, Gynecology & Reproductive Sciences; University of Pittsburgh School of Medicine; Magee-Womens Research Institute; Pittsburgh, PA USA
| | | |
Collapse
|
248
|
Soliman A, Yassin M, De Sanctis V. Intravenous iron replacement therapy in eugonadal males with iron-deficiency anemia: Effects on pituitary gonadal axis and sperm parameters; A pilot study. Indian J Endocrinol Metab 2014; 18:310-316. [PMID: 24944924 PMCID: PMC4056128 DOI: 10.4103/2230-8210.131158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM OF THE STUDY To evaluate semen parameters and to assess serum FSH, LH, Testosterone (T) concentrations before and 12 weeks after intravenous iron therapy (800-1200 mg elemental iron therapy - IVI) in adults with iron-deficiency anemia (IDA). MATERIALS AND METHODS We studied 11 eugonadal adults with IDA, aged 40 ± 5 years, due to defective intake of iron. Anemia was diagnosed when hemoglobin (Hb) was equal or below 10 g/dl. Serum iron, total iron-binding capacity (TIBC) and ferritin concentrations confirmed the diagnosis of IDA. Basal serum concentrations of FSH, LH, and T were measured. Semen parameters were evaluated before and 6-7 weeks after IVI therapy. RESULTS After IVI therapy and correction of anemia, a significant increase of Hb from 8.1 ± 1.17 g/dL to 13.1 ± 0.7 g/dL was observed and was associated with an increase of T (from 12.22 ± 1.4 nmol/L to 15.9 ± 0.96 nmol/L; P < 0.001), FSH (from 2.82 ± 0.87 to 3.82 ± 1.08 IU/L; P = 0.007), and LH (from 2.27 ± 0.9 to 3.82 ± 1.5 IU/L; P = 0.0002). Total sperm count (TSC) increased significantly from 72 ± 17.5 million/ml to 158 ± 49 million/mL (P < 0.001), rapid progressive sperm motility (RPM) increased from 22 ± 9.4 to 69 ± 30 million/ml (P < 0.001), and sperms with normal morphology (NM) increased from 33 ± 5 to 56 ± 7 million/ml (P < 0.001). Increment in Hb concentration was correlated significantly with LH, FSH, and T concentrations after IVI (r = 0.69 and r = 0.44, r = 0.75, respectively; P < 0.01). The increment in serum T was correlated significantly with increments in the TSC and total sperm motility and RPM (r = 0.66, 0.43, and 0.55, respectively; P < 0.001) but not with gonadotrophin levels. CONCLUSION Our study proved for the first time, to our knowledge, that correction of IDA with IVI is associated with significant enhancement of sperm parameters and increased concentrations of serum LH, FSH, and T. These effects on spermatogenesis are reached by an unknown mechanism and suggest a number of pathways that need further human and/or experimental studies.
Collapse
Affiliation(s)
- Ashraf Soliman
- Department of Pediatric Endocrinology, Hamad Medical Center, Doha, Qatar
| | - Mohamed Yassin
- Department of Hematology, Hamad Medical Center, Doha, Qatar
| | - Vincenzo De Sanctis
- Department of Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy
| |
Collapse
|
249
|
Stage-dependent DAZL localization in stallion germ cells. Anim Reprod Sci 2014; 147:32-8. [PMID: 24746554 DOI: 10.1016/j.anireprosci.2014.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/09/2014] [Accepted: 03/17/2014] [Indexed: 12/18/2022]
Abstract
Deleted in azoospermia-like (DAZL) is used as a germ cell marker in several species, including mice, rats, pigs, rhesus monkeys, bulls, and humans. Our objectives with this study were to investigate DAZL expression in stallion germ cells by using immunofluorescence, immunocytochemistry, and western blotting, and to determine the effects of reproductive stage and breeding season on the DAZL-positive cell population in seminiferous tubule cross sections. Testes were obtained during routine castration procedures at a large animal clinic and routine field service castration. The reproductive stage of the stallions was classified as pre-pubertal (<1 yr), pubertal (1-1.5 yr), post-pubertal (2-3 yr), or adult (4-8 yr). Using immunofluorescent staining, we showed that DAZL is localized to the cytoplasm of some, but not all, spermatogonia in pre-pubertal and pubertal horses. In the post-pubertal and adult testes, DAZL immunostaining was observed in spermatogonia proximal to the basement membrane of seminiferous tubules; however, few spermatogonia attached to the basement membrane were not immunolabeled. DAZL immunostaining was also observed in primary spermatocytes, but not in secondary spermatocytes, spermatids, or spermatozoa. DAZL protein was not detected in Leydig, Sertoli, or myoid cells of the testes at any reproductive stage. The immunocytochemistry analysis showed that DAZL immunolabeling was also localized to the cytoplasm of isolated germ cells such as spermatogonia or primary spermatocytes. We conclude that DAZL can be used as a marker of pre-meiotic germ cells in stallions.
Collapse
|
250
|
Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 2014; 30:2-13. [PMID: 24598768 DOI: 10.1016/j.semcdb.2014.02.012] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022]
Abstract
Testosterone is essential for maintaining spermatogenesis and male fertility. However, the molecular mechanisms by which testosterone acts have not begun to be revealed until recently. With the advances obtained from the use of transgenic mice lacking or overexpressing the androgen receptor, the cell specific targets of testosterone action as well as the genes and signaling pathways that are regulated by testosterone are being identified. In this review, the critical steps of spermatogenesis that are regulated by testosterone are discussed as well as the intracellular signaling pathways by which testosterone acts. We also review the functional information that has been obtained from the knock out of the androgen receptor from specific cell types in the testis and the genes found to be regulated after altering testosterone levels or androgen receptor expression.
Collapse
Affiliation(s)
- Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - William H Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|