2501
|
Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, Miyagi Y. Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix. Sci Rep 2019; 9:292. [PMID: 30670761 PMCID: PMC6342997 DOI: 10.1038/s41598-018-36646-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in the tumor progression. However, it remains unclear how cancer cells migrate in the three-dimensional (3D) matrix of cancer tissues and how CAFs support the cancer invasion. Here we propose a novel mechanism of fibroblast-dependent cancer cell invasion in the 3D collagen matrix. Human cancer cell lines from the pancreas (Panc-1), lung (A549) and some other organs actively adhered to normal fibroblasts and primary lung CAFs in cultures. To show its significance in tumor invasion, we designed a new invasion assay in which homogeneous microspheroids consisting of cancer cells and fibroblasts were embedded into collagen gel. Time-lapse experiments showed that cancer cells adhered to and quickly migrated on the long protrusions of fibroblasts in the 3D collagen matrix. Fibroblast-free cancer cells poorly invaded the matrix. Experiments with function-blocking antibodies, siRNAs, and immunocytochemistry demonstrated that cancer cells adhered to fibroblasts through integrin α5β1-mediated binding to fibronectin on the surface of fibroblasts. Immunochemical analyses of the co-cultures and lung cancers suggested that cancer cells could acquire the migratory force by the fibronectin/integrin signaling. Our results also revealed that the fibroblast-bound fibronectin was a preferential substrate for cancer cells to migrate in the collagen matrix.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan. .,Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan.
| | - Jun Oyanagi
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan.,Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Daisuke Hoshino
- Cancer Cell Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiromichi Kumagai
- Kumagai Fellow laboratory, Innovative Technology Research Center, Technology General Division, AGC Inc, 1150 Hazawa-cho, Kanagawa-ku, Yokohama, 221-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| |
Collapse
|
2502
|
Wang R, Sun Y, Yu W, Yan Y, Qiao M, Jiang R, Guan W, Wang L. Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:20. [PMID: 30646925 PMCID: PMC6334467 DOI: 10.1186/s13046-018-0995-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs), one of the principal constituents of the tumor microenvironment, have a pivotal role in tumor progression. Dysregulation of microRNAs (miRNAs) in CAFs contributes to the tumor-promoting ability of CAFs. However, the mechanism underlying the involvement of miRNAs in CAFs of gastric cancer (GC) is not fully understood. This study aimed to explore the effects of miRNA-214 in CAFs on GC migration and invasion. Methods The primary CAFs and corresponding normal fibroblasts (NFs) were isolated. Cell counting kit-8, EdU cell proliferation staining and Transwell assays were used to determine the role of miRNA-214 in GC progression. Real-time polymerase chain reaction, Western blot analysis, and dual-luciferase reporter assay were performed to verify the target genes of miRNA-214. Immunofluorescence and Western blot analysis were applied to detect the expression of epithelial–mesenchymal transition (EMT) markers. Immunohistochemistry and in situ hybridization were implemented to analyze the fibroblast growth factor 9 (FGF9) and miRNA-214 expression in human GC tissues, respectively. Finally, to assess its prognostic relevance, Kaplan–Meier survival analysis was conducted. Results MiRNA-214 was significantly downregulated in CAFs of GC compared with NFs. The upregulation of miRNA-214 in CAFs inhibited GC cell migration and invasion in vitro but failed to affect proliferation. Moreover, GC cells cultured with conditioned medium from CAFs transfected with miR-214 mimic showed increased expression of E-cadherin and decreased expression of Vimentin, N-cadherin and Snail, indicating the suppression of EMT of GC cells. Furthermore, FGF9 was proved to be a direct target gene of miR-214. The expression of FGF9 was higher in CAFs than that in tumor cells not only in primary tumor but also in lymph node metastatic sites (30.0% vs 11.9%, P < 0.01 and 32.1% vs 12.3%, P < 0.01, respectively). Abnormal expression of FGF9 in CAFs of lymph node metastatic sites was significantly associated with poor prognosis in patients with GC (P < 0.05). Conclusions This study showed that miR-214 inhibited the tumor-promoting effect of CAFs on GC through targeting FGF9 in CAFs and regulating the EMT process in GC cells, suggesting miRNA-214/FGF9 in CAFs as a potential target for therapeutic approaches in GC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0995-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruifen Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yeqi Sun
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenwei Yu
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Meng Qiao
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ruiqi Jiang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenbin Guan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Lifeng Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
2503
|
Ferrari N, Ranftl R, Chicherova I, Slaven ND, Moeendarbary E, Farrugia AJ, Lam M, Semiannikova M, Westergaard MCW, Tchou J, Magnani L, Calvo F. Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun 2019; 10:130. [PMID: 30631061 PMCID: PMC6328607 DOI: 10.1038/s41467-018-07987-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Aggressive behaviours of solid tumours are highly influenced by the tumour microenvironment. Multiple signalling pathways can affect the normal function of stromal fibroblasts in tumours, but how these events are coordinated to generate tumour-promoting cancer-associated fibroblasts (CAFs) is not well understood. Here we show that stromal expression of Dickkopf-3 (DKK3) is associated with aggressive breast, colorectal and ovarian cancers. We demonstrate that DKK3 is a HSF1 effector that modulates the pro-tumorigenic behaviour of CAFs in vitro and in vivo. DKK3 orchestrates a concomitant activation of β-catenin and YAP/TAZ. Whereas β-catenin is dispensable for CAF-mediated ECM remodelling, cancer cell growth and invasion, DKK3-driven YAP/TAZ activation is required to induce tumour-promoting phenotypes. Mechanistically, DKK3 in CAFs acts via canonical Wnt signalling by interfering with the negative regulator Kremen and increasing cell-surface levels of LRP6. This work reveals an unpredicted link between HSF1, Wnt signalling and YAP/TAZ relevant for the generation of tumour-promoting CAFs.
Collapse
Affiliation(s)
- Nicola Ferrari
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, United Kingdom
| | - Romana Ranftl
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ievgeniia Chicherova
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Neil D Slaven
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Aaron J Farrugia
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Maxine Lam
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Maria Semiannikova
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Marie C W Westergaard
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Julia Tchou
- Abramson Cancer Center and the Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK.
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011, Santander, Spain.
| |
Collapse
|
2504
|
Zhu SK, Xu T, Wang R. Prospects and challenges of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:6-12. [DOI: 10.11569/wcjd.v27.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shi-Kai Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tian Xu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
2505
|
Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metab 2019; 29:124-140.e10. [PMID: 30293773 PMCID: PMC6432652 DOI: 10.1016/j.cmet.2018.09.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/30/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Dysregulation of extracellular matrix (ECM) deposition and cellular metabolism promotes tumor aggressiveness by sustaining the activity of key growth, invasion, and survival pathways. Yet mechanisms by which biophysical properties of ECM relate to metabolic processes and tumor progression remain undefined. In both cancer cells and carcinoma-associated fibroblasts (CAFs), we found that ECM stiffening mechanoactivates glycolysis and glutamine metabolism and thus coordinates non-essential amino acid flux within the tumor niche. Specifically, we demonstrate a metabolic crosstalk between CAF and cancer cells in which CAF-derived aspartate sustains cancer cell proliferation, while cancer cell-derived glutamate balances the redox state of CAFs to promote ECM remodeling. Collectively, our findings link mechanical stimuli to dysregulated tumor metabolism and thereby highlight a new metabolic network within tumors in which diverse fuel sources are used to promote growth and aggressiveness. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in cancer.
Collapse
|
2506
|
Senescent Breast Luminal Cells Promote Carcinogenesis through Interleukin-8-Dependent Activation of Stromal Fibroblasts. Mol Cell Biol 2019; 39:MCB.00359-18. [PMID: 30397077 DOI: 10.1128/mcb.00359-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/21/2018] [Indexed: 01/06/2023] Open
Abstract
Aging and stress promote senescence, which has intrinsic tumor suppressor functions and extrinsic tumor promoting properties. Therefore, it is of utmost importance to delineate the effects of senescence inducers on the various types of cells that compose the different organs. We show here that primary normal breast luminal (NBL) cells are more sensitive than their corresponding stromal fibroblasts to proliferative as well as oxidative damage-induced senescence. Like fibroblasts, senescent NBL cells secreted elevated amounts of various cytokines, including interleukin-6 (IL-6) and IL-8, and expressed high levels of p16, p21, and p53, while lamin B1 was downregulated. When senescent, luminal cells activated stromal fibroblasts in an IL-8-dependent manner, through the activation of the STAT3 pathway. These myofibroblasts promoted the epithelial-to-mesenchymal transition and the stemness processes in breast cancer cells in a paracrine manner both in vitro and in a breast cancer animal model. These results show the role of senescent breast luminal cells in promoting the inflammatory/carcinogenic microenvironment through the activation of fibroblasts in an IL-8-dependent manner.
Collapse
|
2507
|
Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, Taylor AR, Zinn N, Redding M, Forty EJ, Hynds RE, Swanton C, Karsdal M, Maher TM, Fisher A, Bergamini G, Marshall RP, Blanchard AD, Mercer PF, Chambers RC. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 2019; 10:6. [PMID: 30602778 PMCID: PMC6315032 DOI: 10.1038/s41467-018-07858-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-β1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Hannah V Woodcock
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Jessica D Eley
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Carmel B Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Matteo Martufi
- Target Sciences, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Simon Peace
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Gerard Joberty
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Daniel Poeckel
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Robert B Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Adam R Taylor
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Nico Zinn
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Matthew Redding
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Ellen J Forty
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Robert E Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Toby M Maher
- Fibrosis Research Group, Inflammation, Repair & Development Section, NHLI, Imperial College, London, SW3 6LY, UK
| | - Andrew Fisher
- Newcastle Fibrosis Research Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | - Richard P Marshall
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Andy D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
2508
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 744] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2509
|
Zhen X, Cheng P, Pu K. Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804105. [PMID: 30457701 DOI: 10.1002/smll.201804105] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/03/2018] [Indexed: 05/28/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) employs phototherapeutic agents to generate heat or cytotoxic reactive oxygen species (ROS), and has therefore garnered particular interest for cancer therapy. However, the main challenges faced by conventional phototherapeutic agents include easy recognition by the immune system, rapid clearance from blood circulation, and low accumulation in target sites. Cell-membrane coating has emerged as a potential way to overcome these limitations, owing to the abundant proteins on the surface of cell membranes that can be inherited to the cell membrane-camouflaged nanoparticles. This review summarizes the recent advances in the development of biomimetic cell membrane-camouflaged nanoparticles for cancer phototherapy. Different sources of cell membranes can be used to coat nanoparticles uisng different coating approaches. After cell-membrane coating, the photophysical properties of the original phototherapeutic nanoparticles remain nearly unchanged; however, the coated nanoparticles are equipped with additional physiological features including immune escape, in vivo prolonged circulation time, or homologous targeting, depending on the cell sources. Moreover, the coated cell membrane can be ablated from phototherapeutic nanoparticles under laser irradiation, leading to drug release and thus synergetic therapy. By combining other supplementary agents to normalize tumor microenvironment, cell-membrane coating can further enhance the therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
2510
|
Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, Wang X, Ke L, Shi K. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics 2019; 9:126-151. [PMID: 30662558 PMCID: PMC6332787 DOI: 10.7150/thno.29431] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Owing to the fast-paced growth and cross-infiltration of oncology, immunology and molecular biology, tumor immunotherapy technology represented by immune checkpoint blockade and chimeric antigen receptor (CAR) T cell therapy has lately made remarkable advancements. In comparison with traditional chemotherapy, immunotherapy has the potential to elicit a stronger sustained antitumor immune response in those patients who have advanced malignant malignancies. In spite of the advancements made, a significant number of clinical research works have validated that an extensive proportion of cancer patients still manifest insensitivity to immunotherapy, primarily because of the immunomodulatory interactions between tumor cells and the immunosuppressive tumor microenvironment (TME), together mediating the immune tolerance of tumors and accordingly impacting the positive response to immunotherapy. The intricate immunosuppressive networks formed by stromal cells, inflammatory cells, vasculature, extracellular matrix (ECM), and their secreted cytokines in the TME, play a pivotal role in tumor immune escape. Specific blocking of inhibition pathways in the TME is expected to effectively prevent immune escape and tolerance of tumor cells in addition to their metastasis, accordingly improving the antitumor immune response at various phases of tumor growth. Emerging nanoscale targeted drug carriers truly suit this specific requirement due to their specificity, biocompatibility, and convenience of production. This review emphasizes recent attempts to remodel the tumor immune microenvironment using novel nanoparticles, which include specifically eliminating immunosuppressive cells, reprogramming immune regulatory cells, promoting inflammatory cytokines and blocking immune checkpoints. Targeted remodeling of the immunosuppressive TME using well-designed and fabricated nanoparticles provides a promising strategy for improving the effectiveness of current immunotherapy and is greatly significant.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Qi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Liyuan Ke
- Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, P. R. China
| | - Kai Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| |
Collapse
|
2511
|
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019; 68:159-171. [PMID: 30177543 DOI: 10.1136/gutjnl-2018-316451] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is notoriously aggressive and hard to treat. The tumour microenvironment (TME) in PDA is highly dynamic and has been found to promote tumour progression, metastasis niche formation and therapeutic resistance. Intensive research of recent years has revealed an incredible heterogeneity and complexity of the different components of the TME, including cancer-associated fibroblasts, immune cells, extracellular matrix components, tumour vessels and nerves. It has been hypothesised that paracrine interactions between neoplastic epithelial cells and TME compartments may result in either tumour-promoting or tumour-restraining consequences. A better preclinical understanding of such complex and dynamic network systems is required to develop more powerful treatment strategies for patients. Scientific activity and the number of compelling findings has virtually exploded during recent years. Here, we provide an update of the most recent findings in this area and discuss their translational and clinical implications for basic scientists and clinicians alike.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, Goettingen, Germany
| | - Christian Alexander Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Matthias Lauth
- Department of Medicine, Philipps University, Center for Tumour and Immune Biology, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin, Luther University Halle-Wittenberg, Halle, Germany
| | - David A Tuveson
- Lustgarten Foundation Designated Pancreatic Cancer Research Lab at Cold Spring Harbor Laboratory, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2512
|
|
2513
|
Andreeva ER, Matveeva DK. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0362119718060038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2514
|
Alekseenko IV, Monastyrskaya GS, Sverdlov ED. Emerging Potential of Cancer Therapy—Binary Direct Interactions of Cancer and Stromal Cells. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2515
|
The Interaction between Laminin-332 and α3β1 Integrin Determines Differentiation and Maintenance of CAFs, and Supports Invasion of Pancreatic Duct Adenocarcinoma Cells. Cancers (Basel) 2018; 11:cancers11010014. [PMID: 30583482 PMCID: PMC6356648 DOI: 10.3390/cancers11010014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Ranking among the most lethal tumour entities, pancreatic duct adenocarcinoma cells invade neighbouring tissue resulting in high incidence of metastasis. They are supported by tumour stroma fibroblasts which have undergone differentiation into cancer-associated fibroblasts (CAFs). Stiffness of cell substratum, cytokines, such as transforming growth factor-β (TGF-β), and stromal matrix proteins, such as laminin-332, are factors which promote CAF differentiation. In a spheroid culture system, differentiation of CAFs was analysed for laminin-332 production, laminin-binding integrin repertoire, adhesion and migration behaviour, and, in heterospheroids, for their interplay with the pancreatic duct adenocarcinoma AsPC-I cells. Our data reveal that CAFs produce laminin-332 thus contributing to its ectopic deposition within the tumour stroma. Moreover, CAF differentiation correlates with an increased expression of α3β1 integrin, the principal laminin-332-receptor. Beyond its role as novel CAF marker protein, integrin α3β1 crucially determines differentiation and maintenance of the CAF phenotype, as knock-out of the integrin α3 subunit reversed the CAF differentiated state. AsPC-I cells co-cultured in heterospheroids with integrin α3-deficient CAFs invaded less than from heterospheroids with wild-type CAFs. This study highlights the role of integrin α3β1 integrin-laminin-332 interaction of CAFs which promotes and sustains differentiation of CAFs and promotes carcinoma invasion.
Collapse
|
2516
|
An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2018; 38:2885-2898. [PMID: 30568223 PMCID: PMC6755962 DOI: 10.1038/s41388-018-0637-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.
Collapse
|
2517
|
Cancer-associated fibroblasts promote the stemness of CD24 + liver cells via paracrine signaling. J Mol Med (Berl) 2018; 97:243-255. [PMID: 30564864 DOI: 10.1007/s00109-018-1731-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs), which support tumor progress in hepatocellular carcinoma (HCC) developed in fibrotic or cirrhotic livers, are regulated by the tumor microenvironment. Cancer-associated fibroblasts (CAFs) are the major component of the tumor stroma in HCC; however, the mechanisms by which CAFs contribute to stemness maintenance remain largely unknown. Here, we found that the expression of CD24 was high in HCC tissues compared with adjacent normal liver tissues, and positively correlated with the poor prognosis and α-SMA expression in CAFs. CD24+ cells isolated from HCC cell lines exhibited stemness properties of self-renewal, chemotherapy resistance, metastasis, and tumorigenicity in NOD/SCID mice. Moreover, CAF-derived HGF and IL6 enhanced the stemness properties of CD24+ cells via activating STAT3 Tyr705 phosphorylation. Blockade of HGF/c-Met or IL6/IL6R signaling significantly abolished the effect of CAFs on stemness properties, which compromised the activation of STAT3 pathway in CD24+ cells. Meanwhile, knockdown of STAT3 in CD24+ cells notably attenuated CAF-induced stemness characteristics of CD24+ cells. Furthermore, in HCC patients, higher expression of phospho-STAT3 was also demonstrated to be positively correlated with poor clinical outcomes. In summary, HGF and IL6 secreted by CAFs promoted the stemness properties of CD24+ cells through the phosphorylation of STAT3 signaling, and targeting the paracrine pathways may provide a new therapeutic strategy for HCC. KEY MESSAGES: CD24, identified as a marker for HCC CSCs, was positively correlated with the poor prognosis and α-SMA expression in CAFs. CAFs promoted self-renewal, chemotherapy resistance, metastasis, and tumorigenicity of CD24+ HCC cells. HGF and IL6 secreted by CAFs promoted the stemness properties of CD24+ HCC cells through the phosphorylation of STAT3.
Collapse
|
2518
|
Sánchez-Martín P, Saito T, Komatsu M. p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J 2018; 286:8-23. [PMID: 30499183 PMCID: PMC7379270 DOI: 10.1111/febs.14712] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/11/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
p62 is a stress‐inducible protein able to change among binding partners, cellular localizations and form liquid droplet structures in a context‐dependent manner. This protein is mainly defined as a cargo receptor for selective autophagy, a process that allows the degradation of detrimental and unnecessary components through the lysosome. Besides this role, its ability to interact with multiple binding partners allows p62 to act as a main regulator of the activation of the Nrf2, mTORC1, and NF‐κB signaling pathways, linking p62 to the oxidative defense system, nutrient sensing, and inflammation, respectively. In the present review, we will present the molecular mechanisms behind the control p62 exerts over these pathways, their interconnection and how their deregulation contributes to cancer progression.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Tetsuya Saito
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2519
|
Mascarenhas S, Mutnuri S, Ganguly A. Silica - A trace geogenic element with emerging nephrotoxic potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:297-317. [PMID: 30029111 DOI: 10.1016/j.scitotenv.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Silica is a trace-geogenic compound with limited-bioavailability. It inflicts health-perils like pulmonary-silicosis and chronic kidney disease (CKD), when available via anthropogenic-disturbances. Amidst silica-imposed pathologies, pulmonary toxicological-mechanisms are well-described, ignoring the renal-pathophysiological mechanisms. Hence, the present-study aimed to elucidate cellular-cum-molecular toxicological-mechanisms underlying silica-induced renal-pathology in-vitro. Various toxicity-assessments were used to study effects of silica on the physiological-functions of HK-cells (human-kidney proximal-tubular cells - the toxin's prime target) on chronic (1-7 days) sub-toxic (80 mg/L) and toxic (100-120 mg/L) dosing. Results depicted that silica triggered dose-cum-time dependent cytotoxicity/cell-death (MTT-assay) that significantly increased on long-term dosing with ≥100 mg/L silica; establishing the nephrotoxic-potential of this dose. Contrarily, insignificant cell-death on sub-toxic (80 mg/L) dosing was attributed to rapid intracellular toxin-clearance at lower-doses preventing toxic-effects. The proximal-tubular (HK-cells) cytotoxicity was found to be primarily mediated by silica-triggered incessant oxidative-stress (elevated ROS).·This enhanced ROS inflicted severe inflammation and subsequent fibrosis, evident from increased pro-inflammatory-cum-fibrogenic cytokines generation (IL-1β, IL-2, IL-6, TNF-α and TGF-β). Simultaneously, ROS induced persistent DNA-damage (Comet-assay) that stimulated G2/M arrest for p53-mediated damage-repair, aided by checkpoint-promoter (Chk1) activation and mitotic-inducers (i.e. Cdc-25, Cdk1, cyclinB1) inhibition. However, DNA-injuries surpassed the cellular-repair, which provoked the p53-gene to induce mitochondrial-mediated apoptotic cell-death via activation of Bax, cytochrome-c and caspase-cascade (9/3). This persistent apoptotic cell-death and simultaneous incessant inflammation culminated in the development of tubular-atrophy and fibrosis, the major pathological-manifestations of CKD. These findings provided novel-insights into the pathological-mechanisms (cellular and molecular) of silica-induced CKD, inflicted on chronic toxic-dosing (≥100 mg/L).Thereby, encouraging the development of therapeutic-strategies (e.g. anti-oxidant treatment) for specific molecular-targets (e.g. ROS) to retard silica-induced CKD-progression, for reduction in the global-CKD burden.
Collapse
Affiliation(s)
- Starlaine Mascarenhas
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Srikanth Mutnuri
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| |
Collapse
|
2520
|
Koh B, Jeon H, Kim D, Kang D, Kim KR. Effect of fibroblast co-culture on the proliferation, viability and drug response of colon cancer cells. Oncol Lett 2018; 17:2409-2417. [PMID: 30675306 PMCID: PMC6341796 DOI: 10.3892/ol.2018.9836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
Interactions between cancer cells and the surrounding fibroblasts serve an important role in cancer proliferation. Colon cancer co-culture model with colon fibroblasts and two metastatic models with lung and skin fibroblasts were established, and the co-culture effects on colon cancer cell proliferation, apoptosis and drug response were evaluated. Co-culture with CCD-18Co and BJ reduces SW480 cell proliferation by 4.2 and 5.3%, respectively, while WI-38 acts as a positive regulator and increases SW480 cell proliferation by 36%. CCD-18Co and BJ co-culture can also enhance XAV939 potency against SW480 cells by 16.8 and 27.3%; however, WI-38 co-culture reduces the effect of XAV939 by 38.2%. The present results suggest that, depending on fibroblast type, co-culture can have a positive/negative influence on colon cancer growth; therefore, care should be taken when considering fibroblasts as a target for future cancer therapies.
Collapse
Affiliation(s)
- Byumseok Koh
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyojin Jeon
- Innovative Target Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dahee Kim
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Kwang Rok Kim
- Innovative Target Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2521
|
Mesenchymal Stem Cells as Regulators of Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:147-166. [DOI: 10.1007/5584_2018_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2522
|
Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC, George SC. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. LAB ON A CHIP 2018; 18:3687-3702. [PMID: 30393802 PMCID: PMC10644986 DOI: 10.1039/c8lc00596f] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Most cancer treatment strategies target cell proliferation, angiogenesis, migration, and intravasation of tumor cells in an attempt to limit tumor growth and metastasis. An in vitro platform to assess tumor progression and drug sensitivity could provide avenues to enhance our understanding of tumor metastasis as well as precision medicine. We present a microfluidic platform that mimics biological mass transport near the arterial end of a capillary in the tumor microenvironment. A central feature is a quiescent perfused 3D microvascular network created prior to loading tumor cells or patient-derived tumor organoids in an adjacent compartment. The physiological delivery of nutrients and/or drugs to the tumor then occurs through the vascular network. We demonstrate the culture, growth, and treatment of tumor cell lines and patient-derived breast cancer organoids. The platform provides the opportunity to simultaneously and dynamically observe hallmark features of tumor progression including cell proliferation, angiogenesis, cell migration, and tumor cell intravasation. Additionally, primary breast tumor organoids are viable in the device for several weeks and induce robust sprouting angiogenesis. Finally, we demonstrate the feasibility of our platform for drug discovery and personalized medicine by analyzing the response to chemo- and anti-angiogenic therapy. Precision medicine-based cancer treatments can only be realized if individual tumors can be rapidly assessed for therapeutic sensitivity in a clinically relevant timeframe (⪅14 days). Our platform indicates that this goal can be achieved and provides compelling opportunities to advance precision medicine for cancer.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | - Ye Bi
- Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Matthew B Curtis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | - Andrew Lezia
- Department of Biomedical Engineering, Washington University in St. Louis, USA
| | | | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, USA and Siteman Cancer Center at the Washington University School of Medicine, St. Louis, USA
| | - Rebecca Aft
- Department of Surgery, Washington University School of Medicine, St. Louis, USA and Siteman Cancer Center at the Washington University School of Medicine, St. Louis, USA and Johan Cochran Veterans Administration Hospital, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, USA and Siteman Cancer Center at the Washington University School of Medicine, St. Louis, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2523
|
Huliák I, Bodai L, Czepán M, Kovács D, Szabó A, Tiszlavicz L, Lázár G, Rakonczay Z, Hegyi P, Boros IM, Kiricsi M. Genetic, epigenetic and transcriptional comparison of esophagus tumor‑associated and adjacent normal myofibroblasts. Oncol Rep 2018; 41:839-852. [PMID: 30535493 PMCID: PMC6313073 DOI: 10.3892/or.2018.6909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts (MFs) are present in healthy tissues and are also key components of the tumor microenvironment. In the present study a comparative analysis of MFs obtained from various gastrointestinal tumor tissues and from tumor-adjacent normal tissues of cancer patients was performed, with the aim to evaluate differences in MF morphology, gene expression profile and function. The goal was to correlate the observed morphological and functional variations with the underlying genetic and epigenetic backgrounds. The mutation frequency of MFs was assessed by next generation sequencing. The transcript levels of cancer-specific genes were determined by TaqMan array and quantitative polymerase chain reaction. Epigenetic modifications were analyzed by immunocytochemistry and western blotting. The migratory capacity of MFs was assessed by scratch assay, whereas matrix metalloproteinase expression and activity were obtained by quantitative polymerase chain reaction and zymography. The results of the present study demonstrate that MFs were present in an increased number and with altered morphology in tumor samples compared with the healthy tissue. Although the detected number of mutations in tumor-associated and normal tissue-derived MFs did not differ markedly, shifts in the level of specific acetylated and methylated histone proteins, namely decreased levels of trimethylated H3K9 and acetylated H4K16 were demonstrated in tumor-associated MFs. Transcript levels of several tumor-specific genes involved in metastasis, regulation of cellular growth, apoptosis, as well as in hypoxia-angiogenesis were altered in tumor-derived MF cultures. Increased mRNA levels were obtained and activity of matrix metalloproteases in tumor-derived MFs and these cells also exhibited a higher migratory capacity compared with the normal MFs. In summary, the results of the present study indicate that tumor-associated MFs display an altered phenotype compared with healthy tissue derived counterparts. The results imply that epigenetic rather than genetic alterations are associated with the development of the distinct expressional and functional features, which define this MF phenotype in the tumor microenvironment.
Collapse
Affiliation(s)
- Ildikó Huliák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| | - Mátyás Czepán
- First Department of Medicine, University of Szeged, Szeged H‑6720, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| | - Anikó Szabó
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H‑6720, Hungary
| | - György Lázár
- Department of Surgery, University of Szeged, Szeged H‑6720, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged H‑6720, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged H‑6720, Hungary
| | - Imre Miklós Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H‑6726, Hungary
| |
Collapse
|
2524
|
Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun 2018; 9:5150. [PMID: 30514914 PMCID: PMC6279758 DOI: 10.1038/s41467-018-07582-3] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, although their origin and roles in shaping disease initiation, progression and treatment response remain unclear due to significant heterogeneity. Here, following a negative selection strategy combined with single-cell RNA sequencing of 768 transcriptomes of mesenchymal cells from a genetically engineered mouse model of breast cancer, we define three distinct subpopulations of CAFs. Validation at the transcriptional and protein level in several experimental models of cancer and human tumors reveal spatial separation of the CAF subclasses attributable to different origins, including the peri-vascular niche, the mammary fat pad and the transformed epithelium. Gene profiles for each CAF subtype correlate to distinctive functional programs and hold independent prognostic capability in clinical cohorts by association to metastatic disease. In conclusion, the improved resolution of the widely defined CAF population opens the possibility for biomarker-driven development of drugs for precision targeting of CAFs. Cancer-associated fibroblasts (CAFs) are an important component of the breast tumour microenvironment. Here, single-cell RNA sequencing of CAFs from a mouse model of breast cancer defines three transcriptomically distinct subpopulations with putatively different functions.
Collapse
|
2525
|
Abstract
In this issue of JEM, Raz et al. (https://doi.org/10.1084/jem.20180818) identify a subset of bone marrow-derived cells that uniquely promotes breast cancer angiogenesis and tumor growth. The existence of functional heterogeneity among stromal populations motivates further fundamental and therapeutic inquiries.
Collapse
Affiliation(s)
- Giulia Biffi
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - David A Tuveson
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
2526
|
Sakamoto A, Kunou S, Shimada K, Tsunoda M, Aoki T, Iriyama C, Tomita A, Nakamura S, Hayakawa F, Kiyoi H. Pyruvate secreted from patient-derived cancer-associated fibroblasts supports survival of primary lymphoma cells. Cancer Sci 2018; 110:269-278. [PMID: 30426593 PMCID: PMC6317936 DOI: 10.1111/cas.13873] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer‐associated fibroblasts (CAF) are a key component in the tumor microenvironment and play functional roles in tumor metastasis and resistance to chemotherapies. We have previously reported that CAF isolated from lymphoma samples increase anaerobic glycolysis and decrease intracellular production of reactive oxygen species, promoting the survival of tumor cells. Herein, we analyzed the mechanisms underlying this support of tumor‐cell survival by CAF. As direct contact between lymphoma cells and CAF was not indispensable to survival support, we identified that the humoral factor pyruvate was significantly secreted by CAF. Moreover, survival of lymphoma cells was promoted by the presence of pyruvate, and this promotion was canceled by inhibition of monocarboxylate transporters. Metabolome analysis of lymphoma cells in coculture with CAF demonstrated that intermediates in the citric acid cycle were significantly increased, indicating that tumor cells produced energy by aerobic metabolism. These findings indicate that energy production in lymphoma cells is regulated in coordination not only with anaerobic glycolysis, but also with aerobic metabolism termed the reverse‐Warburg effect, involving the secretion of pyruvate from CAF resulting in increased use of the citric acid cycle in lymphoma cells.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shunsuke Kunou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chisako Iriyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Clinical Laboratories, Nagoya University Hospital, Nagoya, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2527
|
Nelson AC, Machado HL, Schwertfeger KL. Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression. J Mammary Gland Biol Neoplasia 2018; 23:207-221. [PMID: 30168075 PMCID: PMC6237657 DOI: 10.1007/s10911-018-9409-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Refinements in early detection, surgical and radiation therapy, and hormone receptor-targeted treatments have improved the survival rates for breast cancer patients. However, the ability to reliably identify which non-invasive lesions and localized tumors have the ability to progress and/or metastasize remains a major unmet need in the field. The current diagnostic and therapeutic strategies focus on intrinsic alterations within carcinoma cells that are closely associated with proliferation. However, substantial accumulating evidence has indicated that permissive changes in the stromal tissues surrounding the carcinoma play an integral role in breast cancer tumor initiation and progression. Numerous studies have suggested that the stromal environment surrounding ductal carcinoma in situ (DCIS) lesions actively contributes to enhancing tumor cell invasion and immune escape. This review will describe the current state of knowledge regarding the mechanisms through which the microenvironment interacts with DCIS lesions focusing on recent studies that describe the contributions of myoepithelial cells, fibroblasts and immune cells to invasion and subsequent progression. These mechanisms will be considered in the context of developing biomarkers for identifying lesions that will progress to invasive carcinoma and/or developing approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2528
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
2529
|
Tan T, Wang H, Cao H, Zeng L, Wang Y, Wang Z, Wang J, Li J, Wang S, Zhang Z, Li Y. Deep Tumor-Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermal-Chemotherapy of Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801012. [PMID: 30581704 PMCID: PMC6299727 DOI: 10.1002/advs.201801012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Indexed: 05/26/2023]
Abstract
Cancer stem cells (CSCs) are proposed to account for the initiation of cancer metastasis, but their accessibility remains a great challenge. This study reports deep tumor-penetrated biomimetic nanocages to augment the accessibility to CSCs fractions in tumor for anti-metastasis therapy. The nanocages can load photothermal agent of 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DBN) and chemotherapeutic epirubicin (EBN) to eradicate CSCs for photothermal-chemotherapy of breast cancer metastasis. In metastatic 4T1-indcued tumor model, both DBN and EBN can efficiently accumulate in tumor sites and feasibly permeate throughout the tumor mass. These biomimetic nanosystems can be preferentially internalized by cancer cells and effectively accessed to CSCs fractions in tumor. The DBN+laser/EBN treatment produces considerable depression of primary tumor growth, drastically eradicates around 80% of CSCs fractions in primary tumor, and results in 95.2% inhibition of lung metastasis. Thus, the biomimetic nanocages can be a promising delivery nanovehicle with preferential CSCs-accessibility for effective anti-metastasis therapy.
Collapse
Affiliation(s)
- Tao Tan
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Lijuan Zeng
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Siling Wang
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
2530
|
Qu C, Wang Q, Meng Z, Wang P. Cancer-Associated Fibroblasts in Pancreatic Cancer: Should They Be Deleted or Reeducated? Integr Cancer Ther 2018; 17:1016-1019. [PMID: 30136592 PMCID: PMC6247553 DOI: 10.1177/1534735418794884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is characterized by an extensive stromal response called desmoplasia. Within the tumor stroma, cancer-associated fibroblasts (CAFs) are the primary cell type. CAFs have been shown to play a role in pancreatic cancer progression; they secrete growth factors, inflammatory cytokines, and chemokines that stimulate signaling pathways in cancer cells and modulate the cancer biology toward increased aggressiveness. Therefore, targeting CAFs may serve as a powerful weapon against pancreatic cancer and improve therapeutic effects. However, a previous study aiming to deplete CAFs by inhibiting sonic Hedgehog signaling failed to show any benefit in survival time of pancreatic cancer patients. We reported that the natural product curcumin reeducated CAFs in pancreatic cancer treatment. A low concentration of curcumin reversed the activation of fibroblasts without exhibiting growth suppression effects. In addition, curcumin suppressed CAF-induced pancreatic cancer cell migration and invasion in vitro and lung metastasis in vivo. The results of our study suggest that active CAFs can be inactivated by certain natural products such as curcumin. Reeducation of CAFs back to their normal state, rather than their indiscriminate depletion, may broaden our view in the development of therapeutic options for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Qu
- Fudan University Shanghai Cancer Center,
Shanghai, China
- Shanghai Medical College, Fudan
University, Shanghai, China
| | - Qing Wang
- Huashan Hospital, Fudan University,
Shanghai, China
| | - Zhiqiang Meng
- Fudan University Shanghai Cancer Center,
Shanghai, China
- Shanghai Medical College, Fudan
University, Shanghai, China
| | - Peng Wang
- Fudan University Shanghai Cancer Center,
Shanghai, China
- Shanghai Medical College, Fudan
University, Shanghai, China
| |
Collapse
|
2531
|
Seip K, Jørgensen K, Haselager MV, Albrecht M, Haugen MH, Egeland EV, Lucarelli P, Engebraaten O, Sauter T, Mælandsmo GM, Prasmickaite L. Stroma-induced phenotypic plasticity offers phenotype-specific targeting to improve melanoma treatment. Cancer Lett 2018; 439:1-13. [DOI: 10.1016/j.canlet.2018.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
|
2532
|
Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T. Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genet 2018; 14:e1007826. [PMID: 30500808 PMCID: PMC6291168 DOI: 10.1371/journal.pgen.1007826] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/12/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions. Differentiated cells possess unique characteristics to maintain vital activities. However, cells occasionally show abnormal behavior in pathological settings due to dysregulated gene expression. Endothelial-to-mesenchymal transition (EndMT) is a phenomenon in which endothelial cells lose their characteristics and acquire mesenchymal-like properties. Although EndMT is observed in various diseases including cancer, and augments fibrosis and vascular defects, the mechanism of EndMT induction is not fully understood. Here, we show that EndMT is triggered via reduced expression of ERG and FLI1, which have recently been recognized as pivotal transcription factors in endothelial cells (ECs). Mechanistically, ERG and FLI1 activate EC-specific genes and repress mesenchymal-like genes via epigenetic regulation to prevent EndMT. Furthermore, we demonstrate that microRNA-126, which is specifically expressed in ECs, is the key downstream target of ERG/FLI1 for regulating EndMT. Finally, we show that ERG and FLI1 expression is decreased in ECs within tumors, suggesting that EndMT is induced in the tumor microenvironment. Collectively, these findings indicate that loss of ERG and FLI1 leads to the aberrant behavior of ECs in pathological conditions.
Collapse
Affiliation(s)
- Nao Nagai
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Ryo Nakaki
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
2533
|
Radhakrishnan R, Ha JH, Jayaraman M, Liu J, Moxley KM, Isidoro C, Sood AK, Song YS, Dhanasekaran DN. Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts. Cancer Lett 2018; 442:464-474. [PMID: 30503552 DOI: 10.1016/j.canlet.2018.11.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a critical role in cancer progression, metastasis, and therapy resistance. Molecular events that confer CAF-phenotype to predecessor-cells are not fully understood. We demonstrate here that the ovarian cancer cell-conditioned medium (OCC-CM) induces CAF-phenotype in MRC5 lung-fibroblasts and it can be mimicked by LPA. While OCC-CM and LPA stimulated the expression of cellular CAF-markers by 3-days, they induced aerobic glycolysis, a metabolic marker for CAF, by 6 hrs. OCC-CM/LPA-induced glycolysis in lung (MRC5) as well as ovarian fibroblasts (NOF151) was inhibited by the LPA-receptor antagonist, Ki16425. Ovarian cancer patient-derived ascitic fluid-induced aerobic glycolysis in both NFs and Ovarian CAFs and it was inhibited by Ki16425. Further analysis indicated that LPA upregulated HIF1α-levels and the silencing of HIF1α attenuated LPA-induced glycolysis in both NOFs and CAFs. These results establish LPA-induced glycolytic-shift as the earliest, potentially priming event, in NF to CAF-transition. These findings also identify a role for LPA-LPAR-HIF1α signaling-hub in the maintenance of the glycolytic-phenotype in CAFs. Our results provide evidence that targeted inhibition of LPA-mediated metabolic reprogramming in CAFs may represent an adjuvant therapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine M Moxley
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics & Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Anil K Sood
- Department of Gynecologic Oncology & Reproductive Medicine, and the Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, 151-921, South Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, USA.
| |
Collapse
|
2534
|
Zhou Y, Zhong JH, Gong FS, Xiao J. MiR-141-3p suppresses gastric cancer induced transition of normal fibroblast and BMSC to cancer-associated fibroblasts via targeting STAT4. Exp Mol Pathol 2018; 107:85-94. [PMID: 30502321 DOI: 10.1016/j.yexmp.2018.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) are known to be crucial constituents of cancer microenvironment (CME) and play an important role in initiation, progression and metastasis of various types of cancer, such as oral cancer, pancreatic cancer, and gastric cancer. CAFs are usually derived from normal fibroblasts (NFs), but the mechanism of the transition in gastric cancer has not yet been fully elucidated. METHODS qRT-PCR and western blot were employed to investigate differences of miR-141 and STAT4 expression respectively. The CAF-like features and wnt/β-catenin pathway related proteins in NF or BMSC were assessed by qRT-PCR or western blot after treated with the conditioned medium from different indicated groups of gastric cancer cells. The invasion and migration ability of AGS cells after transfection were analyzed by Transwell assay and wound healing assay. Dual-luciferase report assay was employed to determine the direct binding of miR-141 to STAT4 3' UTR. RESULTS For the first time, the present study found that STAT4 over-expression in gastric cancer cells induced NFs to obtain CAF-like features via activating wnt/β-catenin pathway. Further gain-of-function and loss-of-function analysis revealed that miR-141 not only limited the migration and invasion of the gastric cancer cells, but also inhibited the transition of NFs and BMSC to CAFs. The luciferase assay indicated that miR-141 directly targeted the 3'-UTR predictive sequence of STAT4. CONCLUSION Our data showed that miR-141 inhibited migration and invasion of gastric cancer cells and inhibited transition from NFs to CAFs via targeting STAT4/wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yongchun Zhou
- Department of Gastrointestinal Surgery, The Guigang City People's Hospital, Guigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Jian-Hong Zhong
- Department of Gastrointestinal Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning 530001, China
| | - Fu-Sheng Gong
- Department of Molecular immune laboratory, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Jun Xiao
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, Fujian, China.
| |
Collapse
|
2535
|
Cancer-associated fibroblasts suppress SOX2-induced dysplasia in a lung squamous cancer coculture. Proc Natl Acad Sci U S A 2018; 115:E11671-E11680. [PMID: 30487219 PMCID: PMC6294935 DOI: 10.1073/pnas.1803718115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor−stroma interactions play a critical role in regulating tumorigenesis. However, how these interactions contribute to changes in tissue architecture and cell polarity observed during tumor development is unclear. Here we report a 3D coculture system that recapitulates key phenotypic changes during the progression of lung squamous carcinoma (LUSC) as well as the dynamic interactions between LUSC cells and components of the tumor microenvironment (TME). Our data suggest that two major components of TME, including the extracellular matrix and cancer-associated fibroblasts, could override cell intrinsic oncogenic changes in determining the disease phenotype in the context of LUSC. These findings may have broad implications for LUSC biology as well as the design of future therapies. Tumorigenesis depends on intricate interactions between genetically altered tumor cells and their surrounding microenvironment. While oncogenic drivers in lung squamous carcinoma (LUSC) have been described, the role of stroma in modulating tissue architecture, particularly cell polarity, remains unclear. Here, we report the establishment of a 3D coculture system of LUSC epithelial cells with cancer-associated fibroblasts (CAFs) and extracellular matrix that together capture key components of the tumor microenvironment (TME). Single LUSC epithelial cells develop into acinar-like structures with 0.02% efficiency, and addition of CAFs provides proper tumor−stromal interactions within an appropriate 3D architectural context. Using this model, we recapitulate key pathological changes during tumorigenesis, from hyperplasia to dysplasia and eventually invasion, in malignant LUSC spheroids that undergo phenotypic switching in response to cell intrinsic and extrinsic changes. Overexpression of SOX2 is sufficient to mediate the transition from hyperplasia to dysplasia in LUSC spheroids, while the presence of CAFs makes them invasive. Unexpectedly, CAFs suppress the activity of high SOX2 levels, restore hyperplasia, and enhance the formation of acinar-like structures. Taken together, these observations suggest that stromal factors can override cell intrinsic oncogenic changes in determining the disease phenotype, thus providing fundamental evidence for the existence of dynamic reciprocity between the nucleus and the TME of LUSC.
Collapse
|
2536
|
Barbosa MB, Martins EMDN, Teixeira TF, Carvalho RDE, Coelho JP, Resende RR, Oliveira EF, Santos AP, Andrade ASRD, Furtado CA. A carefully designed nanoplatform based on multi walled carbon nanotube wrapped with aptamers. Colloids Surf B Biointerfaces 2018; 175:175-183. [PMID: 30530003 DOI: 10.1016/j.colsurfb.2018.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023]
Abstract
The interaction between carbon nanotubes (CNTs) and biological molecules of diagnostic and therapeutic interest, as well as the internalization of the CNTs-biomolecules complexes in different types of cell, has been extensively studied due to the potential use of these nanocomplexes as multifunctional nanoplatforms in a great variety of biomedical applications. The effective use of these nanobiotechnologies requires broad multidisciplinary studies of biocompatibility, regarding, for example, the in vitro and in vivo nanotoxicological assays, the capacity to target specific cells and the evaluation of their biomedical potential. However, the first step to be reached is the careful obtainment of the nanoplatform and the understanding of the actual surface composition and structural integrity of the complex system. In this work, we show the detailed construction of a nanoplatform created by the noncovalent interaction between oxidized multi walled carbon nanotubes (MWCNTs) and a DNA aptamer targeting tumor cells. The excess free aptamer was removed by successive washes, revealing the actual surface of the nanocomplex. The MWCNT-aptamer interaction by π-stacking was evidenced and shown to contribute in obtaining a stable nanocomplex compatible with aqueous media having good cell viability. The nucleotide sequence of the aptamer remained intact after the functionalization, allowing its use in further studies of specificity and binding affinity and for the construction of functional nanoplatforms.
Collapse
Affiliation(s)
| | | | | | | | - João Paulo Coelho
- Centro de Desenvolvimento da Tecnologia Nuclear, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
2537
|
Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, D'Angelo P, Maltese A, Catenacci L, Apuzzo T, Scavo E, Moretta A, Todaro M, Stassi G, Avanzini MA, Calcaterra V. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18:1176. [PMID: 30482160 PMCID: PMC6260687 DOI: 10.1186/s12885-018-5082-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches. Electronic supplementary material The online version of this article (10.1186/s12885-018-5082-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini n.1, 90134, Palermo, Italy.
| | - Veronica Veschi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Vincenzo Di Benedetto
- Pediatric Surgery Unit and NICU Policlinico-Vittorio Emanuele Hospital, Catania, Italy
| | - Paolo D'Angelo
- Pediatric Hematology Oncology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana Apuzzo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonia Moretta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Matilde Todaro
- Department of DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2538
|
Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, Zhou Y, Lu N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:282. [PMID: 30477536 PMCID: PMC6258160 DOI: 10.1186/s13046-018-0960-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are activated fibroblasts associated with cancer. They have an important role in tumor growth and metastasis. Artemisinin (ART) is a sesquiterpene lactone extracted from Chinese herb qinghao, and artemether (ARM), artesunate (ARS) and dihydroartemisinin (DHA) were synthesized derivatives of artemisinin, which also have anti-malarial and anti-cancer effects such as artemisinin. Methods In this study, we investigated the in-vitro and in-vivo effects of artemisinin derivatives on inactivating cancer-associated fibroblasts and uncovered its underlying mechanism. Results We demonstrated that ARS and DHA could revert L-929-CAFs and CAFs from activated to inactivated state in vitro. Mechanically, ARS and DHA could suppress TGF-β signaling to inhibit activation of L-929-CAFs and CAFs, and decreased interaction between tumor and tumor microenvironment. The results showed that ARS and DHA could suppress CAFs-induced breast cancer growth and metastasis in the orthotopic model. Conformably, ARS and DHA suppressed TGF-β signaling to inactivate cancer-associated fibroblasts and inhibit cancer metastasis in vivo. Conclusions Artemisinin derivatives are potential therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuyuan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yue Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, 138 Xinlin Road, Nanjing, 210023, People's Republic of China
| | - Zhou Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2539
|
Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, Grisaru D, Erez N. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med 2018; 215:3075-3093. [PMID: 30470719 PMCID: PMC6279405 DOI: 10.1084/jem.20180818] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/05/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Raz et al. demonstrate that the expression of PDGFRα distinguishes two functional CAF populations in breast tumors and lung metastases and identify a subpopulation of CAFs that are specifically recruited to the tumor microenvironment from mesenchymal stromal cells in the BM. Cancer-associated fibroblasts (CAFs) are highly prominent in breast tumors, but their functional heterogeneity and origin are still largely unresolved. We report that bone marrow (BM)–derived mesenchymal stromal cells (MSCs) are recruited to primary breast tumors and to lung metastases and differentiate to a distinct subpopulation of CAFs. We show that BM-derived CAFs are functionally important for tumor growth and enhance angiogenesis via up-regulation of Clusterin. Using newly generated transgenic mice and adoptive BM transplantations, we demonstrate that BM-derived fibroblasts are a substantial source of CAFs in the tumor microenvironment. Unlike resident CAFs, BM-derived CAFs do not express PDGFRα, and their recruitment resulted in a decrease in the percentage of PDGFRα-expressing CAFs. Strikingly, decrease in PDGFRα in breast cancer patients was associated with worse prognosis, suggesting that BM-derived CAFs may have deleterious effects on survival. Therefore, PDGFRα expression distinguishes two functionally unique CAF populations in breast tumors and metastases and may have important implications for patient stratification and precision therapeutics.
Collapse
Affiliation(s)
- Yael Raz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel E Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, TN
| | - Lilach Abramovitz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonor Leider-Trejo
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, TN
| | - Dan Grisaru
- Department of Obstetrics and Gynecology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2540
|
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 2018; 18:99-115. [DOI: 10.1038/s41573-018-0004-1] [Citation(s) in RCA: 633] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2541
|
Das B, Sarkar N, Bishayee A, Sinha D. Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. Semin Cancer Biol 2018; 56:196-218. [PMID: 30472212 DOI: 10.1016/j.semcancer.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological phenomenon that plays a primordial role for initiation of metastasis. It renders cancer cells with increased self-renewal and tumor-initiating capabilities and exacerbated resistance to apoptosis and chemotherapy. Hence, regulation of EMT stands out to be an important strategy in controlling the behavior of malignant cells. Despite the enormous amount of preclinical data on the implication of EMT in cancer progression, there is still lack of routine clinical translation at therapeutic levels. The need of EMT-modulating drugs with high efficacy and low cytotoxicity has led to studies involving the evaluation of the efficacy of a plethora of various classes of phytochemicals present in dietary sources of fruits and vegetables. This review summarizes the role of these different classes of phytochemicals, their natural/synthetic analogs, and their nano-formulations in regulation of EMT in various preclinical models through attenuation of primary signaling pathways. Numerous proteins, transcription factors and enzymes targeted by various classes of phytochemicals in repression of EMT has been presented in this review. Additionally, we have critically analyzed the existing literature and provided views on new direction for accelerating the discovery of novel drug candidates which could be cautiously administered without concomitant effects.
Collapse
Affiliation(s)
- Bornita Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
2542
|
Okrah K, Tarighat S, Liu B, Koeppen H, Wagle MC, Cheng G, Sun C, Dey A, Chang MT, Sumiyoshi T, Mounir Z, Cummings C, Hampton G, Amler L, Fridlyand J, Hegde PS, Turley SJ, Lackner MR, Huang SM. Transcriptomic analysis of hepatocellular carcinoma reveals molecular features of disease progression and tumor immune biology. NPJ Precis Oncol 2018; 2:25. [PMID: 30456308 PMCID: PMC6237857 DOI: 10.1038/s41698-018-0068-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops in the context of chronic inflammatory liver disease and has an extremely poor prognosis. An immunosuppressive tumor microenvironment may contribute to therapeutic failure in metastatic HCC. Here, we identified unique molecular signatures pertaining to HCC disease progression and tumor immunity by analyzing genome-wide RNA-Seq data derived from HCC patient tumors and non-tumor cirrhotic tissues. Unsupervised clustering of gene expression data revealed a gradual suppression of local tumor immunity that coincided with disease progression, indicating an increasingly immunosuppressive tumor environment during HCC disease advancement. IHC examination of the spatial distribution of CD8+ T cells in tumors revealed distinct intra- and peri-tumoral subsets. Differential gene expression analysis revealed an 85-gene signature that was significantly upregulated in the peri-tumoral CD8+ T cell-excluded tumors. Notably, this signature was highly enriched with components of underlying extracellular matrix, fibrosis, and epithelial-mesenchymal transition (EMT). Further analysis condensed this signature to a core set of 23 genes that are associated with CD8+ T cell localization, and were prospectively validated in an independent cohort of HCC specimens. These findings suggest a potential association between elevated fibrosis, possibly modulated by TGF-β, PDGFR, SHH or Notch pathway, and the T cell-excluded immune phenotype. Indeed, targeting fibrosis using a TGF-β neutralizing antibody in the STAM™ model of murine HCC, we found that ameliorating the fibrotic environment could facilitate redistribution of CD8+ lymphocytes into tumors. Our results provide a strong rationale for utilizing immunotherapies in HCC earlier during treatment, potentially in combination with anti-fibrotic therapies.
Collapse
Affiliation(s)
- K. Okrah
- Department of Biostatistics, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - S. Tarighat
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - B. Liu
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - H. Koeppen
- Department of Research Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - M. C. Wagle
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - G. Cheng
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - C. Sun
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - A. Dey
- Department of Research, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - M. T. Chang
- Department of Research, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - T. Sumiyoshi
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Z. Mounir
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - C. Cummings
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - G. Hampton
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - L. Amler
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - J. Fridlyand
- Department of Biostatistics, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - P. S. Hegde
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - S. J. Turley
- Department of Research, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - M. R. Lackner
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - S. M. Huang
- Department of Oncology Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| |
Collapse
|
2543
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
2544
|
The Combined Effects of Co-Culture and Substrate Mechanics on 3D Tumor Spheroid Formation within Microgels Prepared via Flow-Focusing Microfluidic Fabrication. Pharmaceutics 2018; 10:pharmaceutics10040229. [PMID: 30428559 PMCID: PMC6321249 DOI: 10.3390/pharmaceutics10040229] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.
Collapse
|
2545
|
Clocchiatti A, Ghosh S, Procopio MG, Mazzeo L, Bordignon P, Ostano P, Goruppi S, Bottoni G, Katarkar A, Levesque M, Kölblinger P, Dummer R, Neel V, Özdemir BC, Dotto GP. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J Clin Invest 2018; 128:5531-5548. [PMID: 30395538 DOI: 10.1172/jci99159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/26/2018] [Indexed: 01/16/2023] Open
Abstract
The aging-associated increase of cancer risk is linked with stromal fibroblast senescence and concomitant cancer-associated fibroblast (CAF) activation. Surprisingly little is known about the role of androgen receptor (AR) signaling in this context. We have found downmodulated AR expression in dermal fibroblasts underlying premalignant skin cancer lesions (actinic keratoses and dysplastic nevi) as well as in CAFs from the 3 major skin cancer types, squamous cell carcinomas (SCCs), basal cell carcinomas, and melanomas. Functionally, decreased AR expression in primary human dermal fibroblasts (HDFs) from multiple individuals induced early steps of CAF activation, and in an orthotopic skin cancer model, AR loss in HDFs enhanced tumorigenicity of SCC and melanoma cells. Forming a complex, AR converged with CSL/RBP-Jκ in transcriptional repression of key CAF effector genes. AR and CSL were positive determinants of each other's expression, with BET inhibitors, which counteract the effects of decreased CSL, restoring AR expression and activity in CAFs. Increased AR expression in these cells overcame the consequences of CSL loss and was by itself sufficient to block the growth and tumor-enhancing effects of CAFs on neighboring cancer cells. As such, the findings establish AR as a target for stroma-focused cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Soumitra Ghosh
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Luigi Mazzeo
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Peter Kölblinger
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland.,Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Berna C Özdemir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
2546
|
Zou B, Liu X, Gong Y, Cai C, Li P, Xing S, Pokhrel B, Zhang B, Li J. A novel 12-marker panel of cancer-associated fibroblasts involved in progression of hepatocellular carcinoma. Cancer Manag Res 2018; 10:5303-5311. [PMID: 30464627 PMCID: PMC6225911 DOI: 10.2147/cmar.s176152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background/Aim Cancer-associated fibroblasts (CAFs) are important factors in the progression of hepatocellular carcinoma (HCC). But the characterization of these cells remains incomplete. This study aims to identify a panel of markers for CAFs that are associated with HCC progression. Materials and methods The sequencing data and clinicopathological characteristics of 366 patients were obtained from the Cancer Genome Atlas (TCGA) database (366 HCC tissues and there were 50/366 cases with corresponding normal liver tissues). In vitro validation of the markers was performed by quantitative real-time PCR using the hepatic stellate cell line LX2 induced by the HCC cell line Huh7. The activation of LX2 was confirmed by α-smooth muscle actin and fibroblast activation protein, using quantitative real-time PCR and immunofluorescence staining. In vivo detections of the 12 markers were done in 40 tissue samples (30 HCC and 10 normal). Results We successfully identified 12 CAF markers from TCGA data: FGF5, CXCL5, IGFL2, MMP1, ADAM32, ADAM18, IGFL1, FGF8, FGF17, FGF19, FGF4, and FGF23. The 12-marker panel was associated with the pathological and clinical progressions of HCC. All 12 markers were upregulated in vitro. In vivo expressions of these markers were paralleled with those in TCGA data. Conclusion A 12-marker panel of CAFs in HCC is identified, which is associated with both pathological and clinical progressions of cancer.
Collapse
Affiliation(s)
- Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Shan Xing
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Bibesh Pokhrel
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| |
Collapse
|
2547
|
Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N, Sen S, Scheet PA, Taniguchi CM, Kim MP, Tzeng CW, Katz MH, Singhi AD, Maitra A, Alvarez HA. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. Clin Cancer Res 2018; 25:2194-2205. [PMID: 30385653 DOI: 10.1158/1078-0432.ccr-18-1955] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Early detection of pancreatic ductal adenocarcinoma (PDAC) remains elusive. Precursor lesions of PDAC, specifically intraductal papillary mucinous neoplasms (IPMNs), represent a bona fide pathway to invasive neoplasia, although the molecular correlates of progression remain to be fully elucidated. Single-cell transcriptomics provides a unique avenue for dissecting both the epithelial and microenvironmental heterogeneities that accompany multistep progression from noninvasive IPMNs to PDAC. EXPERIMENTAL DESIGN Single-cell RNA sequencing was performed through droplet-based sequencing on 5,403 cells from 2 low-grade IPMNs (LGD-IPMNs), 2 high-grade IPMNs (HGD-IPMN), and 2 PDACs (all surgically resected). RESULTS Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. Although HGD-IPMNs expressed many core signaling pathways described in PDAC, LGD-IPMNs harbored subsets of single cells with a transcriptomic profile that overlapped with invasive cancer. Notably, a proinflammatory immune component was readily seen in low-grade IPMNs, composed of cytotoxic T cells, activated T-helper cells, and dendritic cells, which was progressively depleted during neoplastic progression, accompanied by infiltration of myeloid-derived suppressor cells. Finally, stromal myofibroblast populations were heterogeneous and acquired a previously described tumor-promoting and immune-evading phenotype during invasive carcinogenesis. CONCLUSIONS This study demonstrates the ability to perform high-resolution profiling of the transcriptomic changes that occur during multistep progression of cystic PDAC precursors to cancer. Notably, single-cell analysis provides an unparalleled insight into both the epithelial and microenvironmental heterogeneities that accompany early cancer pathogenesis and might be a useful substrate to identify targets for cancer interception.See related commentary by Hernandez-Barco et al., p. 2027.
Collapse
Affiliation(s)
- Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feven C Mulu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanqing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nabiollah Kamyabi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hector A Alvarez
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2548
|
Haave H, Gulati S, Brekke J, Lybak S, Vintermyr OK, Aarstad HJ. Tumor stromal desmoplasia and inflammatory response uniquely predict survival with and without stratification for HPV tumor infection in OPSCC patients. Acta Otolaryngol 2018; 138:1035-1042. [PMID: 30734620 DOI: 10.1080/00016489.2018.1497809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oropharyngeal squamous cell carcinoma (OPSCC) positive for human papillomavirus (HPV) increases wolrd wide. AIMS/OBJECTIVES The objective for this study has been to evaluate tumor phenotypes and tumor host responses with respect to five-year disease-specific survival (DSS) in HPV(+) and HPV(-) patients. MATERIAL AND METHODS Two hundred patients with OPSCC have been treated between 1992 and 2010. Histopathology slides from these patients have been morphologically evaluated in formalin-fixed, paraffin-embedded (FFPE) stained with hematoxylin-eosin (HE). From HE-stained sections tumor phenotype (keratinization, fraction of mature cancer cells and pattern of invasion) and tumor host responses (inflammation and stromal desmoplasia) were evaluated with respect to five years DSS. RESULTS High tumor inflammatory response and low stromal desmoplasia had an independent effect predicting better five-year DSS among all patients and when analyzed separately in the HPV(-) and HPV(+) cohort of patients using a Cox regression survival analysis that also included standard clinical prognostic variables among OPSCC patients. CONCLUSION Tumor host responses, inflammation and stromal desmoplasia may become part of routine work-up in OPSCC patients due to prognostic value. SIGNIFICANCE We present a method, accessible in most clinical locations and would give important additional information about prognosis in OPSCC patients.
Collapse
Affiliation(s)
- Hilde Haave
- Department of ENT/Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| | - Sahil Gulati
- Department of ENT/Head and Neck surgery, Haukeland Universitetssjukehus, Bergen, Norway
| | - Jorunn Brekke
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stein Lybak
- Department of ENT/Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav K. Vintermyr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Hans Jørgen Aarstad
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, Norway
- Deptartment of ENT/Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2549
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
2550
|
Taddei ML, Cavallini L, Ramazzotti M, Comito G, Pietrovito L, Morandi A, Giannoni E, Raugei G, Chiarugi P. Stromal-induced downregulation of miR-1247 promotes prostate cancer malignancy. J Cell Physiol 2018; 234:8274-8285. [PMID: 30378132 DOI: 10.1002/jcp.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", Florence, Italy
| |
Collapse
|