2601
|
Ivanov S, Huber R, Warwicker J, Bond P. Energetics and Dynamics Across the Bcl-2-Regulated Apoptotic Pathway Reveal Distinct Evolutionary Determinants of Specificity and Affinity. Structure 2016; 24:2024-2033. [DOI: 10.1016/j.str.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
|
2602
|
Cui F, Liu L, Tang H, Yang K, Li Y. Construction of explicit models to correlate the structure and the inhibitory activity of aldose reductase: Flavonoids and sulfonyl-pyridazinones as inhibitors. Chem Biol Drug Des 2016; 89:482-491. [PMID: 27637378 DOI: 10.1111/cbdd.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Abstract
The correlation between binding energies and bioactivities is the core of structure-based computer-aided drug design. However, many models to address this correlation are still strongly system-dependent at current stage. We constructed two explicit models to correlate the binding energies with the inhibitory activities of flavonoids and sulfonyl-pyridazinones as inhibitors of aldose reductase. The introduction of multiple complex states comprised of protein, coenzyme, substrate, and inhibitor can remarkably improve the correlation coefficients, compared with that using single complex state. Recombination of energy terms from complex structures and molecular descriptors of inhibitors can further improve the correlation. The explicit models provide correlation coefficients of 0.90 and 0.92 for flavonoids and sulfonyl-pyridazinones, respectively. These models also steadily present the contribution from each energy term and the favorite of protein-inhibitor complex states. Meanwhile, we also observed that some inhibitors can accommodate alternative sites out of the conserved binding pocket at the presence/absence of coenzyme and substrate. It is responsible for the remarkable change in the binding energies and thus significantly influences the correlation between the structures and the inhibitory activities. Overall, this work presents a rational way to construct reliable explicit models through the combination of multiple physically accessible complex states, even though each of them only bears marginal information related to their activities.
Collapse
Affiliation(s)
- Fengchao Cui
- Key Laboratory of Synthetic Rubber and Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, China
| | - Lunyang Liu
- Key Laboratory of Synthetic Rubber and Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, China
| | - Haifeng Tang
- Key Laboratory of Synthetic Rubber and Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, China
| | - Kecheng Yang
- Key Laboratory of Synthetic Rubber and Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber and Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2603
|
Lee KSS, Henriksen NM, Ng CJ, Yang J, Jia W, Morisseau C, Andaya A, Gilson MK, Hammock BD. Probing the orientation of inhibitor and epoxy-eicosatrienoic acid binding in the active site of soluble epoxide hydrolase. Arch Biochem Biophys 2016; 613:1-11. [PMID: 27983948 DOI: 10.1016/j.abb.2016.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an important therapeutic target of many diseases, such as chronic obstructive pulmonary disease (COPD) and diabetic neuropathic pain. It acts by hydrolyzing and thus regulating specific bioactive long chain polyunsaturated fatty acid epoxides (lcPUFA), like epoxyeicosatrienoic acids (EETs). To better predict which epoxides could be hydrolyzed by sEH, one needs to dissect the important factors and structural requirements that govern the binding of the substrates to sEH. This knowledge allows further exploration of the physiological role played by sEH. Unfortunately, a crystal structure of sEH with a substrate bound has not yet been reported. In this report, new photoaffinity mimics of a sEH inhibitor and EET regioisomers were prepared and used in combination with peptide sequencing and computational modeling, to identify the binding orientation of different regioisomers and enantiomers of EETs into the catalytic cavity of sEH. Results indicate that the stereochemistry of the epoxide plays a crucial role in dictating the binding orientation of the substrate.
Collapse
Affiliation(s)
- Kin Sing Stephen Lee
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0736, La Jolla, CA 92093, USA
| | - Connie J Ng
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Weitao Jia
- Campus Mass Spectrometry Facilities, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Armann Andaya
- Campus Mass Spectrometry Facilities, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0736, La Jolla, CA 92093, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2604
|
Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase. Int J Mol Sci 2016; 17:ijms17111796. [PMID: 27801788 PMCID: PMC5133797 DOI: 10.3390/ijms17111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022] Open
Abstract
Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of −5.8 kcal/mol and (LIG2) of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.
Collapse
|
2605
|
Oo A, Hassandarvish P, Chin SP, Lee VS, Abu Bakar S, Zandi K. In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ 2016; 4:e2602. [PMID: 27812412 PMCID: PMC5088613 DOI: 10.7717/peerj.2602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022] Open
Abstract
Background The re-emerging, Aedes spp. transmitted Chikungunya virus (CHIKV) has recently caused large outbreaks in a wide geographical distribution of the world including countries in Europe and America. Though fatalities associated with this self-remitting disease were rarely reported, quality of patients’ lives have been severely diminished by polyarthralgia recurrence. Neither effective antiviral treatment nor vaccines are available for CHIKV. Our previous in vitro screening showed that hesperetin, a bioflavonoid exhibits inhibitory effect on the virus intracellular replication. Here, we present a study using the computational approach to identify possible target proteins for future mechanistic studies of hesperetin. Methods 3D structures of CHIKV nsP2 (3TRK) and nsP3 (3GPG) were retrieved from Protein Data Bank (PDB), whereas nsP1, nsP4 and cellular factor SPK2 were modeled using Iterative Threading Assembly Refinement (I-TASSER) server based on respective amino acids sequence. We performed molecular docking on hesperetin against all four CHIKV non-structural proteins and SPK2. Proteins preparation and subsequent molecular docking were performed using Discovery Studio 2.5 and AutoDock Vina 1.5.6. The Lipinski’s values of the ligand were computed and compared with the available data from PubChem. Two non-structural proteins with crystal structures 3GPG and 3TRK in complexed with hesperetin, demonstrated favorable free energy of binding from the docking study, were further explored using molecular dynamics (MD) simulations. Results We observed that hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Among all five tested proteins, our compound has the highest binding affinity with 3GPG at −8.5 kcal/mol. The ligand used in this study also matches the Lipinski’s rule of five in addition to exhibiting closely similar properties with that of in PubChem. The docking simulation was performed to obtain a first guess of the binding structure of hesperetin complex and subsequently analysed by MD simulations to assess the reliability of the docking results. Root mean square deviation (RMSD) of the simulated systems from MD simulations indicated that the hesperetin complex remains stable within the simulation timescale. Discussion The ligand’s tendencies of binding to the important proteins for CHIKV replication were consistent with our previous in vitro screening which showed its efficacy in blocking the virus intracellular replication. NsP3 serves as the highest potential target protein for the compound’s inhibitory effect, while it is interesting to highlight the possibility of interrupting CHIKV replication via interaction with host cellular factor. By complying the Lipinski’s rule of five, hesperetin exhibits drug-like properties which projects its potential as a therapeutic option for CHIKV infection.
Collapse
Affiliation(s)
- Adrian Oo
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Sek Peng Chin
- Department of Chemistry, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Sazaly Abu Bakar
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
2606
|
Ercan S. Docking and Molecular Dynamics Calculations of Some Previously Studied and newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2016. [DOI: 10.18596/jotcsa.287327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
2607
|
Evain-Bana E, Schiavo L, Bour C, Lanfranchi DA, Berardozzi S, Ghirga F, Bagrel D, Botta B, Hanquet G, Mori M. Synthesis, biological evaluation and molecular modeling studies on novel quinonoid inhibitors of CDC25 phosphatases. J Enzyme Inhib Med Chem 2016; 32:113-118. [PMID: 27774816 PMCID: PMC6010111 DOI: 10.1080/14756366.2016.1238364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cell division cycle 25 phosphatases (CDC25A, B, and C; E.C. 3.1.3.48) are key regulator of the cell cycle in human cells. Their aberrant expression has been associated with the insurgence and development of various types of cancer, and with a poor clinical prognosis. Therefore, CDC25 phosphatases are a valuable target for the development of small molecule inhibitors of therapeutic relevance. Here, we used an integrated strategy mixing organic chemistry with biological investigation and molecular modeling to study novel quinonoid derivatives as CDC25 inhibitors. The most promising molecules proved to inhibit CDC25 isoforms at single digit micromolar concentration, becoming valuable tools in chemical biology investigations and profitable leads for further optimization.
Collapse
Affiliation(s)
- Emilie Evain-Bana
- a Pôle Chimie Et Physique Moléculaire, UMR CNRS 7565, Laboratoire Structure et Réactivite des Systèmes Moléculaires Complexes , Université de Lorraine , Metz , France
| | - Lucie Schiavo
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | | | - Don Antoine Lanfranchi
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | - Simone Berardozzi
- d Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Roma , Rome , Italy.,e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Francesca Ghirga
- e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Denyse Bagrel
- a Pôle Chimie Et Physique Moléculaire, UMR CNRS 7565, Laboratoire Structure et Réactivite des Systèmes Moléculaires Complexes , Université de Lorraine , Metz , France
| | - Bruno Botta
- d Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Roma , Rome , Italy
| | - Gilles Hanquet
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | - Mattia Mori
- e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| |
Collapse
|
2608
|
Bowerman S, Wereszczynski J. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations. Biophys J 2016; 110:327-337. [PMID: 26789756 DOI: 10.1016/j.bpj.2015.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. In this study, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that posttranslational modifications are enriched at key locations in these networks. Taken together, these results provide, to our knowledge, new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodeling factors.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
2609
|
Wang C, Nguyen PH, Pham K, Huynh D, Le TBN, Wang H, Ren P, Luo R. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. J Comput Chem 2016; 37:2436-46. [PMID: 27510546 PMCID: PMC5018451 DOI: 10.1002/jcc.24467] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/13/2016] [Indexed: 11/07/2022]
Abstract
Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods have become widely adopted in estimating protein-ligand binding affinities due to their efficiency and high correlation with experiment. Here different computational alternatives were investigated to assess their impact to the agreement of MMPBSA calculations with experiment. Seven receptor families with both high-quality crystal structures and binding affinities were selected. First the performance of nonpolar solvation models was studied and it was found that the modern approach that separately models hydrophobic and dispersion interactions dramatically reduces RMSD's of computed relative binding affinities. The numerical setup of the Poisson-Boltzmann methods was analyzed next. The data shows that the impact of grid spacing to the quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Å is already small enough to be negligible. The impact of different atomic radius sets and different molecular surface definitions was further analyzed and weak influences were found on the agreement with experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric constant generally improves the overall agreement with experiment, especially for highly charged binding pockets. The data also showed that the converged simulations caused slight reduction in the agreement with experiment. Finally the direction of estimating absolute binding free energies was briefly explored. Upon correction of the binding-induced rearrangement free energy and the binding entropy lost, the errors in absolute binding affinities were also reduced dramatically when the modern nonpolar solvent model was used, although further developments were apparently necessary to further improve the MMPBSA methods. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, Irvine, California, 92697
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697
- Department of Physics and Astronomy, University of California, Irvine, California, 92697
| | - Peter H Nguyen
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697
| | - Kevin Pham
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697
| | - Danielle Huynh
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697
| | | | - Hongli Wang
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas, Austin, Texas, 78712
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, Irvine, California, 92697.
- Department of Molecular Biology and Biochemistry, Irvine, California, 92697.
- Department of Chemical Engineering and Materials Science, Irvine, California, 92697.
- Department of Biomedical Engineering, University of California, Irvine, California, 92697.
| |
Collapse
|
2610
|
Meng XM, Hu WJ, Mu YG, Sheng XH. Effect of allosteric molecules on structure and drug affinity of HIV-1 protease by molecular dynamics simulations. J Mol Graph Model 2016; 70:153-162. [PMID: 27723563 DOI: 10.1016/j.jmgm.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
Recent experiments show that small molecules can bind onto the allosteric sites of HIV-1 protease (PR), which provides a starting point for developing allosteric inhibitors. However, the knowledge of the effect of such binding on the structural dynamics and binding free energy of the active site inhibitor and PR is still lacking. Here, we report 200ns long molecular dynamics simulation results to gain insight into the influences of two allosteric molecules (1H-indole-6-carboxylic acid, 1F1 and 2-methylcyclohexano, 4D9). The simulations demonstrate that both allosteric molecules change the PR conformation and stabilize the structures of PR and the inhibitor; the residues of the flaps are sensitive to the allosteric molecules and the flexibility of the residues is pronouncedly suppressed; the additions of the small molecules to the allosteric sites strengthen the binding affinities of 3TL-PR by about 12-15kal/mol in the binding free energy, which mainly arises from electrostatic term. Interestingly, it is found that the action mechanisms of 1F1 and 4D9 are different, the former behaviors like a doorman that keeps the inhibitor from escape and makes the flaps (door) partially open; the latter is like a wedge that expands the allosteric space and meanwhile closes the flaps. Our data provide a theoretical support for designing the allosteric inhibitor.
Collapse
Affiliation(s)
- Xian-Mei Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Wei-Jun Hu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yu-Guang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 639815, Singapore.
| | - Xie-Huang Sheng
- School of Chemistry, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2611
|
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J Comput Aided Mol Des 2016; 30:917-926. [PMID: 27714494 DOI: 10.1007/s10822-016-9981-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
The H7N9 avian influenza virus is a novel re-assortment from at least four different strains of virus. Neuraminidase, which is a glycoprotein on the surface membrane, has been the target for drug treatment. However, some H7N9 strains that have been isolated from patient after drug treatment have a R292K mutation in neuraminidase. This substitution was found to facilitate drug resistance using protein- and virus- assays, in particular it gave a high resistance to the most commonly used drug, oseltamivir. The aim of this research is to understand the source of oseltamivir resistance using MD simulations and the MM/PB(GB)SA binding free energy approaches. Both methods can predict the reduced susceptibility of oseltamivir in good agreement to the IC 50 binding energy, although MM/GBSA underestimates this prediction compared to the MM/PBSA calculation. Electrostatic interaction is the main contribution for oseltamivir binding in terms of both interaction and solvation. We found that the source of the drug resistance is a decrease in the binding interaction combined with the reduction of the dehydration penalty. The smaller K292 mutated residue has a larger binding pocket cavity compared to the wild-type resulting in the loss of drug carboxylate-K292 hydrogen bonding and an increased accessibility for water molecules around the K292 mutated residue. In addition, oseltamivir does not bind well to the R292K mutant complex as shown by the high degree of fluctuation in ligand RMSD during the simulation and the change in angular distribution of bulky side chain groups.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2612
|
Bello M, Torres MJ, Méndez-Tenorio A, Correa-Basurto J. Conformational changes associated with L16P and T118M mutations in the membrane-embedded PMP22 protein, consequential in CMT-1A. J Biomol Struct Dyn 2016; 35:2880-2894. [PMID: 27609586 DOI: 10.1080/07391102.2016.1234415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot-Marie-Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein-protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.
Collapse
Affiliation(s)
- Martiniano Bello
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| | - Mixtli J Torres
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - Alfonso Méndez-Tenorio
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| |
Collapse
|
2613
|
Prado V, Lence E, Thompson P, Hawkins AR, González-Bello C. Freezing the Dynamic Gap for Selectivity: Motion-Based Design of Inhibitors of the Shikimate Kinase Enzyme. Chemistry 2016; 22:17988-18000. [DOI: 10.1002/chem.201602923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Verónica Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
2614
|
Gathiaka S, Boykin B, Cáceres T, Hevel JM, Acevedo O. Understanding protein arginine methyltransferase 1 (PRMT1) product specificity from molecular dynamics. Bioorg Med Chem 2016; 24:4949-4960. [DOI: 10.1016/j.bmc.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|
2615
|
Ferronato MJ, Alonso EN, Gandini NA, Fermento ME, Villegas ME, Quevedo MA, Arévalo J, López Romero A, Rivadulla ML, Gómez G, Fall Y, Facchinetti MM, Curino AC. The UVB1 Vitamin D analogue inhibits colorectal carcinoma progression. J Steroid Biochem Mol Biol 2016; 163:193-205. [PMID: 27208626 DOI: 10.1016/j.jsbmb.2016.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear β-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.
Collapse
Affiliation(s)
- María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - Norberto Ariel Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - María Emilia Villegas
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Julián Arévalo
- Servicio de Patología del Hospital Interzonal General de Agudos Dr. José Penna, Av. Láinez 2401, 8000 Bahía Blanca, Argentina
| | | | - Marcos Lois Rivadulla
- Departamento de Química Orgánica, Facultad de Química and Instituto de Investigación Biomédica (IBI), University of Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
| | - Generosa Gómez
- Departamento de Química Orgánica, Facultad de Química and Instituto de Investigación Biomédica (IBI), University of Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
| | - Yagamare Fall
- Departamento de Química Orgánica, Facultad de Química and Instituto de Investigación Biomédica (IBI), University of Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Centro Científico Tecnológico Bahía Blanca (CONICET-UNS), Bahía Blanca, Argentina.
| |
Collapse
|
2616
|
Zhou S, Fang D, Tan S, Lin W, Wu W, Zheng K. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y 12 by 3D-QSAR, docking and molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:2938-2965. [PMID: 27634290 DOI: 10.1080/07391102.2016.1237381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
P2Y12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R2 = .983, q2 = .805, [Formula: see text] = .881 for CoMFA model, and R2 = .935, q2 = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y12. We hope these results could be helpful in design of potent and selective P2Y12 antagonists.
Collapse
Affiliation(s)
- Shengfu Zhou
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Danqing Fang
- b Department of Cardiothoracic Surgery , Affiliated Second Hospital of Guangzhou Medical University , Guangzhou 510260 , China
| | - Shepei Tan
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Weicong Lin
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Wenjuan Wu
- a Department of Physical Chemistry , College of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Kangcheng Zheng
- c School of Chemistry and Chemical Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
2617
|
Ni G, Wang Y, Cummins S, Walton S, Mounsey K, Liu X, Wei MQ, Wang T. Inhibitory mechanism of peptides with a repeating hydrophobic and hydrophilic residue pattern on interleukin-10. Hum Vaccin Immunother 2016; 13:518-527. [PMID: 27686406 DOI: 10.1080/21645515.2016.1238537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Interleukin 10 (IL-10) is a cytokine that is able to downregulate inflammation. Its overexpression is directly associated with the difficulty in the clearance of chronic viral infections, such as chronic hepatitis B, hepatitis C and HIV infection, and infection-related cancer. IL-10 signaling blockade has been proposed as a promising way of clearing chronic viral infection and preventing tumor growth in animal models. Recently, we have reported that peptides with a helical repeating pattern of hydrophobic and hydrophilic residues are able to inhibit IL-10 significantly both in vitro and in vivo. 1 In this work, we seek to further study the inhibiting mechanism of these peptides using sequence-modified peptides. As evidenced by both experimental and molecular dynamics simulation in concert the N-terminal hydrophobic peptide constructed with repeating hydrophobic and hydrophilic pattern of residues is more likely to inhibit IL10. In addition, the sequence length and the ability of protonation are also important for inhibition activity.
Collapse
Affiliation(s)
- Guoying Ni
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia.,b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Yuejian Wang
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China
| | - Scott Cummins
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| | - Shelley Walton
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Kate Mounsey
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Xiaosong Liu
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China.,d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Ming Q Wei
- b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Tianfang Wang
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| |
Collapse
|
2618
|
Presumed LRP1-targeting transport peptide delivers β-secretase inhibitor to neurons in vitro with limited efficiency. Sci Rep 2016; 6:34297. [PMID: 27682851 PMCID: PMC5041153 DOI: 10.1038/srep34297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/09/2016] [Indexed: 12/26/2022] Open
Abstract
Interfering with the activity of β-secretase to reduce the production of Aβ peptides is a conceivable therapeutic strategy for Alzheimer’s disease. However, the development of efficient yet safe inhibitors is hampered by secondary effects, usually linked to the indiscriminate inhibition of other substrates’ processing by the targeted enzyme. Based on the spatial compartmentalization of the cleavage of the amyloid precursor protein by β-secretase, we hypothesized that by exploiting the endocytosis receptor low-density lipoprotein receptor-related protein it would be possible to direct an otherwise cell-impermeable inhibitor to the endosomes of neurons, boosting the drug’s efficacy and importantly, sparing the off-target effects. We used the transport peptide Angiopep to build an endocytosis-competent conjugate and found that although the peptide facilitated the inhibitor’s internalization into neurons and delivered it to the endosomes, the delivery was not efficient enough to potently reduce β-secretase activity at the cellular level. This is likely connected to the finding that in the cell lines we used, Angiopep’s internalization was not mediated by its presumed receptor to a significant extent. Additionally, Angiopep exploited different internalization mechanisms when applied alone or when conjugated to the inhibitor, highlighting the impact that drug conjugation can have on transport peptides.
Collapse
|
2619
|
Othman H, Wieninger SA, ElAyeb M, Nilges M, Srairi-Abid N. In Silico prediction of the molecular basis of ClTx and AaCTx interaction with matrix metalloproteinase-2 (MMP-2) to inhibit glioma cell invasion. J Biomol Struct Dyn 2016; 35:2815-2829. [DOI: 10.1080/07391102.2016.1231633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Houcemeddine Othman
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Silke Andrea Wieninger
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
| | - Mohamed ElAyeb
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Michael Nilges
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
| | - Najet Srairi-Abid
- Laboratory of venoms and therapeutic biomolecules (LR11IPT08), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
2620
|
Sixto-López Y, Bello M, Rodríguez-Fonseca RA, Rosales-Hernández MC, Martínez-Archundia M, Gómez-Vidal JA, Correa-Basurto J. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn 2016; 35:2794-2814. [PMID: 27589363 DOI: 10.1080/07391102.2016.1231084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Rolando Alberto Rodríguez-Fonseca
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martha Cecilia Rosales-Hernández
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Marlet Martínez-Archundia
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Antonio Gómez-Vidal
- c Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica , Universidad de Granada , Granada 18071 , Spain
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
2621
|
Infante P, Alfonsi R, Ingallina C, Quaglio D, Ghirga F, D'Acquarica I, Bernardi F, Di Magno L, Canettieri G, Screpanti I, Gulino A, Botta B, Mori M, Di Marcotullio L. Inhibition of Hedgehog-dependent tumors and cancer stem cells by a newly identified naturally occurring chemotype. Cell Death Dis 2016; 7:e2376. [PMID: 27899820 PMCID: PMC5059851 DOI: 10.1038/cddis.2016.195] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) inhibitors have emerged as valid tools in the treatment of a wide range of cancers. Indeed, aberrant activation of the Hh pathway occurring either by ligand-dependent or -independent mechanisms is a key driver in tumorigenesis. The smoothened (Smo) receptor is one of the main upstream transducers of the Hh signaling and is a validated target for the development of anticancer compounds, as underlined by the FDA-approved Smo antagonist Vismodegib (GDC-0449/Erivedge) for the treatment of basal cell carcinoma. However, Smo mutations that confer constitutive activity and drug resistance have emerged during treatment with Vismodegib. For this reason, the development of new effective Hh inhibitors represents a major challenge for cancer therapy. Natural products have always represented a unique source of lead structures in drug discovery, and in recent years have been used to modulate the Hh pathway at multiple levels. Here, starting from an in house library of natural compounds and their derivatives, we discovered novel chemotypes of Hh inhibitors by mean of virtual screening against the crystallographic structure of Smo. Hh functional based assay identified the chalcone derivative 12 as the most effective Hh inhibitor within the test set. The chalcone 12 binds the Smo receptor and promotes the displacement of Bodipy-Cyclopamine in both Smo WT and drug-resistant Smo mutant. Our molecule stands as a promising Smo antagonist able to specifically impair the growth of Hh-dependent tumor cells in vitro and in vivo and medulloblastoma stem-like cells and potentially overcome the associated drug resistance.
Collapse
Affiliation(s)
- Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Romina Alfonsi
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Cinzia Ingallina
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Deborah Quaglio
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Ilaria D'Acquarica
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Flavia Bernardi
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, Rome, Italy
| |
Collapse
|
2622
|
Barra PA, Ribeiro AJM, Ramos MJ, Jiménez VA, Alderete JB, Fernandes PA. Binding free energy calculations on E-selectin complexes with sLex
oligosaccharide analogs. Chem Biol Drug Des 2016; 89:114-123. [DOI: 10.1111/cbdd.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Pabla A. Barra
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | | - Maria J. Ramos
- Faculdade de Ciencias; Universidad do Porto; Porto Portugal
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello Sede Concepción; Talcahuano Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | |
Collapse
|
2623
|
pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model 2016; 70:70-76. [PMID: 27677150 DOI: 10.1016/j.jmgm.2016.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
Abstract
In the present study, we describe here the pH condition activating doxorubicin (DOX) anticancer drugs loading and release over single-wall carbon nanotube (SWNT) non-covalently wrapped with chitosan (CS). The possibility of drug displacement on DOX/CS/SWNT nanocarrier was investigated using molecular dynamics simulations. The drug loading and release were monitored via displacement analysis and binding energy calculations. The simulated results clearly showed that the drugs well interacted with the CS/SWNT at physiological pH (pH 7.4), where CS was in the deprotonated form. Contrastingly, in weakly acidic environments (pH 5.0-6.5) which is a pH characteristics of certain cancer environments, the protonated CS became loosen wrapped around the SWNT and triggered drugs release as a result of charge-charge repulsion between CS and drug molecules. The obtained data fulfil the understanding at atomic level of drug loading and release controlled by pH-sensitive polymer, which might be useful for further cancer therapy researches.
Collapse
|
2624
|
Sain N, Mohanty D. modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks. Biol Direct 2016; 11:48. [PMID: 27655048 PMCID: PMC5031328 DOI: 10.1186/s13062-016-0151-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/14/2016] [Indexed: 11/27/2022] Open
Abstract
Background PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction partners. Because of the involvement of PDZ domains in many important biological processes, several attempts have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks. Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach. Since, they have been trained using experimental substrate specificity data for specific PDZ families, their applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of PDZ-peptide interaction interfaces. Results We have used a structure based approach to develop modPDZpep, a program to predict the interaction partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks. Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by utilizing available experimental phage display data or by structure based predictions. Conclusions In summary, we have developed modPDZpep, a web-server for structure based analysis of human PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html. Reviewers This article was reviewed by Michael Gromiha and Zoltán Gáspári. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0151-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neetu Sain
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2625
|
Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations. Molecules 2016; 21:molecules21091222. [PMID: 27657020 PMCID: PMC6274164 DOI: 10.3390/molecules21091222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/21/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.
Collapse
|
2626
|
Mapping the interactions and bioactivity of quercetin(2-hydroxypropyl)-β-cyclodextrin complex. Int J Pharm 2016; 511:303-311. [DOI: 10.1016/j.ijpharm.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022]
|
2627
|
Sgrignani J, Grazioso G, De Amici M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016; 55:5191-200. [PMID: 27534275 DOI: 10.1021/acs.biochem.6b00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
2628
|
Patra N, Ioannidis EI, Kulik HJ. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase. PLoS One 2016; 11:e0161868. [PMID: 27564542 PMCID: PMC5001633 DOI: 10.1371/journal.pone.0161868] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/13/2016] [Indexed: 12/27/2022] Open
Abstract
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases.
Collapse
Affiliation(s)
- Niladri Patra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| |
Collapse
|
2629
|
Poongavanam V, Kongsted J, Wüstner D. Computational Analysis of Sterol Ligand Specificity of the Niemann Pick C2 Protein. Biochemistry 2016; 55:5165-79. [DOI: 10.1021/acs.biochem.6b00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
2630
|
Aurintricarboxylic acid structure modifications lead to reduction of inhibitory properties against virulence factor YopH and higher cytotoxicity. World J Microbiol Biotechnol 2016; 32:163. [PMID: 27562597 PMCID: PMC4999467 DOI: 10.1007/s11274-016-2123-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
Yersinia sp. bacteria owe their viability and pathogenic virulence to the YopH factor, which is a highly active bacterial protein tyrosine phosphatase. Inhibition of YopH phosphatase results in the lack of Yersinia sp. pathogenicity. We have previously described that aurintricarboxylic acid inhibits the activity of YopH at nanomolar concentrations and represents a unique mechanism of YopH inactivation due to a redox process. This work is a continuation of our previous studies. Here we show that modifications of the structure of aurintricarboxylic acid reduce the ability to inactivate YopH and lead to higher cytotoxicity. In the present paper we examine the inhibitory properties of aurintricarboxylic acid analogues, such as eriochrome cyanine R (ECR) and pararosaniline. Computational docking studies we report here indicate that ATA analogues are not precluded to bind in the YopH active site and in all obtained binding conformations ECR and pararosaniline bind to YopH active site. The free binding energy calculations show that ECR has a stronger binding affinity to YopH than pararosaniline, which was confirmed by experimental YopH enzymatic activity studies. We found that ATA analogues can reversibly reduce the enzymatic activity of YopH, but possess weaker inhibitory properties than ATA. The ATA analogues induced inactivation of YopH is probably due to oxidative mechanism, as pretreatment with catalase prevents from inhibition. We also found that ATA analogues significantly decrease the viability of macrophage cells, especially pararosaniline, while ATA reveals only slight effect on cell viability.
Collapse
|
2631
|
Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch. Sci Rep 2016; 6:31005. [PMID: 27484311 PMCID: PMC4971525 DOI: 10.1038/srep31005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are a class of metabolism control elements mostly found in bacteria. Due to their fundamental importance in bacteria gene regulation, riboswitches have been proposed as antibacterial drug targets. Prequeuosine (preQ1) is the last free precursor in the biosynthetic pathway of queuosine that is crucial for translation efficiency and fidelity. However, the regulation mechanism for the preQ1 riboswitch remains unclear. Here we constructed fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in the bound riboswitch is distinctly different from that in the apo riboswitch. The community network indicates that the information freely transfers from the binding site of preQ1 to the expression platform of the P3 helix in the bound riboswitch and the P3 helix is a bottleneck in the apo riboswitch. Thus, a hypothesis of “preQ1-binding induced allosteric switching” is proposed to link riboswitch and translation regulation. The community networks of mutants support this hypothesis. Finally, a possible allosteric pathway of A50-A51-A52-U10-A11-G12-G56 was also identified based on the shortest path algorithm and confirmed by mutations and network perturbation. The novel fluctuation network analysis method can be used as a general strategy in studies of riboswitch structure-function relationship.
Collapse
|
2632
|
Fratev F. PPARγ non-covalent antagonists exhibit mutable binding modes with a similar free energy of binding: a case study. J Biomol Struct Dyn 2016; 35:476-485. [DOI: 10.1080/07391102.2016.1151830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| |
Collapse
|
2633
|
Abro A, Azam SS. Binding free energy based analysis of arsenic (+ 3 oxidation state) methyltransferase with S-adenosylmethionine. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2634
|
Mih N, Brunk E, Bordbar A, Palsson BO. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism. PLoS Comput Biol 2016; 12:e1005039. [PMID: 27467583 PMCID: PMC4965186 DOI: 10.1371/journal.pcbi.1005039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.
Collapse
Affiliation(s)
- Nathan Mih
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (EB); (BOP)
| | - Aarash Bordbar
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (EB); (BOP)
| |
Collapse
|
2635
|
Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. J Biol Chem 2016; 291:20539-50. [PMID: 27471273 DOI: 10.1074/jbc.m116.745265] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Balaji Nagarajan
- the Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Umesh R Desai
- the Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Krishna Rajarathnam
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555 and
| |
Collapse
|
2636
|
Molecular dynamics study on inhibition mechanism of CDK-2 and GSK-3β by CHEMBL272026 molecule. Struct Chem 2016. [DOI: 10.1007/s11224-016-0803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2637
|
Bello M, Fragoso-Vázquez MJ, Correa Basurto J. Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG. Int J Biol Macromol 2016; 92:625-636. [PMID: 27456117 DOI: 10.1016/j.ijbiomac.2016.07.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Bovine β-lactoglobulin (BLG) belong to the lipocalin family. This is a group of proteins involved in the binding and transporting of hydrophobic molecules. Experimental and theoretical reports have stated its complex structural behavior in solution, with coupled effects between homodimerization and ligand recognition. Nonetheless, structural evidence at the atomic level about the cause of this coupled effect has not been reported to date. To address this issue microsecond molecular dynamics (MD) simulations were combined with the molecular mechanics generalized Born surface area (MM/GBSA) approach, clustering analysis and principal component analysis (PCA), to explore the conformational complexity of BLG protein-protein self-association and palmitic acid (PLM) or dodecyl sulfate (SDS) ligand recognition in the monomeric and dimeric state. MD simulations, coupled to the MM/GBSA method, revealed that dimerization exerts contrasting effects on the ligand-binding capacity of BLG. Protein dimerization decreases PLM affinity, promoting dimer association. For SDS the dimeric state increases affinity, enhancing dimer dissociation. MD simulations based on PCA revealed that while few differences in the conformational subspace are observed between the free and bound monomer and dimer coupling for PLM, substantial changes are observed between the free and bound monomer and dimer coupling for SDS.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico.
| | - M Jonathan Fragoso-Vázquez
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| | - José Correa Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| |
Collapse
|
2638
|
Yamada D, Dokainish HM, Iwata T, Yamamoto J, Ishikawa T, Todo T, Iwai S, Getzoff ED, Kitao A, Kandori H. Functional Conversion of CPD and (6-4) Photolyases by Mutation. Biochemistry 2016; 55:4173-83. [PMID: 27431478 DOI: 10.1021/acs.biochem.6b00361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet (UV) light from the sun damages DNA by forming a cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproducts [(6-4) PP]. Photolyase (PHR) enzymes utilize near-UV/blue light for DNA repair, which is initiated by light-induced electron transfer from the fully reduced flavin adenine dinucleotide chromophore. Despite similar structures and repair mechanisms, the functions of PHR are highly selective; CPD PHR repairs CPD, but not (6-4) PP, and vice versa. In this study, we attempted functional conversion between CPD and (6-4) PHRs. We found that a triple mutant of (6-4) PHR is able to repair the CPD photoproduct, though the repair efficiency is 1 order of magnitude lower than that of wild-type CPD PHR. Difference Fourier transform infrared spectra for repair demonstrate the lack of secondary structural alteration in the mutant, suggesting that the triple mutant gains substrate binding ability while it does not gain the optimized conformational changes from light-induced electron transfer to the release of the repaired DNA. Interestingly, the (6-4) photoproduct is not repaired by the reverse mutation of CPD PHR, and eight additional mutations (total of 11 mutations) introduced into CPD PHR are not sufficient. The observed asymmetric functional conversion is interpreted in terms of a more complex repair mechanism for (6-4) repair, which was supported by quantum chemical/molecular mechanical calculation. These results suggest that CPD PHR may represent an evolutionary origin for photolyase family proteins.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Hisham M Dokainish
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Tomoko Ishikawa
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University , Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University , Osaka 565-0871, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2639
|
Ekhteiari Salmas R, Unlu A, Bektaş M, Yurtsever M, Mestanoglu M, Durdagi S. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. J Biomol Struct Dyn 2016; 35:1899-1915. [DOI: 10.1080/07391102.2016.1199328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ayhan Unlu
- Faculty of Medicine, Department of Biophysics, Trakya University, Edirne, Turkey
| | - Muhammet Bektaş
- Istanbul Faculty of Medicine, Department of Biophysics, Istanbul University, Istanbul, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
2640
|
Schneider M, Rosam M, Glaser M, Patronov A, Shah H, Back KC, Daake MA, Buchner J, Antes I. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP. Proteins 2016; 84:1390-407. [PMID: 27287023 DOI: 10.1002/prot.25084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 11/08/2022]
Abstract
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Markus Schneider
- Department Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Mathias Rosam
- Department Chemie, Technische Universität München, Garching, Germany
| | - Manuel Glaser
- Department Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Atanas Patronov
- Department Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany.,Center for Integrated Protein Science, Departments of Bioscience, Technische Universität München, Munich, Germany
| | - Harpreet Shah
- Department Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | | | | | - Johannes Buchner
- Department Chemie, Technische Universität München, Garching, Germany.,Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Munich, Germany
| | - Iris Antes
- Department Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany. .,Center for Integrated Protein Science, Departments of Bioscience, Technische Universität München, Munich, Germany.
| |
Collapse
|
2641
|
Khavani M, Izadyar M, Housaindokht MR. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach. Phys Chem Chem Phys 2016; 17:25536-49. [PMID: 26366633 DOI: 10.1039/c5cp03136b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups.
Collapse
Affiliation(s)
- Mohammad Khavani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
2642
|
Corrada D, Soshilov AA, Denison MS, Bonati L. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation. PLoS Comput Biol 2016; 12:e1004981. [PMID: 27295348 PMCID: PMC4905635 DOI: 10.1371/journal.pcbi.1004981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 05/12/2016] [Indexed: 01/15/2023] Open
Abstract
The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR. Computational modeling combined with experimental validation may give insight into structural and functional properties of protein systems. The basic Helix-Loop-Helix PER-ARNT-SIM (bHLH-PAS) proteins show conserved functional domains despite the broad range of functions exerted by the different systems. Within this protein family, the Aryl hydrocarbon Receptor (AhR) is known to mediate the toxic effects of a number of environmental contaminants, including dioxins and dioxin-like chemicals, and it also exerts other biochemical and physiological effects. Despite the absence of experimentally determined structures, theoretical models of the AhR PAS domains developed on the basis of homologous systems have allowed understanding of some aspects of the molecular mechanisms underlying its function. In this work we present alternative structural models of the transcriptionally active complex of AhR with the AhR Nuclear Translocator (ARNT) protein. Computational characterization of the modeled protein-protein interaction interfaces guided the design of mutagenesis experiments, and evaluation of the DNA binding ability of the resulting AhR:ARNT dimer mutants allowed validation of the models and selection of the most reliable one. These findings open new research directions for understanding the molecular mechanisms underlying the functional activity of the AhR.
Collapse
Affiliation(s)
- Dario Corrada
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Anatoly A. Soshilov
- Department of Environmental Toxicology, University of California, Davis, Davis, California, United States of America
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, Davis, California, United States of America
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- * E-mail:
| |
Collapse
|
2643
|
Yang J, Liu H, Liu X, Gu C, Luo R, Chen HF. Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis. J Chem Inf Model 2016; 56:1184-1192. [PMID: 27227511 DOI: 10.1021/acs.jcim.6b00115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyruvate kinase M2 (PKM2) plays a key role in tumor metabolism and regulates the rate-limiting final step of glycolysis. In tumor cells, there are two allosteric effectors for PKM2: fructose-1,6-bisphosphate (FBP) and serine. However, the relationship between FBP and serine for allosteric regulation of PKM2 is unknown. Here we constructed residue/residue fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in bound PKM2 is distinctly different from that in the free state, FBP/PKM2, or Ser/PKM2. The community network analysis indicates that the information can freely transfer from the allosteric sites of FBP and serine to the substrate site in bound PKM2, while there exists a bottleneck for information transfer in the network of the free state. Furthermore, the binding free energy between the substrate and PKM2 for bound PKM2 is significantly lower than either of FBP/PKM2 or Ser/PKM2. Thus, a hypothesis of "synergistic allosteric mechanism" is proposed for the allosteric regulation of FBP and serine. This hypothesis was further confirmed by the perturbational and mutational analyses of community networks and binding free energies. Finally, two possible synergistic allosteric pathways of FBP-K433-T459-R461-A109-V71-R73-MG2-OXL and Ser-I47-C49-R73-MG2-OXL were identified based on the shortest path algorithm and were confirmed by the network perturbation analysis. Interestingly, no similar pathways could be found in the free state. The process targeting on the allosteric pathways can better regulate the glycolysis of PKM2 and significantly inhibit the progression of tumor.
Collapse
Affiliation(s)
- Jingxu Yang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chengbo Gu
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
2644
|
Tanaka W, Shoji M, Tomoike F, Ujiie Y, Hanaoka K, Harada R, Kayanuma M, Kamiya K, Ishida T, Masui R, Kuramitsu S, Shigeta Y. Molecular mechanisms of substrate specificities of uridinecytidine kinase. Biophys Physicobiol 2016; 13:77-84. [PMID: 27924260 PMCID: PMC5042166 DOI: 10.2142/biophysico.13.0_77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/10/2016] [Indexed: 12/01/2022] Open
Abstract
A uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine (Urd) and cytidine (Cyd) and plays a significant role in the pyrimidine-nucleotide salvage pathway. Unlike ordinary ones, UCK from Thermus thermophilus HB8 (ttCK) loses catalytic activity on Urd due to lack of a substrate binding ability and possesses an unusual amino acid, i.e. tyrosine 93 (Tyr93) at the binding site, whereas histidine (His) is located in the other UCKs. Mutagenesis experiments revealed that a replacement of Tyr93 by His or glutamine (Gln) recovered catalytic activity on Urd. However, the detailed molecular mechanism of the substrate specificity has remained unclear. In the present study, we performed molecular dynamics simulations on the wild-type ttCK, two mutant ttCKs, and a human UCK bound to Cyd and three protonation forms of Urd to elucidate their substrate specificity. We found three residues, Tyr88, Tyr/His/Gln93 and Arg152 in ttCKs, are important for recognizing the substrates. Arg152 contributes to induce a closed form of the binding site to retain the substrate, and the N3 atom of Urd needed to be deprotonated. Although Tyr88 tightly bound Cyd, it did not sufficiently bind Urd because of lack of the hydrogen bonding. His/Gln93 complemented the interaction of Tyr88 and raised the affinity of ttCK to Urd. The crucial distinction between Tyr and His or Gln was a role in the hydrogen-bonding network. Therefore, the ability to form both hydrogen-bonding donor and accepter is required to bind both Urd and Cyd.
Collapse
Affiliation(s)
- Wataru Tanaka
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mitsuo Shoji
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Fumiaki Tomoike
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuzuru Ujiie
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kyohei Hanaoka
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryuhei Harada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Megumi Kayanuma
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsumasa Kamiya
- Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
| | - Toyokazu Ishida
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Ryoji Masui
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Seiki Kuramitsu
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2645
|
Kim S, Natesan S, Cornilescu G, Carlson S, Tonelli M, McClurg UL, Binda O, Robson CN, Markley JL, Balaz S, Glass KC. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 2016; 291:18326-41. [PMID: 27281824 PMCID: PMC5000080 DOI: 10.1074/jbc.m115.690651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.
Collapse
Affiliation(s)
- Sophia Kim
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Senthil Natesan
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Samuel Carlson
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Urszula L McClurg
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Olivier Binda
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Stefan Balaz
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Karen C Glass
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446,
| |
Collapse
|
2646
|
Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, Liu W. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:39-46. [PMID: 26994367 DOI: 10.1016/j.aquatox.2016.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yuanxiang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chunmian Lin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2647
|
Nusrath Unissa A, Hassan S, Indira Kumari V, Revathy R, Hanna LE. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis. J Mol Graph Model 2016; 67:20-32. [DOI: 10.1016/j.jmgm.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
|
2648
|
Discovery of selective inhibitors of tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding cleft. Bioorg Med Chem Lett 2016; 26:3232-3236. [PMID: 27262595 DOI: 10.1016/j.bmcl.2016.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) processes protein/DNA adducts resulting from abortive DNA topoisomerase II (Top2) activity. TDP2 inhibition could provide synergism with the Top2 poison class of chemotherapeutics. By virtual screening of the NCI diversity small molecule database, we identified selective TDP2 inhibitors and experimentally verified their selective inhibitory activity. Three inhibitors exhibited low-micromolar IC50 values. Molecular dynamics simulations revealed a common binding mode for these inhibitors, involving association to the TDP2 DNA-binding cleft. MM-PBSA per-residue energy decomposition identified important interactions of the compounds with specific TDP2 residues. These interactions could provide new avenues for synthetic optimization of these scaffolds.
Collapse
|
2649
|
Rath SL, Senapati S. Mechanism of p27 Unfolding for CDK2 Reactivation. Sci Rep 2016; 6:26450. [PMID: 27211815 PMCID: PMC4876385 DOI: 10.1038/srep26450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022] Open
Abstract
Cell-cycle regulatory protein, CDK2 is active when bound to its complementary partner protein, CyclinA or E. Recent discovery of the Kip/Cip family of proteins has indicated that the activity of CDK2 is also regulated by a member protein, p27. Although, the mechanism of CDK2 inhibition by p27 binding is known from crystal structure, little is known about the mechanism of CDK2 reactivation. Here, we execute classical and accelerated molecular dynamics simulations of unphosphorylated- and phosphorylated-p27 bound CDK2/CyclinA to unravel the CDK2 reactivation mechanism at molecular-to-atomic detail. Results suggest that the phosphorylation of p27 Y88 residue (pY88-p27) first disrupts the p27/CDK2 hybrid β-sheet and subsequently ejects the p27 310 helix from CDK2 catalytic cleft. The unbinding of p27 from CDK2/CyclinA complex, thus, follows a two-step unfolding mechanism, where the 310 helix ejection constitutes the rate-limiting step. Interestingly, the unfolding of p27 leaves CDK2/CyclinA in an active state, where the prerequisite CDK2-CyclinA interfacial contacts were regained and ATP achieved its native position for smooth transfer of phosphate. Our findings match very well with NMR chemical shift data that indicated the flip-out of p27 310 helix from CDK2 pocket and kinetic experiments that exhibited significant kinase activity of CDK2 when saturated with pY88-p27.
Collapse
Affiliation(s)
- Soumya Lipsa Rath
- Computational Biophysics Group, Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sanjib Senapati
- Computational Biophysics Group, Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
2650
|
Kuban-Jankowska A, Sahu KK, Niedzialkowski P, Gorska M, Tuszynski JA, Ossowski T, Wozniak M. Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH: virulence factor of Yersinia pestis. Oncotarget 2016; 6:18364-73. [PMID: 26286963 PMCID: PMC4621896 DOI: 10.18632/oncotarget.4625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/09/2015] [Indexed: 01/14/2023] Open
Abstract
YopH is a bacterial protein tyrosine phosphatase, which is essential for the viability and pathogenic virulence of the plague-causing Yersinia sp. bacteria. Inactivation of YopH activity would lead to the loss of bacterial pathogenicity. We have studied the inhibitory properties of aurintricarboxylic acid (ATA) against YopH phosphatase and found that at nanomolar concentrations ATA reversibly decreases the activity of YopH. Computational docking studies indicated that in all binding poses ATA binds in the YopH active site. Molecular dynamics simulations showed that in the predicted binding pose, ATA binds to the essential Cys403 and Arg409 residues in the active site and has a stronger binding affinity than the natural substrate (pTyr). The cyclic voltammetry experiments suggest that ATA reacts remarkably strongly with molecular oxygen. Additionally, the electrochemical reduction of ATA in the presence of a negative potential from −2.0 to 2.5 V generates a current signal, which is observed for hydrogen peroxide. Here we showed that ATA indicates a unique mechanism of YopH inactivation due to a redox process. We proposed that the potent inhibitory properties of ATA are a result of its strong binding in the YopH active site and in situ generation of hydrogen peroxide near catalytic cysteine residue.
Collapse
Affiliation(s)
| | - Kamlesh K Sahu
- Department of Physics, University of Alberta, Edmonton, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Pawel Niedzialkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|