2601
|
Wan S, Knapp B, Wright DW, Deane CM, Coveney PV. Rapid, Precise, and Reproducible Prediction of Peptide-MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. J Chem Theory Comput 2015; 11:3346-56. [PMID: 26575768 DOI: 10.1021/acs.jctc.5b00179] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The presentation of potentially pathogenic peptides by major histocompatibility complex (MHC) molecules is one of the most important processes in adaptive immune defense. Prediction of peptide-MHC (pMHC) binding affinities is therefore a principal objective of theoretical immunology. Machine learning techniques achieve good results if substantial experimental training data are available. Approaches based on structural information become necessary if sufficiently similar training data are unavailable for a specific MHC allele, although they have often been deemed to lack accuracy. In this study, we use a free energy method to rank the binding affinities of 12 diverse peptides bound by a class I MHC molecule HLA-A*02:01. The method is based on enhanced sampling of molecular dynamics calculations in combination with a continuum solvent approximation and includes estimates of the configurational entropy based on either a one or a three trajectory protocol. It produces precise and reproducible free energy estimates which correlate well with experimental measurements. If the results are combined with an amino acid hydrophobicity scale, then an extremely good ranking of peptide binding affinities emerges. Our approach is rapid, robust, and applicable to a wide range of ligand-receptor interactions without further adjustment.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| | - Bernhard Knapp
- Protein Informatics Group, Department of Statistics, University of Oxford , Oxford, OX1 3TG, United Kingdom
| | - David W Wright
- Institute of Structural and Molecular Biology, University College London , London WC1E 6BT, United Kingdom
| | - Charlotte M Deane
- Protein Informatics Group, Department of Statistics, University of Oxford , Oxford, OX1 3TG, United Kingdom
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| |
Collapse
|
2602
|
Alred EJ, Scheele EG, Berhanu WM, Hansmann UHE. Stability of Iowa mutant and wild type Aβ-peptide aggregates. J Chem Phys 2015; 141:175101. [PMID: 25381547 DOI: 10.1063/1.4900892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Erik J Alred
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Emily G Scheele
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Workalemahu M Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
2603
|
Phanich J, Rungrotmongkol T, Sindhikara D, Phongphanphanee S, Yoshida N, Hirata F, Kungwan N, Hannongbua S. A 3D-RISM/RISM study of the oseltamivir binding efficiency with the wild-type and resistance-associated mutant forms of the viral influenza B neuraminidase. Protein Sci 2015; 25:147-58. [PMID: 26044768 DOI: 10.1002/pro.2718] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/09/2022]
Abstract
The binding affinity of oseltamivir to the influenza B neuraminidase and to its variants with three single substitutions, E119G, R152K, and D198N, is investigated by the MM/3D-RISM method. The binding affinity or the binding free energy of ligand to receptor was found to be determined by a subtle balance of two major contributions that largely cancel out each other: the ligand-receptor interactions and the dehydration free energy. The theoretical results of the binding affinity of the drug to the mutants reproduced the observed trend in the resistivity, measured by IC50 ; the high-level resistance of E119G and R152K, and the low-level resistance of D198N. For E119G and R152K, reduction of the direct drug-target interaction, especially at the mutated residue, is the main source of high-level oseltamivir resistance. This phenomenon, however, is not found in the D198N strain, which is located in the framework of the active-site.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Department of Chemistry, Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daniel Sindhikara
- Schrödinger, Inc, 120 West 45th Street, 17th Floor, New York, New York, 10036
| | - Saree Phongphanphanee
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Fumio Hirata
- College of Life Sciences, Ritsumeikan University, and Molecular Design Frontier Co. Ltd, Kusatsu, 525-8577, Japan
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Department of Chemistry, Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2604
|
Poongavanam V, Olsen JMH, Kongsted J. Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. Integr Biol (Camb) 2015; 6:1010-22. [PMID: 25119978 DOI: 10.1039/c4ib00111g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate prediction of binding free energies associated with small molecules binding to a receptor is a major challenge in drug design processes. To achieve this goal many computational methods have been developed ranging from highly efficient empirical based docking schemes to high accuracy methods based on e.g. free energy calculations. In this study, binding affinity predictions for a set of HIV-1 RNase H inhibitors have been performed using MM-PB(GB)/SA methods. The current study describes in detail how the choice of initial ligand structures, e.g. protonation states, impacts the predicted ranking of the compounds. In addition we study the structural dynamics of the RNase H complexes using molecular dynamics. The role of each residue contribution to the overall binding free energy is also explored and used to explain the variations in the inhibition potency. The results reported here can be useful for design of small molecules against RNase H activity in the development of effective drugs for HIV treatment.
Collapse
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
2605
|
Zhao LN, Zheng J, Chew LY, Mu Y. An Investigation on the Fundamental Interaction between Abeta Peptides and the AT-Rich DNA. J Phys Chem B 2015; 119:8247-59. [PMID: 26086541 DOI: 10.1021/acs.jpcb.5b00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA damage is ubiquitous in all mammalian cells with the occurrence of more than 60,000 times per day per cell. In particular, DNA damage in neurons is found to accumulate with age and has been suggested to interfere with the synthesis of functional proteins. Moreover, recent studies have found through transgenic mice that human amyloid precursor protein causes an increase in DNA double-strand breaks (DSBs) with the effect of a prolongation in DNA repair. It is surmised that amyloid β (Aβ) exacerbates the DNA DSBs in neurons, possibly engendering neuronal dysfunction as a result. However, a good understanding on the holistic interaction mechanisms and the manner in which Aβ intertwines with DNA damage is still in its infancy. In our study, we found that DNA with an AT-rich sequence has a very low binding affinity toward Aβ by means of molecular dynamics simulation. While we have pursued a particular sequence of DNA in this study, other DNA sequences are expected to affect the interaction and binding affinity between DNA and Aβ, and will be pursued in our further research. Nonetheless, we have uncovered favorable interaction between the positively charged side chain of Aβ and the two ends of DNA. The latest experiment reveals that many of the double-stranded breaks in neurons can be fixed via DNA repair mechanisms but not in the case that Aβs are present. It is found that the increased numbers of DSBs prevail in active neurons. Here, on the basis of the favorable interaction between Aβ and the two ends of DNA, we propose the possibility that Aβ prevents DNA repair via binding directly to the break ends of the DNA, which further exacerbates DNA damage. Moreover, we have found that the base pair oxygen of the DNA has a greater preference to form hydrogen bonds than the backbone oxygen with Aβ at the two ends. Thus, we postulate that Aβ could serve to prevent the repair of AT-rich DNA, and it is unlikely to cause its breakage or affect its binding toward histone. Another important observation from our study is that AT-rich DNA has very little or no influence on Aβ oligomerization. Finally, even though we do not observe any dramatic DNA conformational change in the presence of Aβ, we do observe an increase in diversity of the DNA structural parameters such as groove width, local base step, and torsional angles in lieu of Aβ interactions.
Collapse
Affiliation(s)
- Li Na Zhao
- †School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore.,‡School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,§Bioinformatics Institute, 30 Biopolis Street, Singapore 138671
| | - Jie Zheng
- ‡School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,∥Genome Institute of Singapore, A* STAR, 60 Biopolis Street, Singapore 138672
| | - Lock Yue Chew
- †School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore.,⊥Complexity Institute, Nanyang Technological University, 18 Nanyang Drive, Singapore
| | - Yuguang Mu
- #School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| |
Collapse
|
2606
|
Li N, Ainsworth RI, Ding B, Hou T, Wang W. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease. J Chem Inf Model 2015; 55:1400-12. [DOI: 10.1021/acs.jcim.5b00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nan Li
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Richard I. Ainsworth
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Bo Ding
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Tingjun Hou
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| |
Collapse
|
2607
|
Juvonen RO, Kuusisto M, Fohrgrup C, Pitkänen MH, Nevalainen TJ, Auriola S, Raunio H, Pasanen M, Pentikäinen OT. Inhibitory effects and oxidation of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin via human CYP2A6 and its mouse and pig orthologous enzymes. Xenobiotica 2015; 46:14-24. [PMID: 26068522 DOI: 10.3109/00498254.2015.1048327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods. 2. In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19. 3. 6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64-0.91 µM; Vmax: 0.81-0.89 min(-1)) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10 µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species. 4. Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5. 5. These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19.
Collapse
Affiliation(s)
- Risto O Juvonen
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Mira Kuusisto
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and.,b Department of Biological and Environmental Science & Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Carolin Fohrgrup
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Mari H Pitkänen
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Tapio J Nevalainen
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Seppo Auriola
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Hannu Raunio
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Markku Pasanen
- a Faculty of Health Sciences , School of Pharmacy, University of Eastern Finland , Kuopio , Finland and
| | - Olli T Pentikäinen
- b Department of Biological and Environmental Science & Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| |
Collapse
|
2608
|
Ge H, Liu J, Zhao W, Wang Y, He Q, Wu R, Li D, Xu J. Mechanistic studies for tri-targeted inhibition of enzymes involved in cholesterol biosynthesis by green tea polyphenols. Org Biomol Chem 2015; 12:4941-51. [PMID: 24879560 DOI: 10.1039/c4ob00589a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we found that three enzymes, MVK, MDD and FPPS, in the mevalonate pathway (MVP) of cholesterol biosynthesis, can be simultaneously inhibited by two green tea polyphenols ((-)-epicatechin-3-gallate, ECG; (-)-epigallocatechin-3-gallate, EGCG). Molecular dynamics simulations and pharmacophore studies were carried out to elucidate the tri-targeted inhibition mechanisms. Our results indicate that similar triangular binding pockets exist in all three enzymes, which is essential for their binding with polyphenols. Two distinct binding poses for ECG and EGCG were observed in our MD simulations. These results shed light on the potential for further selective and multi-targeted inhibitor design for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Hu Ge
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
2609
|
Bueren-Calabuig JA, Michel J. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2. PLoS Comput Biol 2015; 11:e1004282. [PMID: 26046940 PMCID: PMC4457491 DOI: 10.1371/journal.pcbi.1004282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/13/2015] [Indexed: 01/16/2023] Open
Abstract
Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2. Life as we know it depends on interactions between proteins. There is substantial evidence that many interactions between proteins involve very flexible protein regions. These disordered regions may undergo disorder/order transitions upon forming an interaction with another protein. Many successful approaches to medicinal chemistry are based on mimicking the interactions of biological molecules with man-made small molecules. However how drug-like small-molecules may modulate protein disorder is currently poorly understood, largely because it is difficult to measure in details this type of interaction with experimental methods. Here we have used computer simulations to resolve with great details the process by which different small-molecules modulate the flexibility of a disordered region of the protein MDM2. This protein is overexpressed in many cancers and small-molecules that recognize MDM2 have been developed over the last decade as possible novel anti-cancer agents. We show that the flexible MDM2 “lid” region adopts different conformational states in the presence of different small-molecules. Our results suggest why some classes of small-molecules form favorable interactions with the lid region, whereas others do not. These findings may prove crucial to develop new and more effective MDM2 inhibitors, and more generally to help drug designers target disordered proteins regions with small-molecules.
Collapse
Affiliation(s)
| | - Julien Michel
- EaStCHEM School of Chemistry, the University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
2610
|
Ayoub AT, Klobukowski M, Tuszynski JA. Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly. PLoS Comput Biol 2015; 11:e1004313. [PMID: 26030285 PMCID: PMC4452272 DOI: 10.1371/journal.pcbi.1004313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
Microtubules are long filamentous hollow cylinders whose surfaces form lattice structures of αβ-tubulin heterodimers. They perform multiple physiological roles in eukaryotic cells and are targets for therapeutic interventions. In our study, we carried out all-atom molecular dynamics simulations for arbitrarily long microtubules that have either GDP or GTP molecules in the E-site of β-tubulin. A detailed energy balance of the MM/GBSA inter-dimer interaction energy per residue contributing to the overall lateral and longitudinal structural stability was performed. The obtained results identified the key residues and tubulin domains according to their energetic contributions. They also identified the molecular forces that drive microtubule disassembly. At the tip of the plus end of the microtubule, the uneven distribution of longitudinal interaction energies within a protofilament generates a torque that bends tubulin outwardly with respect to the cylinder's axis causing disassembly. In the presence of GTP, this torque is opposed by lateral interactions that prevent outward curling, thus stabilizing the whole microtubule. Once GTP hydrolysis reaches the tip of the microtubule (lateral cap), lateral interactions become much weaker, allowing tubulin dimers to bend outwards, causing disassembly. The role of magnesium in the process of outward curling has also been demonstrated. This study also showed that the microtubule seam is the most energetically labile inter-dimer interface and could serve as a trigger point for disassembly. Based on a detailed balance of the energetic contributions per amino acid residue in the microtubule, numerous other analyses could be performed to give additional insights into the properties of microtubule dynamic instability.
Collapse
Affiliation(s)
- Ahmed T. Ayoub
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jack A. Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2611
|
Hernández Alvarez L, Naranjo Feliciano D, Hernández González JE, de Oliveira Soares R, Barreto Gomes DE, Pascutti PG. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches. PLoS Negl Trop Dis 2015; 9:e0003759. [PMID: 25978322 PMCID: PMC4433193 DOI: 10.1371/journal.pntd.0003759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Methodology/Principal Findings Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. Conclusions/Significance The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds as FhCL3 inhibitors. Overall, these results will foster the future rational design of new inhibitors against FhCL3, as well as other F. hepatica cathepsins. Fascioliosis is considered an emerging disease in humans, causing important losses in global agriculture through the infection of livestock animals. The outcome of resistant parasites has increased the search for new drugs which may contribute to disease control. In recent decades, Fasciola cathepsins (FhCs) have been defined as the principal virulence factors of this parasite. Despite being in the same protein family, they have different specificities and, thus, distinct roles throughout the fluke life cycle. Differences in specificity have been attributed to a few variations in the sequence of key FhCs subsites. Currently, the structure-based drug design of inhibitors against Fasciola cathepsin Ls (FhCLs) with unknown structures is possible due to the availability of the three-dimensional structure of FhCL1. Our detailed structural analysis of the major infective juvenile enzyme (FhCL3) identifies the molecular determinants for protein binding. Also, novel potential inhibitors against FhCL3 are proposed, which might reduce host invasion and penetration processes. These compounds are predicted to interact with the binding site of the enzyme, therefore they could prevent substrate processing by competitive inhibition. The structure-based drug design strategy described here will be useful for the development of new potent and selective inhibitors against other FhCs.
Collapse
Affiliation(s)
- Lilian Hernández Alvarez
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Dany Naranjo Feliciano
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | | | - Rosemberg de Oliveira Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Diego Enry Barreto Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
2612
|
Galindo-Murillo R, García-Ramos JC, Ruiz-Azuara L, Cheatham TE, Cortés-Guzmán F. Intercalation processes of copper complexes in DNA. Nucleic Acids Res 2015; 43:5364-76. [PMID: 25958394 PMCID: PMC4477671 DOI: 10.1093/nar/gkv467] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022] Open
Abstract
The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, University of Utah, Salt Lake City, UT 84112, USA
| | - Juan Carlos García-Ramos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Avenida Universidad 3000, 04510 México City, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Avenida Universidad 3000, 04510 México City, Mexico
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, University of Utah, Salt Lake City, UT 84112, USA
| | - Fernando Cortés-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México, DF 04510, Mexico Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, carretera Toluca-Atlacomulco km 14.5, Toluca, México 50200, Mexico
| |
Collapse
|
2613
|
Gentile F, Deriu MA, Licandro G, Prunotto A, Danani A, Tuszynski JA. Structure Based Modeling of Small Molecules Binding to the TLR7 by Atomistic Level Simulations. Molecules 2015; 20:8316-40. [PMID: 26007168 PMCID: PMC6272798 DOI: 10.3390/molecules20058316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/17/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptors (TLR) are a large family of proteins involved in the immune system response. Both the activation and the inhibition of these receptors can have positive effects on several diseases, including viral pathologies and cancer, therefore prompting the development of new compounds. In order to provide new indications for the design of Toll-Like Receptor 7 (TLR7)-targeting drugs, the mechanism of interaction between the TLR7 and two important classes of agonists (imidazoquinoline and adenine derivatives) was investigated through docking and Molecular Dynamics simulations. To perform the computational analysis, a new model for the dimeric form of the receptors was necessary and therefore created. Qualitative and quantitative differences between agonists and inactive compounds were determined. The in silico results were compared with previous experimental observations and employed to define the ligand binding mechanism of TLR7.
Collapse
Affiliation(s)
- Francesco Gentile
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Marco A Deriu
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno CH-6928, Switzerland.
| | - Ginevra Licandro
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno CH-6928, Switzerland.
| | - Alessio Prunotto
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno CH-6928, Switzerland.
| | - Andrea Danani
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno CH-6928, Switzerland.
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
2614
|
Cui F, Yang K, Li Y. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation. PLoS One 2015; 10:e0125848. [PMID: 25938485 PMCID: PMC4418572 DOI: 10.1371/journal.pone.0125848] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/25/2015] [Indexed: 01/31/2023] Open
Abstract
To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas.
Collapse
Affiliation(s)
- Fengchao Cui
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
| | - Kecheng Yang
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
- * E-mail:
| |
Collapse
|
2615
|
Screening of novel inhibitors targeting lactate dehydrogenase A via four molecular docking strategies and dynamics simulations. J Mol Model 2015; 21:133. [PMID: 25934158 DOI: 10.1007/s00894-015-2675-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/01/2015] [Indexed: 01/14/2023]
Abstract
Lactate dehydrogenase A (LDHA) is a metabolic enzyme which catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway, thus playing key roles in aerobic glycolysis. The inhibition of LDHA by small molecules has become an attractive strategy for anticancer therapy in recent years. However, very few LDHA inhibitors have been reported, even though a great deal of effort has directed into identifying LDHA inhibitors using structure-based approaches. Therefore, high-throughput and high-accuracy screening approaches are still urgently needed in order to target LDHA effectively. In the present work, after establishing that our docking strategies performed well using test datasets, we screened 32791 Specs products for their docking scores with the substrate-binding pocket and, separately, the cofactor-binding pocket of LDHA. We subsequently identified 76 hits (i.e., ligands that show low docking scores) for the cofactor-binding pocket and 27 hits for the substrate-binding pocket. Two representative compounds, ZINC20036549 and ZINC19369718, were then chosen for further MD simulation analysis, and we found that these compounds maintained their inhibitory activity during the MD simulations. Meanwhile, we found that ZINC19369718 interacts with a novel binding site close to the active site, and that this interaction may inhibit the catalytic activity of LDHA. Together, these results offer not only a new paradigm for identifying Specs drug-like products for novel therapeutic use but they also provide further opportunity to adopt LDHA inhibition as a strategy for cancer therapy.
Collapse
|
2616
|
Abstract
INTRODUCTION The molecular mechanics energies combined with the Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor-ligand complex and are therefore intermediate in both accuracy and computational effort between empirical scoring and strict alchemical perturbation methods. They have been applied to a large number of systems with varying success. AREAS COVERED The authors review the use of MM/PBSA and MM/GBSA methods to calculate ligand-binding affinities, with an emphasis on calibration, testing and validation, as well as attempts to improve the methods, rather than on specific applications. EXPERT OPINION MM/PBSA and MM/GBSA are attractive approaches owing to their modular nature and that they do not require calculations on a training set. They have been used successfully to reproduce and rationalize experimental findings and to improve the results of virtual screening and docking. However, they contain several crude and questionable approximations, for example, the lack of conformational entropy and information about the number and free energy of water molecules in the binding site. Moreover, there are many variants of the method and their performance varies strongly with the tested system. Likewise, most attempts to ameliorate the methods with more accurate approaches, for example, quantum-mechanical calculations, polarizable force fields or improved solvation have deteriorated the results.
Collapse
Affiliation(s)
- Samuel Genheden
- University of Southampton, School of Chemistry, Highfield, SO17 1BJ, Southampton, UK
| | - Ulf Ryde
- Lund University, Chemical Centre, Department of Theoretical Chemistry, P. O. Box 124, SE-221 00 Lund, Sweden+46 46 2224502; +46 46 2228648;
| |
Collapse
|
2617
|
Singh A, Kett WC, Severin IC, Agyekum I, Duan J, Amster IJ, Proudfoot AEI, Coombe DR, Woods RJ. The Interaction of Heparin Tetrasaccharides with Chemokine CCL5 Is Modulated by Sulfation Pattern and pH. J Biol Chem 2015; 290:15421-15436. [PMID: 25907556 DOI: 10.1074/jbc.m115.655845] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 12/28/2022] Open
Abstract
Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding (44)RKNR(47) "BBXB" motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both (44)RKNR(47) motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions.
Collapse
Affiliation(s)
- Arunima Singh
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602
| | - Warren C Kett
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia
| | - India C Severin
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Isaac Agyekum
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Jiana Duan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Amanda E I Proudfoot
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Deirdre R Coombe
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia.
| | - Robert J Woods
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
2618
|
Yuan Y, Huang X, Midde NM, Quizon PM, Sun WL, Zhu J, Zhan CG. Molecular mechanism of HIV-1 Tat interacting with human dopamine transporter. ACS Chem Neurosci 2015; 6:658-665. [PMID: 25695767 DOI: 10.1021/acschemneuro.5b00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nearly 70% of HIV-1-infected individuals suffer from HIV-associated neurocognitive disorders (HAND). HIV-1 transactivator of transcription (Tat) protein is known to synergize with abused drugs and exacerbate the progression of central nervous system (CNS) pathology. Cumulative evidence suggest that the HIV-1 Tat protein exerts the neurotoxicity through interaction with human dopamine transporter (hDAT) in the CNS. Through computational modeling and molecular dynamics (MD) simulations, we develop a three-dimensional (3D) structural model for HIV-1 Tat binding with hDAT. The model provides novel mechanistic insights concerning how HIV-1 Tat interacts with hDAT and inhibits dopamine uptake by hDAT. In particular, according to the computational modeling, Tat binds most favorably with the outward-open state of hDAT. Residues Y88, K92, and Y470 of hDAT are predicted to be key residues involved in the interaction between hDAT and Tat. The roles of these hDAT residues in the interaction with Tat are validated by experimental tests through site-directed mutagensis and dopamine uptake assays. The agreement between the computational and experimental data suggests that the computationally predicted hDAT-Tat binding mode and mechanistic insights are reasonable and provide a new starting point to design further pharmacological studies on the molecular mechanism of HIV-1-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Narasimha M. Midde
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Pamela M. Quizon
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Wei-Lun Sun
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jun Zhu
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and ‡Department of
Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Drug Discovery and Biomedical Sciences, South Carolina
College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2619
|
Kathuria P, Sharma P, Abendong MN, Wetmore SD. Conformational Preferences of DNA following Damage by Aristolochic Acids: Structural and Energetic Insights into the Different Mutagenic Potential of the ALI and ALII-N6-dA Adducts. Biochemistry 2015; 54:2414-28. [PMID: 25761009 DOI: 10.1021/bi501484m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Minette N. Abendong
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
2620
|
Maestre-Reyna M, Liu WC, Jeng WY, Lee CC, Hsu CA, Wen TN, Wang AHJ, Shyur LF. Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS One 2015; 10:e0120601. [PMID: 25849464 PMCID: PMC4388643 DOI: 10.1371/journal.pone.0120601] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/24/2015] [Indexed: 12/02/2022] Open
Abstract
Laccases are multi-copper oxidases that catalyze the oxidation of various organic and inorganic compounds by reducing O2 to water. Here we report the crystal structure at 1.8 Å resolution of a native laccase (designated nLcc4) isolated from a white-rot fungus Lentinus sp. nLcc4 is composed of three cupredoxin-like domains D1-D3 each folded into a Greek key β-barrel topology. T1 and T2/T3 copper binding sites and three N-glycosylated sites at Asn75, Asn238, and Asn458 were elucidated. Initial rate kinetic analysis revealed that the kcat, Km, and kcat/Km of nLcc4 with substrate ABTS were 3,382 s-1, 65.0 ± 6.5 μM, and 52 s-1μM-1, respectively; and the values with lignosulfonic acid determined using isothermal titration calorimetry were 0.234 s-1, 56.7 ± 3.2 μM, and 0.004 s-1μM-1, respectively. Endo H-deglycosylated nLcc4 (dLcc4), with only one GlcNAc residue remaining at each of the three N-glycosylation sites in the enzyme, exhibited similar kinetic efficiency and thermal stability to that of nLcc4. The isolated Lcc4 gene contains an open reading frame of 1563 bp with a deduced polypeptide of 521 amino acid residues including a predicted signaling peptide of 21 residues at the N-terminus. Recombinant wild-type Lcc4 and mutant enzymes N75D, N238D and N458D were expressed in Pichia pastoris cells to evaluate the effect on enzyme activity by single glycosylation site deficiency. The mutant enzymes secreted in the cultural media of P. pastoris cells were observed to maintain only 4-50% of the activity of the wild-type laccase. Molecular dynamics simulations analyses of various states of (de-)glycosylation in nLcc support the kinetic results and suggest that the local H-bond networks between the domain connecting loop D2-D3 and the glycan moieties play a crucial role in the laccase activity. This study provides new insights into the role of glycosylation in the structure and function of a Basidiomycete fungal laccase.
Collapse
Affiliation(s)
| | - Wei-Chun Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Yih Jeng
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Chih-An Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tuan-Nan Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program for Translational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2621
|
Viricel C, Ahmed M, Barakat K. Human PD-1 binds differently to its human ligands: A comprehensive modeling study. J Mol Graph Model 2015; 57:131-42. [DOI: 10.1016/j.jmgm.2015.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
2622
|
Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 2015; 28:581-604. [PMID: 25808539 DOI: 10.1002/jmr.2471] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Molecular docking is a computational method for predicting the placement of ligands in the binding sites of their receptor(s). In this review, we discuss the methodological developments that occurred in the docking field in 2012 and 2013, with a particular focus on the more difficult aspects of this computational discipline. The main challenges and therefore focal points for developments in docking, covered in this review, are receptor flexibility, solvation, scoring, and virtual screening. We specifically deal with such aspects of molecular docking and its applications as selection criteria for constructing receptor ensembles, target dependence of scoring functions, integration of higher-level theory into scoring, implicit and explicit handling of solvation in the binding process, and comparison and evaluation of docking and scoring methods.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre and Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia.,Department of Surgery Austin Health, University of Melbourne, Melbourne, Victoria, 3084, Australia.,Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia.,School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
2623
|
Parasuraman P, Murugan V, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Theoretical investigation on the glycan-binding specificity ofAgrocybe cylindraceagalectin using molecular modeling and molecular dynamics simulation studies. J Mol Recognit 2015; 28:528-38. [DOI: 10.1002/jmr.2468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Ponnusamy Parasuraman
- Department of Physics; Manonmaniam Sundaranar University; Tirunelveli Tamil Nadu 627012 India
| | - Veeramani Murugan
- Department of Physics; Manonmaniam Sundaranar University; Tirunelveli Tamil Nadu 627012 India
| | | | - M Michael Gromiha
- Department of Biotechnology; Indian Institute of Technology Madras; Chennai Tamil Nadu 600036 India
| | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery (molprof); National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Kasinadar Veluraja
- School of Advanced Sciences; VIT University; Vellore Tamil Nadu 632014 India
| |
Collapse
|
2624
|
Structural determinants of host specificity of complement Factor H recruitment by Streptococcus pneumoniae. Biochem J 2015; 465:325-35. [PMID: 25330773 DOI: 10.1042/bj20141069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many human pathogens have strict host specificity, which affects not only their epidemiology but also the development of animal models and vaccines. Complement Factor H (FH) is recruited to pneumococcal cell surface in a human-specific manner via the N-terminal domain of the pneumococcal protein virulence factor choline-binding protein A (CbpAN). FH recruitment enables Streptococcus pneumoniae to evade surveillance by human complement system and contributes to pneumococcal host specificity. The molecular determinants of host specificity of complement evasion are unknown. In the present study, we show that a single human FH (hFH) domain is sufficient for tight binding of CbpAN, present the crystal structure of the complex and identify the critical structural determinants for host-specific FH recruitment. The results offer new approaches to the development of better animal models for pneumococcal infection and redesign of the virulence factor for pneumococcal vaccine development and reveal how FH recruitment can serve as a mechanism for both pneumococcal complement evasion and adherence.
Collapse
|
2625
|
Czeleń P, Szefler B. Molecular dynamics study of the inhibitory effects of ChEMBL474807 on the enzymes GSK-3β and CDK-2. J Mol Model 2015; 21:74. [PMID: 25754137 PMCID: PMC4353878 DOI: 10.1007/s00894-015-2627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/15/2015] [Indexed: 02/04/2023]
Abstract
Indirubin derivatives and analogs comprise a significant group of ATP-competitive inhibitors. The inhibitory effects of ChEMBL474807 (1-(4-amino-1,2,5-oxadiazol-3-yl)-5-(piperidin-1-ylmethyl)-N′-(pyridin-4-ylmethylene)-1H-1,2,3-triazole-4-carbohydrazide) on two enzymes, namely glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase-2 (CDK-2), were analyzed. The close resemblance of the amino acid sequences of these two enzymes (with 25 % identity and 41 % similarity) explains why indirubin derivatives are inhibitors of both of the enzymes studied. The docking and molecular dynamics investigation performed here led to the identification of the interactions responsible for stabilizing the ligand ChEMBL474807 at the active sites of the enzymes considered. The structural and energetic data collected during our investigations clearly indicate that there are important differences in the behavior of the ligand at the two active sites investigated here.
Collapse
Affiliation(s)
- Przemysław Czeleń
- Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-950, Bydgoszcz, Poland,
| | | |
Collapse
|
2626
|
Nagarajan R, Chothani SP, Ramakrishnan C, Sekijima M, Gromiha MM. Structure based approach for understanding organism specific recognition of protein-RNA complexes. Biol Direct 2015; 10:8. [PMID: 25886642 PMCID: PMC4352265 DOI: 10.1186/s13062-015-0039-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background Protein-RNA interactions perform diverse functions within the cell. Understanding the recognition mechanism of protein-RNA complexes has been a challenging task in molecular and computational biology. In earlier works, the recognition mechanisms have been studied for a specific complex or using a set of non–redundant complexes. In this work, we have constructed 18 sets of same protein-RNA complexes belonging to different organisms from Protein Data Bank (PDB). The similarities and differences in each set of complexes have been revealed in terms of various sequence and structure based features such as root mean square deviation, sequence homology, propensity of binding site residues, variance, conservation at binding sites, binding segments, binding motifs of amino acid residues and nucleotides, preferred amino acid-nucleotide pairs and influence of neighboring residues for binding. Results We found that the proteins of mesophilic organisms have more number of binding sites than thermophiles and the binding propensities of amino acid residues are distinct in E. coli, H. sapiens, S. cerevisiae, thermophiles and archaea. Proteins prefer to bind with RNA using a single residue segment in all the organisms while RNA prefers to use a stretch of up to six nucleotides for binding with proteins. We have developed amino acid residue-nucleotide pair potentials for different organisms, which could be used for predicting the binding specificity. Further, molecular dynamics simulation studies on aspartyl tRNA synthetase complexed with aspartyl tRNA showed specific modes of recognition in E. coli, T. thermophilus and S. cerevisiae. Conclusion Based on structural analysis and molecular dynamics simulations we suggest that the mode of recognition depends on the type of the organism in a protein-RNA complex. Reviewers This article was reviewed by Sandor Pongor, Gajendra Raghava and Narayanaswamy Srinivasan. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0039-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raju Nagarajan
- Department of Biotechnology, Bhupat Jyoti Metha School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| | - Sonia Pankaj Chothani
- Department of Biotechnology, Bhupat Jyoti Metha School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India. .,Philips Research North America, 345 Scarborough Road, Briarcliff Manor, NY, 10510, USA.
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Metha School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| | - Masakazu Sekijima
- Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Metha School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| |
Collapse
|
2627
|
Xu J, Yuan H, Ran T, Zhang Y, Liu H, Lu S, Xiong X, Xu A, Jiang Y, Lu T, Chen Y. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling. J Mol Recognit 2015; 28:467-79. [DOI: 10.1002/jmr.2464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Jinxing Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Haoliang Yuan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Ting Ran
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Xiao Xiong
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Anyang Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Yulei Jiang
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
- State Key Laboratory of Natural Medicines, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 China
| |
Collapse
|
2628
|
Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci U S A 2015; 112:2996-3001. [PMID: 25713359 DOI: 10.1073/pnas.1416690112] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using and engineering amyloid as nanomaterials are blossoming trends in bionanotechnology. Here, we show our discovery of an amyloid structure, termed "amyloid-like nanosheet," formed by a key amyloid-forming segment of Alzheimer's Aβ. Combining multiple biophysical and computational approaches, we proposed a structural model for the nanosheet that is formed by stacking the amyloid fibril spines perpendicular to the fibril axis. We further used the nanosheet for laboratorial retroviral transduction enhancement and directly visualized the presence of virus on the nanosheet surface by electron microscopy. Furthermore, based on our structural model, we designed nanosheet-forming peptides with different functionalities, elucidating the potential of rational design for amyloid-based materials with novel architecture and function.
Collapse
|
2629
|
Parasuraman P, Murugan V, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations. J Mol Recognit 2015; 27:482-92. [PMID: 24984865 DOI: 10.1002/jmr.2369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/02/2014] [Accepted: 02/02/2014] [Indexed: 02/06/2023]
Abstract
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics.
Collapse
Affiliation(s)
- Ponnusamy Parasuraman
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, 627 012, India
| | | | | | | | | | | |
Collapse
|
2630
|
Sharma P, Majdi Yazdi M, Merriman A, Manderville RA, Wetmore SD. Influence of the Linkage Type and Functional Groups in the Carcinogenic Moiety on the Conformational Preferences of Damaged DNA: Structural and Energetic Characterization of Carbon- and Oxygen-Linked C8-Phenolic-Guanine Adducts. Chem Res Toxicol 2015; 28:782-96. [DOI: 10.1021/tx500527p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Purshotam Sharma
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Mohadeseh Majdi Yazdi
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ashlyn Merriman
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G2W1
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
2631
|
Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P, Tzimas S, Kefala E, Valsami G, Archontaki H, Papadopoulos MG, Mavromoustakos T. Investigation of the Interactions of Silibinin with 2-Hydroxypropyl-β-cyclodextrin through Biophysical Techniques and Computational Methods. Mol Pharm 2015; 12:954-65. [DOI: 10.1021/mp5008053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tahsin F. Kellici
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Ntountaniotis
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Georgios Leonis
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | - Johanna Becker-Baldus
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Clemens Glaubitz
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Andreas G. Tzakos
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Kyriakos Viras
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Petros Chatzigeorgiou
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Stavros Tzimas
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Evangelia Kefala
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Georgia Valsami
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Helen Archontaki
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Manthos G. Papadopoulos
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| |
Collapse
|
2632
|
Honarparvar B, Pawar SA, Alves CN, Lameira J, Maguire GE, Silva JRA, Govender T, Kruger HG. Pentacycloundecane lactam vs lactone norstatine type protease HIV inhibitors: binding energy calculations and DFT study. J Biomed Sci 2015; 22:15. [PMID: 25889635 PMCID: PMC4387594 DOI: 10.1186/s12929-015-0115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
Abstract
Background Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides. Results The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered. Conclusions A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Sachin A Pawar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Glenn Em Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
2633
|
Lee HK, Zhang L, Smith MD, Walewska A, Vellore NA, Baron R, McIntosh JM, White HS, Olivera BM, Bulaj G. A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: uncovering structural determinants of desensitization properties. Front Pharmacol 2015; 6:11. [PMID: 25713532 PMCID: PMC4322620 DOI: 10.3389/fphar.2015.00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022] Open
Abstract
Neurotensin receptors have been studied as molecular targets for the treatment of pain, schizophrenia, addiction, or cancer. Neurotensin (NT) and Contulakin-G, a glycopeptide isolated from a predatory cone snail Conus geographus, share a sequence similarity at the C-terminus, which is critical for activation of neurotensin receptors. Both peptides are potent analgesics, although affinity and agonist potency of Contulakin-G toward neurotensin receptors are significantly lower, as compared to those for NT. In this work, we show that the weaker agonist properties of Contulakin-G result in inducing significantly less desensitization of neurotensin receptors and preserving their cell-surface density. Structure-activity relationship (SAR) studies suggested that both glycosylation and charged amino acid residues in Contulakin-G or NT played important roles in desensitizing neurotensin receptors. Computational modeling studies of human neurotensin receptor NTS1 and Contulakin-G confirmed the role of glycosylation in weakening interactions with the receptors. Based on available SAR data, we designed, synthesized, and characterized an analog of Contulakin-G in which the glycosylated amino acid residue, Gal-GalNAc-Thr10, was replaced by memantine-Glu10 residue. This analog exhibited comparable agonist potency and weaker desensitization properties as compared to that of Contulakin-G, while producing analgesia in the animal model of acute pain following systemic administration. We discuss our study in the context of feasibility and safety of developing NT therapeutic agents with improved penetration across the blood-brain barrier. Our work supports engineering peptide-based agonists with diverse abilities to desensitize G-protein coupled receptors and further emphasizes opportunities for conotoxins as novel pharmacological tools and drug candidates.
Collapse
Affiliation(s)
- Hee-Kyoung Lee
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Liuyin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | - Aleksandra Walewska
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA ; Faculty of Chemistry, University of Gdansk Gdansk, Poland
| | - Nadeem A Vellore
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Riccardo Baron
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah Salt Lake City, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
2634
|
Xu L, Ye W, Jiang C, Yang J, Zhang J, Feng Y, Luo R, Chen HF. Recognition Mechanism between Lac Repressor and DNA with Correlation Network Analysis. J Phys Chem B 2015; 119:2844-56. [DOI: 10.1021/jp510940w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lishi Xu
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Ye
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Cheng Jiang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jingxu Yang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinmai Zhang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Feng
- State
Key Laboratory of Microbial Metabolism, Department of Biotechnology,
College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular
Biology and Biochemistry, Chemical Engineering and Materials Science,
Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Hai-Feng Chen
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
2635
|
Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery. Future Med Chem 2015; 7:91-102. [DOI: 10.4155/fmc.14.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Mitogen-activated protein kinase-interacting kinases (Mnks) are emerging anticancer targets. Mnks feature unique structural features, enhancing their importance for selective inhibitor discovery. Nonetheless, the lack of structural details obstruct the development of selective Mnk inhibitors. Results: We disclose the first complete structure model of the activated state of Mnk2. Using all-atom accelerated molecular dynamics, we also demonstrate that its activation by phosphorylation grants access to distinct activation loop conformations, steering the inactive-to-active conformational transformation. Then we propose the binding mode of CGP57380 to active Mnk2, and evaluate key interactions that could be critical for future Mnk-targeted inhibitors. Conclusion: Critical insights of the Mnk2 activation process are gained, while providing a platform for designing Mnk-targeted anticancer agents.
Collapse
|
2636
|
Chen J, Wang J, Zhang Q, Chen K, Zhu W. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation. J Biomol Struct Dyn 2015; 33:2606-18. [PMID: 25562613 DOI: 10.1080/07391102.2014.1003146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.
Collapse
Affiliation(s)
- Jianzhong Chen
- a School of Science , Shandong Jiaotong University , Jinan , 250014 , China
| | - Jinan Wang
- b Discovery and Design Center , CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai , 201203 , China
| | - Qinggang Zhang
- c College of Physics and Electronics , Shandong Normal University , Jinan , 250014 , China
| | - Kaixian Chen
- b Discovery and Design Center , CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai , 201203 , China
| | - Weiliang Zhu
- b Discovery and Design Center , CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai , 201203 , China
| |
Collapse
|
2637
|
Mutations at tyrosine 88, lysine 92 and tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 Tat-induced inhibition of dopamine transport. J Neuroimmune Pharmacol 2015; 10:122-35. [PMID: 25604666 DOI: 10.1007/s11481-015-9583-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [(3)H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [(3)H]DA uptake and [(3)H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [(3)H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [(3)H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding.
Collapse
|
2638
|
Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase. J Comput Aided Mol Des 2015; 29:371-85. [PMID: 25586721 DOI: 10.1007/s10822-015-9830-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Abstract
The C-terminal domain (CTD) of HIV-1 integrase is a five stranded β-barrel resembling an SH3 fold. Mutational studies on isolated CTD and full-length IN have reported V260E mutant as either homo-dimerization defective or affecting the stability and folding of CTD. In this study, molecular dynamics simulation techniques were used to unveil the effect of V260E mutation on isolated CTD monomer and dimer. Both monomeric and dimeric forms of wild type and V260E mutant are highly stable during the simulated period. However, the stabilizing π-stacking interaction between Trp243 and Trp243' at the dimer interface is highly disturbed in CTD-V260E (>6 Å apart). The loss in entropy for dimerization is -30 and -25 kcal/mol for CTD-wt and CTD-V260E respectively signifying a weak hydrophobic interaction and its perturbation in CTD-V260E. The mutant Glu260 exhibits strong attraction/repulsion with all the basic/acidic residues of CTD. In addition to this, the dynamics of CTD-wild type and V260E monomers at 498 K was analyzed to elucidate the effect of V260E mutation on CTD folding. Increase in SASA and reduction in the number of contacts in CTD-V260E during simulation highlights the instability caused by the mutation. In general, V260E mutation affects both multimerization and protein folding with a pronounced effect on protein folding rather than multimerization. This study emphasizes the importance of the hydrophobic nature and SH3 fold of CTD in proper functioning of HIV integrase and perturbing this nature would be a rational approach toward designing more selective and potent allosteric anti-HIV inhibitors.
Collapse
|
2639
|
Guan Y, Sun H, Pan P, Li Y, Li D, Hou T. Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations. MOLECULAR BIOSYSTEMS 2015. [DOI: 10.1039/c5mb00394f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mutations at a number of key positions (Ala156, Asp168 and Arg155) of the HCV NS3/4A protease can induce medium to high resistance to MK5172.
Collapse
Affiliation(s)
- Yan Guan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
- Institute of Functional Nano & Soft Materials (FUNSOM)
| | - Huiyong Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Peichen Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
2640
|
Welsh DJ, O'Driscoll LJ, Bailey SWD, Visontai D, Howes K, Frampton H, Bryce MR, Lambert CJ. Key role of the linker in pyrene-linker-carboxylate surfactants for the efficient aqueous dispersion of multiwalled carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra20250g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study establishes that the structure of the linker group between the hydrophobic and hydrophilic units in the new surfactants 1–13 plays an important role in the dispersibility of multiwalled carbon nanotubes (MWNTs) in water.
Collapse
Affiliation(s)
| | | | | | | | - Kara Howes
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Harry Frampton
- BP Exploration Operating Company Limited
- Sunbury-on-Thames
- UK
| | | | | |
Collapse
|
2641
|
Schutt TC, Bharadwaj VS, Granum DM, Maupin CM. The impact of active site protonation on substrate ring conformation in Melanocarpus albomyces cellobiohydrolase Cel7B. Phys Chem Chem Phys 2015; 17:16947-58. [DOI: 10.1039/c5cp01801c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how the protonation state of active site residues impacts the enzyme's structure and substrate conformation is important for improving the efficiency and economic viability of the degradation of cellulosic materials as feedstock for liquid fuel and value-added chemicals.
Collapse
Affiliation(s)
- Timothy C. Schutt
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Vivek S. Bharadwaj
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - David M. Granum
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - C. Mark Maupin
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
2642
|
McGovern RE, Snarr BD, Lyons JA, McFarlane J, Whiting AL, Paci I, Hof F, Crowley PB. Structural study of a small molecule receptor bound to dimethyllysine in lysozyme. Chem Sci 2015; 6:442-449. [PMID: 25530835 PMCID: PMC4266562 DOI: 10.1039/c4sc02383h] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysine is a ubiquitous residue on protein surfaces. Post translational modifications of lysine, including methylation to the mono-, di- or trimethylated amine result in chemical and structural alterations that have major consequences for protein interactions and signalling pathways. Small molecules that bind to methylated lysines are potential tools to modify such pathways. To make progress in this direction, detailed structural data of ligands in complex with methylated lysine is required. Here, we report a crystal structure of p-sulfonatocalix[4]arene (sclx4) bound to methylated lysozyme in which the lysine residues were chemically modified from Lys-NH3+ to Lys-NH(Me2)+. Of the six possible dimethyllysine sites, sclx4 selected Lys116-Me2 and the dimethylamino substituent was deeply buried in the calixarene cavity. This complex confirms the tendency for Lys-Me2 residues to form cation-π interactions, which have been shown to be important in protein recognition of histone tails bearing methylated lysines. Supporting data from NMR spectroscopy and MD simulations confirm the selectivity for Lys116-Me2 in solution. The structure presented here may serve as a stepping stone to the development of new biochemical reagents that target methylated lysines.
Collapse
Affiliation(s)
- Róise E McGovern
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Brendan D Snarr
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Joseph A Lyons
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - James McFarlane
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Amanda L Whiting
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
2643
|
Izadyar M, Khavani M, Housaindokht MR. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes. Phys Chem Chem Phys 2015; 17:11382-91. [DOI: 10.1039/c5cp00973a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guest molecules and solvents affect the stability and length of the heterocyclic peptide nanotube through the electrostatic interactions.
Collapse
Affiliation(s)
- Mohammad Izadyar
- Department of Chemistry
- Faculty of Sciences
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Mohammad Khavani
- Department of Chemistry
- Faculty of Sciences
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | | |
Collapse
|
2644
|
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:13403-20. [DOI: 10.1039/c5cp00327j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ERα dimer formation reshapes the helix 12 conformational landscape and is a leading factor for the activation helix conformation.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
- Micar21 Ltd
| |
Collapse
|
2645
|
Tizón L, Maneiro M, Peón A, Otero JM, Lence E, Poza S, van Raaij MJ, Thompson P, Hawkins AR, González-Bello C. Irreversible covalent modification of type I dehydroquinase with a stable Schiff base. Org Biomol Chem 2015; 13:706-16. [DOI: 10.1039/c4ob01782j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and computational studies carried out with two epoxides provide insight into the irreversible inhibition of type I dehydroquinase.
Collapse
Affiliation(s)
- Lorena Tizón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - María Maneiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Antonio Peón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - José M. Otero
- Departamento de Bioquímica y Biología Molecular and CIQUS
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Sergio Poza
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas
- Centro Nacional de Biotecnología (CSIC)
- 28049 Madrid
- Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences
- Medical School
- University of Newcastle upon Tyne
- Newcastle upon Tyne NE2 4HH
- UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences
- Medical School
- University of Newcastle upon Tyne
- Newcastle upon Tyne NE2 4HH
- UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|
2646
|
Dumont É, Monari A. Interaction of Palmatine with DNA: An Environmentally Controlled Phototherapy Drug. J Phys Chem B 2014; 119:410-9. [DOI: 10.1021/jp5088515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Élise Dumont
- Laboratoire
de Chimie, UMR 5182 CNRS, École Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Antonio Monari
- Théorie-Modélisation-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes 54506, Vandoeuvre-lés-Nancy, France
- Théorie-Modélisation-Simulation,
SRSMC, CNRS, Boulevard des Aiguillettes 54506, Vandoeuvre-lés-Nancy, France
| |
Collapse
|
2647
|
Tuszynski JA, Winter P, White D, Tseng CY, Sahu KK, Gentile F, Spasevska I, Omar SI, Nayebi N, Churchill CD, Klobukowski M, El-Magd RMA. Mathematical and computational modeling in biology at multiple scales. Theor Biol Med Model 2014; 11:52. [PMID: 25542608 PMCID: PMC4396153 DOI: 10.1186/1742-4682-11-52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023] Open
Abstract
A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.
Collapse
Affiliation(s)
- Jack A Tuszynski
- Department of Physics and Department of Oncology, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2648
|
Khoury GA, Smadbeck J, Tamamis P, Vandris AC, Kieslich CA, Floudas CA. Forcefield_NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. ACS Synth Biol 2014; 3:855-69. [PMID: 24932669 PMCID: PMC4277759 DOI: 10.1021/sb400168u] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe the development and testing of ab initio derived, AMBER ff03 compatible charge parameters for a large library of 147 noncanonical amino acids including β- and N-methylated amino acids for use in applications such as protein structure prediction and de novo protein design. The charge parameter derivation was performed using the RESP fitting approach. Studies were performed assessing the suitability of the derived charge parameters in discriminating the activity/inactivity between 63 analogs of the complement inhibitor Compstatin on the basis of previously published experimental IC50 data and a screening procedure involving short simulations and binding free energy calculations. We found that both the approximate binding affinity (K*) and the binding free energy calculated through MM-GBSA are capable of discriminating between active and inactive Compstatin analogs, with MM-GBSA performing significantly better. Key interactions between the most potent Compstatin analog that contains a noncanonical amino acid are presented and compared to the most potent analog containing only natural amino acids and native Compstatin. We make the derived parameters and an associated web interface that is capable of performing modifications on proteins using Forcefield_NCAA and outputting AMBER-ready topology and parameter files freely available for academic use at http://selene.princeton.edu/FFNCAA . The forcefield allows one to incorporate these customized amino acids into design applications with control over size, van der Waals, and electrostatic interactions.
Collapse
Affiliation(s)
- George A. Khoury
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - James Smadbeck
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Phanourios Tamamis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew C. Vandris
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Chris A. Kieslich
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Christodoulos A. Floudas
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2649
|
Rämisch S, Lizatović R, André I. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling. Proteins 2014; 83:235-47. [PMID: 25402423 DOI: 10.1002/prot.24729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity.
Collapse
Affiliation(s)
- Sebastian Rämisch
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
2650
|
Pouplana R, Campanera JM. Energetic contributions of residues to the formation of early amyloid-β oligomers. Phys Chem Chem Phys 2014; 17:2823-37. [PMID: 25503571 DOI: 10.1039/c4cp04544k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-weight amyloid-β (Aβ) oligomers formed at early stages of oligomerization rather than fibril assemblies seem to be the toxic components that drive neurodegeneration in Alzheimer's disease. Unfortunately, detailed knowledge of the structure of these early oligomers at the residue level is not yet available. In this study, we performed all-atom explicit solvent molecular dynamics simulations to examine the oligomerization process of Aβ10-35 monomers when forming dimers, trimers, tetramers and octamers, with four independent simulations of a total simulated time of 3 μs for each oligomer system. The decomposition of the stability free energy by MM-GBSA methodology allowed us to unravel the network of energetic interactions that stabilize such oligomers. The contribution of the intermonomeric van der Waals term is the most significant energy feature of the oligomerization process, consistent with the so-called hydrophobic effect. Furthermore, the decomposition of the stability free energy into residues and residue-pairwise terms revealed that it is mainly apolar interactions between the three specific hydrophobic fragments 31-35 (C-terminal region), 17-20 (central hydrophobic core) and 12-14 (N-terminal region) that are responsible for such a favourable effect. The conformation in which the hydrophobic cthr-chc interaction is oriented perpendicularly is particularly important. We propose three other model substructures that favour the oligomerization process and can thus be considered as molecular targets for future inhibitors. Understanding Aβ oligomerization at the residue level could lead to more efficient design of inhibitors of this process.
Collapse
Affiliation(s)
- R Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, Diagonal Sud, 08028, Barcelona, Catalonia, Spain.
| | | |
Collapse
|