251
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
252
|
Pascut D, Sukowati CHC, Antoniali G, Mangiapane G, Burra S, Mascaretti LG, Buonocore MR, Crocè LS, Tiribelli C, Tell G. Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma. Oncotarget 2019; 10:383-394. [PMID: 30719231 PMCID: PMC6349448 DOI: 10.18632/oncotarget.26555] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
Late diagnosis for Hepatocellular Carcinoma (HCC) remains one of the leading causes for the high mortality rate. The apurinic/apyrimidinic endonuclease 1 (APE1), an essential member of the base excision DNA repair (BER) pathway, contributes to cell response to oxidative stress and has other non-repair activities. In this study, we evaluate the role of serum APE1 (sAPE1) as a new diagnostic biomarker and we investigate the biological role for extracellular APE1 in HCC. sAPE1 level was quantified in 99 HCC patients, 50 non-HCC cirrhotic and 100 healthy controls. The expression level was significantly high in HCC (75.8 [67.3-87.9] pg/mL) compared to cirrhosis (29.8 [18.3-36.5] pg/mL] and controls (10.8 [7.5-13.2] pg/mL) (p < 0.001). The sAPE1 level corresponded with its protein expression in HCC tissue. sAPE1 had high diagnostic accuracy to differentiate HCC from cirrhotic (AUC = 0.87, sensitivity 88%, specificity 71%, cut-off of 36.3 pg/mL) and healthy subjects (AUC 0.98, sensibility 98% and specificity 83%, cut-off of 19.0 pg/mL). Recombinant APE1, exogenously added to JHH6 cells, significantly promotes IL-6 and IL-8 expression, suggesting a role of sAPE1 as a paracrine pro-inflammatory molecule, which may modulate the inflammatory status in cancer microenvironment. We described herein, for the first time to our knowledge, that sAPE1 might be considered as a promising diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Devis Pascut
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
| | - Caecilia Hapsari Ceriapuri Sukowati
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Giovanni Mascaretti
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | | | - Lory Saveria Crocè
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Clinica Patologie Fegato, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Claudio Tiribelli
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
253
|
Wang X, Huo B, Liu J, Huang X, Zhang S, Feng T. Hepatitis B virus X reduces hepatocyte apoptosis and promotes cell cycle progression through the Akt/mTOR pathway in vivo. Gene 2019; 691:87-95. [PMID: 30630095 DOI: 10.1016/j.gene.2018.12.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus X (HBx), a viral onco-protein encoded by HBV, can promote oncogenesis of HCC. However, the mechanism of HBx in hepatocarcinogenesis is still unclear. In this study, we establish a new mouse model with normal immune system to investigate the role of HBx and its functional mechanisms under normal immune function. The animal model was established by injecting HBx-EGFP-14-19 cells into the hepatic portal vein of KM mice. To verify the mouse model, the expression of HBx in the liver tissue of mice was detected by qRT-PCR, western blotting and immunohistochemistry. The apoptosis index was calculated using the terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assay, and the expression levels of apoptosis-related and cell cycle-related factors were measured. Moreover, expression of proteins in the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway was detected in HBx-EGFP-14-19 mice with and without use of an Akt inhibitor. The results showed the HBx was successfully overexpressed in liver of KM mice. After overexpressing HBx, the apoptosis index was downregulated in HBx-EGFP-14-19 liver tissue, and the expression levels of caspase-9 and Bad were reduced, but Bcl-xl was increased in HBx-EGFP-14-19 liver tissue. Overexpression of HBx increased the expression of the cyclin-dependent kinase 2 (CDK2), cyclinD1 and cyclinE. Moreover, compared with the low-level HBx group, p-Akt and p-mTOR were increased in the livers of mice with high levels of HBx. However, inactivation of apoptosis by overexpression of HBx was abolished by the treatment with an Akt inhibitor. These results indicate that HBx can induce anti-apoptosis mechanisms in hepatocytes in vivo, which is mediated by the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Bennian Huo
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jie Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China
| | - Xin Huang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Siyao Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China
| | - Tao Feng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China; School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
254
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
255
|
De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Dig Liver Dis 2018; 50:1115-1123. [PMID: 30217732 DOI: 10.1016/j.dld.2018.08.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths and the fifth most common cancer worldwide. Most of these patients are seen with advanced disease at the time of presentation. In spite of its high prevalence, there are not many therapeutic options available for patients with advanced-stage HCC. There is an urgent need for improving early detection and prognostication of patients with HCC. In addition, the development of new therapies targeting specific pathways involved in the pathogenesis of HCC should be a major goal for future research, with the objective of improving outcomes of patients with HCC. Biomarkers represent a relatively easy and noninvasive way to detect and estimate disease prognosis. In spite of the numerous efforts to find molecules as possible biomarkers, there is not a single ideal marker in HCC. Many new findings have shown promising results both in diagnosing and treating HCC. In this review, we summarized the most recent and relevant biomarkers in HCC.
Collapse
Affiliation(s)
- Felice De Stefano
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eduardo Chacon
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lilia Turcios
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
256
|
Bhat AA, Lu H, Soutto M, Capobianco A, Rai P, Zaika A, El-Rifai W. Exposure of Barrett's and esophageal adenocarcinoma cells to bile acids activates EGFR-STAT3 signaling axis via induction of APE1. Oncogene 2018; 37:6011-6024. [PMID: 29991802 PMCID: PMC6328352 DOI: 10.1038/s41388-018-0388-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The development of Barret’s esophagus (BE) and its progression to esophageal adenocarcinoma (EAC) is highly linked to exposure to acidic bile salts due to chronic gastroesophageal reflux disease (GERD). In this study, we investigated the role of Apurinic/apyrimidinic endonuclease 1 /redox effector factor-1 (APE-1/REF-1) in STAT3 activation in response to EAC. Our results indicate that APE1 is constitutively overexpressed in EAC whereas its expression is transiently induced in response to acidic bile salts in non-neoplastic BE. Using overexpression or shRNA knockdown of APE1, we found that APE1 is required for phosphorylation, nuclear localization, and transcription activation of STAT3. By using an APE1 redox-specific mutant (C65A) and APE1 redox inhibitor (E3330), we demonstrate that APE1 activates STAT3 in a redox-dependent manner. By using pharmacologic inhibitors and genetic knockdown systems, we found that EGFR is a required link between APE1 and STAT3. EGFR phosphorylation (Y1068) was directly associated with APE1 levels and redox function. Co-immunoprecipitation and proximity ligation assays indicated that APE-1 coexists and interacts with the EGFR-STAT3 protein complex. Consistent with these findings, we demonstrated a significant induction in mRNA expression levels of STAT3 target genes (IL-6, IL-17A, BCL-xL, Survivin and c-Myc) in BE and EAC cells, following acidic bile salts treatment. ChIP assays indicated that acidic bile salts treatment enhances binding of STAT3 to the promoter of its target genes, Survivin and BCL-xL. Inhibition of APE1/REF-1 redox activity using E3330 abrogated STAT3 DNA binding and transcriptional activity. The induction of APE-1 - STAT3 axis in acidic bile salts conditions provided a survival advantage and promoted cellular proliferation. In summary, our study provides multiple pieces of evidence supporting a critical role for APE1 induction in activating the EGFR-STAT3 signaling axis in response to acidic bile salts, the main risk factors for Barrett’s carcinogenesis.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony Capobianco
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Priyamvada Rai
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
257
|
Kan A, Le Y, Zhang YF, Duan FT, Zhong XP, Lu LH, Ling YH, Guo RP. ELTD1 Function in Hepatocellular Carcinoma is Carcinoma-Associated Fibroblast-Dependent. J Cancer 2018; 9:2415-2427. [PMID: 30026838 PMCID: PMC6036878 DOI: 10.7150/jca.24406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction: EGF, latrophilin, and seven transmembrane domain containing 1 (ELTD1) constitutes an orphan G-protein-coupled receptor (GPCR) of the adhesion family. High expression of ELTD1 is correlated with favorable prognosis of hepatocellular carcinoma (HCC). After silencing ELTD1 expression, however, tumor invasiveness is drastically reduced. The underlying mechanism of this apparent contradictory phenomenon is unknown. Because adhesion GPCRs couple extracellular adhesion to intracellular signaling, as a member of this family, ELTD1 function may be related to its tumor microenvironment. We therefore investigated the interaction between ELTD1 and the HCC tumor microenvironment. Methods: ELTD1 expression was assessed by immunohistochemical analyses of tissue samples from two independent groups of 333 patients with HCC. Correlations between the ELTD1 expression and the clinicopathological values were examined. We also constructed ELTD1 overexpression and knockdown HCC cell lines and conducted a series of in vivo and in vitro ELTD1 functional assays. We further collected carcinoma associated fibroblast (CAF) culture supernatants to culture HCC cell lines and repeat the respective functional assays in comparison with the control group. Results: Clinicopathologic correlations and in vivo models indicated ELTD1 as a tumor suppressor gene, whereas in vitro experiments suggested that ELTD1 could promote malignancy in HCC cell lines. Immunohistochemical staining of the generated ELTD1 overexpression xenograft tumors demonstrated that the CAF markers vimentin and α-SMA were highly expressed compared to the control group. This suggests that ELTD1 expression is correlated to CAF distribution. In addition, culturing with CAF supernatants inhibited HCC cell proliferation and invasion rates, confirming the correlation between CAF and ELTD1. Conclusion: The results of this study indicated that ELTD1 regulation of HCC progression is CAF-dependent, suggesting that ELTD1 function is regulated by its tumor microenvironment. Further investigation is required to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yong Le
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yong-Fa Zhang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Fang-Ting Duan
- Department of Experimental Research, Sun Yat-sen University Cancer Center
| | - Xiao-Ping Zhong
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| |
Collapse
|
258
|
Chinese herbal formula Fuzheng Huayu alleviates CCl 4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol Sin 2018; 39:930-941. [PMID: 29094729 DOI: 10.1038/aps.2017.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a consequence of chronic liver disease that can progress to liver cirrhosis or even hepatocarcinoma. Fuzheng Huayu (FZHY), a Chinese herbal formula, has been shown to exert anti-fibrotic effects. To better understand the molecular mechanisms underlying the anti-fibrotic effects of FZHY, we analyzed transcriptomic and proteomic combination profiles in CCl4-induced liver fibrosis in rats, which were treated with extracted FZHY powder (0.35 g·kg-1·d-1, ig) for 3 weeks. We showed that FZHY administration significantly improved liver function, alleviated hepatic inflammatory and fibrotic changes, and decreased the hydroxyproline content in the livers of CCl4-treated rats. When their liver tissues were examined using microarray and iTRAQ, we found 255 differentially expressed genes (fold change ≥1.5, P<0.05) and 499 differentially expressed proteins (fold change ≥1.2, P<0.05) in the FZHY and model groups. Functional annotation with DAVID (The Database for Annotation, Visualization and Integrated Discovery) showed that 15 enriched gene ontology terms, including drug metabolic process, response to extracellular stimulus, response to vitamins, arachidonic acid metabolic process, response to wounding, and oxidation reduction might be involved in the anti-fibrotic effects of FZHY; whereas KEGG pathway analysis revealed that eight enriched pathways, including arachidonic acid metabolism, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism might also be involved. Moreover, the protein-protein interaction network demonstrated that 10 core genes/proteins overlapped, with Ugt2a3, Cyp2b1 and Cyp3a18 in retinol metabolism pathway overlapped to a higher degree. Compared to the model rats, the livers of FZHY-treated rats had significantly higher mRNA and protein expression levels of Ugt2a3, Cyp2b1 and Cyp3a18. Furthermore, the concentration of retinoic acid was significantly higher in the FZHY-treated rats compared with the model rats. The results suggest that the anti-fibrotic effects of FZHY emerge through multiple targets, multiple functions, and multiple pathways, including FZHY-regulated retinol metabolism, xenobiotic metabolism by cytochrome P450, and drug metabolism through up-regulated Ugt2a3, Cyp2b1, and Cyp3a18. These genes may play important anti-fibrotic roles in FZHY-treated rats.
Collapse
|
259
|
Liu Z, Li J, Chen J, Shan Q, Dai H, Xie H, Zhou L, Xu X, Zheng S. MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression. BMC Cancer 2018; 18:200. [PMID: 29463213 PMCID: PMC5819696 DOI: 10.1186/s12885-018-4056-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Minichromosome Maintenance family (MCMs), as replication licensing factors, is involved in the pathogenesis of tumors. Here, we investigated the expression of MCMs and their values in hepatocellular carcinoma (HCC). Methods MCMs were analyzed in 105 samples including normal livers (n = 15), cirrhotic livers (n = 40), HCC (n = 50) using quantitative polymerase chain reaction (qPCR) (Cohort 1). Significantly up-regulated MCMs were verified in 102 HCC and matched peritumoral livers using PCR (Cohort 2), and the correlations with clinical features and outcomes were determined. In addition, the focused MCMs were analyzed in parallel immunohistochemistry of 345 samples on spectrum of hepatocarcinogenesis (Cohort 3) and queried for the potential specific role in cell cycle. Results MCM2–7, MCM8 and MCM10 was significantly up-regulated in HCC in Cohort 1. In Cohort 2, overexpression of MCM2–7, MCM8 and MCM10 was verified and significantly correlated with each other. Elevated MCM2, MCM6 and MCM7 were associated with adverse tumor features and poorer outcomes. In Cohort 3, MCM6 exhibited superior HCC diagnostic performance compared with MCM2 and MCM7 (AUC: 0.896 vs. 0.675 and 0.771, P < 0.01). Additionally, MCM6 other than MCM2 and MCM7 independently predicted poorer survival in 175 HCC patients. Furthermore, knockdown of MCM6 caused a delay in S/G2-phase progression as evidenced by down-regulation of CDK2, CDK4, CyclinA, CyclinB1, CyclinD1, and CyclinE in HCC cells. Conclusions We analyze MCMs mRNA and protein levels in tissue samples during hepatocarcinogenesis. MCM6 is identified as a driver of S/G2 cell cycle progression and a potential diagnostic and prognostic marker in HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Jie Li
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Qiaonan Shan
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Haojiang Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China. .,Collaborative innovation center for diagnosis and treatment of infectious diseases, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China. .,Collaborative innovation center for diagnosis and treatment of infectious diseases, Hangzhou, China.
| |
Collapse
|
260
|
McIlwain DW, Fishel ML, Boos A, Kelley MR, Jerde TJ. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget 2018; 9:10962-10977. [PMID: 29541389 PMCID: PMC5834255 DOI: 10.18632/oncotarget.23493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 01/23/2023] Open
Abstract
A key feature of prostate cancer progression is the induction and activation of survival proteins, including the Inhibitor of Apoptosis (IAP) family member survivin. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating oncogenic transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of oncogenic transcriptional activators NFĸB and STAT3 in survivin protein expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, we assessed selective inhibition of APE1/Ref-1's redox function as a novel method to halt prostate cancer cell growth and survival. Our study demonstrates that survivin and APE1/Ref-1 are significantly higher in human prostate cancer specimens compared to noncancerous controls and that APE1/Ref-1 redox-specific inhibition with small molecule inhibitor, APX3330 and a second-generation inhibitor, APX2009, decreases prostate cancer cell proliferation and induces cell cycle arrest. Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional activity, survivin mRNA and survivin protein levels. These data indicate that APE1/Ref-1 is a key regulator of survivin and a potentially viable target in prostate cancer.
Collapse
Affiliation(s)
- David W. McIlwain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa L. Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Boos
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
261
|
Wu Z, Zeng Q, Cao K, Sun Y. Exosomes: small vesicles with big roles in hepatocellular carcinoma. Oncotarget 2018; 7:60687-60697. [PMID: 27463001 PMCID: PMC5312412 DOI: 10.18632/oncotarget.10807] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Despite improvements in the diagnosis and treatment of hepatocellular carcinoma (HCC), the prognosis is still poor. Pioneering work has demonstrated a potential role for tumour cell-derived exosomes (TEXs) in HCC. TEXs can mediate immune responses, antigen presentation and intracellular communication by serving as vehicles for the transfer of proteins, viruses, lipids and RNA between cells. An improved understanding of the roles played by exosomes could lead to a powerful new strategy for preventing and treating HCC. In this review, we summarise current understanding on the topic. The literature points to two faces of TEXs in HCC: 1) They can promote invasion, metastasis, immune evasion and modulation and 2) they can act as diagnostic and prognostic biomarkers, and can be used in anti-cancer drug resistance and immunotherapy in the future.
Collapse
Affiliation(s)
- Zhitong Wu
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifan Sun
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| |
Collapse
|
262
|
Ma L, Wang X, Duan M, Liu L, Shi J, Dong L, Yang L, Wang Z, Ding Z, Ke A, Cao Y, Zhang X, Zhou J, Fan J, Gao Q. Telomere length variation in tumor cells and cancer-associated fibroblasts: potential biomarker for hepatocellular carcinoma. J Pathol 2017; 243:407-417. [PMID: 28833123 PMCID: PMC5725724 DOI: 10.1002/path.4961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023]
Abstract
The role of telomere dysfunction and aberrant telomerase activities in hepatocellular carcinoma (HCC) has been overlooked for many years. This study aimed to delineate the variation and prognostic value of telomere length in HCC. Telomere-specific fluorescence in situ hybridization (FISH) and qPCR were used to evaluate telomere length in HCC cell lines, tumor tissues, and isolated non-tumor cells within the tumor. Significant telomere attrition was found in tumor cells and cancer-associated fibroblasts (CAFs) compared to their normal counterparts, but not in intratumor leukocytes or bile duct epithelial cells. Clinical relevance and prognostic value of telomere length were investigated on tissue microarrays of 257 surgically treated HCC patients. Reduced intensity of telomere signals in tumor cells or CAFs correlated with larger tumor size and the presence of vascular invasion (p < 0.05). Shortened telomeres in tumor cells or CAFs associated with reduced survival and increased recurrence, and were identified as independent prognosticators for HCC patients (p < 0.05). These findings were validated in an independent HCC cohort of 371 HCC patients from The Cancer Genome Atlas (TCGA) database, confirming telomere attrition and its prognostic value in HCC. We also showed that telomerase reverse transcriptase promoter (TERTp) mutation correlated with telomere shortening in HCC. Telomere variation in tumor cells and non-tumor cells within the tumor microenvironment of HCC was a valuable prognostic biomarker for this fatal malignancy. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Li‐Jie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Xiao‐Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Long‐Zi Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Jie‐Yi Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Liang‐Qing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Liu‐Xiao Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Zhi‐Chao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Zhen‐Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Ai‐Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of MedicineCentral South UniversityHunanPR China
| | - Xiao‐Ming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of ShanghaiChinese Academy of SciencesShanghaiPR China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Fudan UniversityShanghaiPR China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiPR China
| |
Collapse
|
263
|
Yuan CL, He F, Ye JZ, Wu HN, Zhang JY, Liu ZH, Li YQ, Luo XL, Lin Y, Liang R. APE1 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. Oncotarget 2017; 8:59720-59728. [PMID: 28938675 PMCID: PMC5601771 DOI: 10.18632/oncotarget.19814] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
APE1 is known as a key mediator of DNA damage repair pathways, and its clinical significance in different types of cancer is well studied. Herein, we performed a meta-analysis to determine the association of APE1 expression and survival in different types of solid cancer. We searched all eligible publications in PubMed, Web of Science and Embase platforms from inception to January 2017 and found 15 relevant manuscripts. Overall survival (OS), 12- and 36-month survival rates, and hazard ratios (HRs) were extracted and analyzed. Heterogeneity and publication bias were also assessed. A subgroup analysis of the different subcellular locations of APE1 was also conducted. Patients with higher APE1 levels demonstrated lower 12- and 36-month survival rates than those with low APE1 levels (HR 2.00, 95% CI 1.33–3.00, P = 0.0009; HR 1.84, 95% CI 1.19–2.84, P = 0.006). Importantly, the pooled analysis showed that high levels of APE1 predict shorter OS (HR 1.44, 95% CI 1.13–1.83, P = 0.003). Subgroup analysis revealed that both nuclear and cytoplasmic expression levels of APE1 are important indicators of poor prognosis in solid tumors.
Collapse
Affiliation(s)
- Chun-Ling Yuan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fan He
- College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Jia-Zhou Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ni Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Jin-Yan Zhang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
264
|
Nair N, Calle AS, Zahra MH, Prieto-Vila M, Oo AKK, Hurley L, Vaidyanath A, Seno A, Masuda J, Iwasaki Y, Tanaka H, Kasai T, Seno M. A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep 2017; 7:6838. [PMID: 28754894 PMCID: PMC5533745 DOI: 10.1038/s41598-017-07144-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most prominent cell types in the stromal compartment of the tumor microenvironment. CAFs support multiple aspects of cancer progression, including tumor initiation, invasion, and metastasis. The heterogeneous nature of the stromal microenvironment is attributed to the multiple sources from which the cells in this compartment originate. The present study provides the first evidence that cancer stem cells (CSCs) are one of the key sources of CAFs in the tumor niche. We generated CSC-like cells by treating mouse induced pluripotent stem cells with conditioned medium from breast cancer cell lines. The resulting cell population expressed both CSC and pluripotency markers, and the sphere-forming CSC-like cells formed subcutaneous tumors in nude mice. Intriguingly, these CSC-like cells always formed heterogeneous populations surrounded by myofibroblast-like cells. Based on this observation, we hypothesized that CSCs could be the source of the CAFs that support tumor maintenance and survival. To address this hypothesis, we induced the differentiation of spheres and purified the myofibroblast-like cells. The resulting cells exhibited a CAF-like phenotype, suggesting that they had differentiated into the subpopulations of cells that support CSC self-renewal. These findings provide novel insights into the dynamic interplay between various microenvironmental factors and CAFs in the CSC niche.
Collapse
Affiliation(s)
- Neha Nair
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Anna Sanchez Calle
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Maram Hussein Zahra
- Menoufia University, Faculty of Science, Chemistry Department, Shebin El-Koom, 32511, Egypt
| | - Marta Prieto-Vila
- National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Aung Ko Ko Oo
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Laura Hurley
- Cancer Biology Graduate Program, School of Medicine, Wayne State University, 110E Warren Avenue, Suite 2215, Detroit, MI, 48201, USA
| | - Arun Vaidyanath
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Junko Masuda
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshiaki Iwasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Okayama University, Okayama, 700-8558, Japan
| | - Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, IB-130, Indianapolis, IN, 46202, USA
| | - Tomonari Kasai
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Masaharu Seno
- Nano-biotechnology, Department of Medical Bioengineering, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
265
|
Abdullah MZ, Mohd Ali J, Abolmaesoomi M, Abdul-Rahman PS, Hashim OH. Anti-proliferative, in vitro antioxidant, and cellular antioxidant activities of the leaf extracts from Polygonum minus Huds: Effects of solvent polarity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1315591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Johari Mohd Ali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mitra Abolmaesoomi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
266
|
Chitosan nanoparticle-delivered siRNA reduces CXCR4 expression and sensitizes breast cancer cells to cisplatin. Biosci Rep 2017; 37:BSR20170122. [PMID: 28446538 PMCID: PMC6434078 DOI: 10.1042/bsr20170122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) has been reported as a poor prognostic biomarker in human breast cancers, and has been suggested as a promising therapeutic target of breast cancer treatment. The present study aims to investigate the delivery efficiency of siRNA by chitosan into breast cancer cells, and then to examine the regulatory role by chitosan nanoparticle-delivered siRNA on CXCR4 expression and on the chemosensitivity of breast cancer cells. Our results demonstrated that the siRNA could be capsuled by chitosan into nanoparticles with a diameter of 80-110 nm, and with a zeta potential of 20-50 mV. The chitosan nanoparticle delivered siRNA efficiently into breast cancer MCF-7 cells significantly reduced the expression of CXCR4 in both mRNA and protein levels. Moreover, the reduced CXCR4 by chitosan nanoparticle-delivered siRNA was associated with increased sensitivity of breast cancer cells to cisplatin. Reduced growth and increased apoptosis of MCF-7 cells were observed in the CXCR4 siRNA group than in the control siRNA group. Taken together, our results present the treatment potential of chitosan nanoparticle-delivered siRNA targeting CXCR4 in breast cancers.
Collapse
|
267
|
Bolm L, Cigolla S, Wittel UA, Hopt UT, Keck T, Rades D, Bronsert P, Wellner UF. The Role of Fibroblasts in Pancreatic Cancer: Extracellular Matrix Versus Paracrine Factors. Transl Oncol 2017; 10:578-588. [PMID: 28658650 PMCID: PMC5487255 DOI: 10.1016/j.tranon.2017.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM: Desmoplasia is a characteristic feature and a suspected mechanism of tumor progression in pancreatic ductal adenocarcinoma (PDAC). Main constituents of the stroma involve cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM). The aim of this study was to dissect the interaction of CAFs, ECM, and PDAC cells in both an in vitro setting and a large-scale clinical cohort study. METHODS AND MATERIAL: Patients operated for PDAC were identified from our prospectively maintained clinical database. A standard pathology protocol was applied for pancreatoduodenectomy specimens also assessing CAF activation as either CAF grade 0 or CAF grade +. Interaction between a spectrum of pancreatic cancer cell lines (PCCs) and mouse embryonic fibroblasts (NIH 3T3) was assessed in a conditioned medium experimental setup. RESULTS: One hundred eleven patients operated for PDAC from 2001 to 2011 were identified. Univariate analysis disclosed CAF grade + (P = .030), positive M status (P < .001), and lymph node ratio (LNR) > 0.1 (P = .045) to impair overall survival. Independent prognostic factors were CAF grade (P = .050) and positive M status (P = .002). CAF grade correlated with N status (CC = 0.206, P = .030), LNR (CC = 0.187, P = .049), tumor size (CC = −0.275, P = .003), and M status (CC = 0.190, P = .045). In the in vitro setting, paracrine effects of pancreatic cancer cell resulted in morphological activation of fibroblasts and tumor cell differentiation–dependent increase of fibroblast growth. Paracrine effects of poorly differentiated PCCs led to an upregulation of Vimentin in NIH 3T3 fibroblasts. Paracrine effects of fibroblasts on their part promoted cancer cell motility in all PCCs. As the second stromal component, fibroblast-derived ECM resulted in significantly decreased proliferation depending on density and led to upregulation of ZEB1 in poorly differentiated PCCs. CONCLUSION: In PDAC patients, positive CAF grading was identified as a negative prognostic parameter correlating with positive N status, high LNR, positive M status, and smaller tumor size. Whereas bilateral interaction of PCCs and CAFs promotes tumor progression, ECM poses PCC growth restrictions. In summary, our study discloses differential effects of stromal components and may help to interpret heterogeneous results of former studies.
Collapse
Affiliation(s)
- Louisa Bolm
- Department of Surgery, University of Luebeck, Luebeck, Germany.
| | - Simon Cigolla
- Department of Surgery, University of Luebeck, Luebeck, Germany
| | - Uwe A Wittel
- Department of Surgery, Medical Center University of Freiburg, Faculty of Medicine, Germany
| | - Ulrich T Hopt
- Department of Surgery, Medical Center University of Freiburg, Faculty of Medicine, Germany
| | - Tobias Keck
- Department of Surgery, University of Luebeck, Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Luebeck, Luebeck, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, Medical Center University of Freiburg, Faculty of Medicine, Germany; Tumorbank Comprehensive Cancer Center Freiburg, Medical Center University of Freiburg, Faculty of Medicine, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
268
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
269
|
Manzanares MÁ, Usui A, Campbell DJ, Dumur CI, Maldonado GT, Fausther M, Dranoff JA, Sirica AE. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1068-1092. [PMID: 28315313 DOI: 10.1016/j.ajpath.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
To gain insight into the cellular and molecular interactions mediating the desmoplastic reaction and aggressive malignancy of mass-forming intrahepatic cholangiocarcinoma (ICC), we modeled ICC desmoplasia and progression in vitro. A unique three-dimensional (3D) organotypic culture model was established; within a dilute collagen-type I hydrogel, a novel clonal strain of rat cancer-associated myofibroblasts (TDFSM) was co-cultured with a pure rat cholangiocarcinoma cell strain (TDECC) derived from the same ICC type as TDFSM. This 3D organotypic culture model reproduced key features of desmoplastic reaction that closely mimicked those of the in situ tumor, as well as promoted cholangiocarcinoma cell growth and progression. Our results supported a resident liver mesenchymal cell origin of the TDFSM cells, which were not neoplastically transformed. Notably, 3D co-culturing of TDECC cells with TDFSM cells provoked the formation of a dense fibrocollagenous stroma in vitro that was associated with significant increases in both proliferative TDFSM myofibroblastic cells and TDECC cholangiocarcinoma cells accumulating within the gel matrix. This dramatic desmoplastic ICC-like phenotype, which was not observed in the TDECC or TDFSM controls, was highly dependent on transforming growth factor (TGF)-β, but not promoted by TGF-α. However, TGF-α was determined to be a key factor for promoting cholangiocarcinoma cell anaplasia, hyperproliferation, and higher malignant grading in this 3D culture model of desmoplastic ICC.
Collapse
Affiliation(s)
- Miguel Á Manzanares
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Akihiro Usui
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Deanna J Campbell
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Gabrielle T Maldonado
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
270
|
Zhai Y, Zhang J, Wang H, Lu W, Liu S, Yu Y, Weng W, Ding Z, Zhu Q, Shi J. Growth differentiation factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of AML cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:147. [PMID: 27643489 PMCID: PMC5029001 DOI: 10.1186/s13046-016-0405-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chemo-resistance is still a major obstacle in efforts to overcome acute myeloid leukemia (AML). An emerging concept has proposed that interactions between the bone marrow (BM) microenvironment and leukemia cells reduce the sensitivity of the leukemia cells to chemotherapy. As an important element of the tumor microenvironment, the cancer-associated fibroblasts (CAFs) are considered to be activated modulators in the chemo-resistance of many solid tumors. But their contribution to AML has yet to be fully understood. Here we report a critical role for CAFs which were thought to be a survival and chemo-protective factor for leukemia cells. METHODS A retrospective study on the BM biopsies from 63 primary AML patients and 59 normal controls was applied to quantitative analysis the fiber stroma in the BM sections. Then immunohistochemistry on the BM biopsies were used to detect the makers of the CAFs. Their effects on drug resistance of leukemia cells were further to be assessed by co-cultured experiments in vitro. Moreover, the possible mechanisms involved in CAF-mediated chemo-protection of AML cells was investigated by antibody neutralization and siRNA knockdown experiments, with particular emphasis on the role of GDF15. RESULTS In our study, excessive reticular fibers in the BM led to higher frequency of relapse and mortality in primary AML patients, bringing the inspiration for us to investigate the functional roles of the fiber-devied cells. We declared that the CAF cells which expressed higher levels of FSP1, α-SMA or FAP protein were widely distributed in the marrow of AML. Then in vitro co-cultured tests showed that these CAFs could protect leukemia cell lines (THP-1/K562) from chemotherapy. Interestingly, this effect could be decreased by either treatment with a neutralizing anti-GDF15 antibody or knockdown GDF15 (with siGDF15) in CAFs. Furthermore, we also confirmed that the GDF15(+) cells mainly co-localized with FAP, which was identified as the typical phenotype of CAFs in the BM stroma. CONCLUSIONS We firstly demonstrate that the functional CAFs are widespread within the BM of AML patients and should be a critical chemo-protective element for AML cells by producing amount of GDF15.
Collapse
Affiliation(s)
- Yuanmei Zhai
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jing Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hui Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Lu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Sihong Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yehua Yu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Weng
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhiyong Ding
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South campus, Shanghai, 201400, China
| | - Qi Zhu
- Department of Hematology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, 200011, China
| | - Jun Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
271
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
272
|
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett 2016; 379:49-59. [DOI: 10.1016/j.canlet.2016.05.022] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
|
273
|
SILVA FPY, DIAS A, COELHO CA, GUERRA EN, MARQUES AEM, DECURCIO DDA, MANTESSO A, CURY SEV, SILVA BSDF. Expression of CD90 and P75NTR stem cell markers in ameloblastomas: a possible role in their biological behavior. Braz Oral Res 2016; 30:e109. [DOI: 10.1590/1807-3107bor-2016.vol30.0109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/25/2016] [Indexed: 01/15/2023] Open
|
274
|
Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 2015; 7:2443-58. [PMID: 26690480 PMCID: PMC4695902 DOI: 10.3390/cancers7040902] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer tissues are composed of cancer cells and the surrounding stromal cells (e.g., fibroblasts, vascular endothelial cells, and immune cells), in addition to the extracellular matrix. Most studies investigating carcinogenesis and the progression, invasion, metastasis, and angiogenesis of cancer have focused on alterations in cancer cells, including genetic and epigenetic changes. Recently, interactions between cancer cells and the stroma have attracted considerable attention, and increasing evidence has accumulated on this. Several researchers have gradually clarified the origins, features, and roles of cancer-associated fibroblasts (CAFs), a major component of the cancer stroma. CAFs function in a similar manner to myofibroblasts during wound healing. We previously reported the relationship between CAFs and angiogenesis. Interleukin-6 (IL-6), a multifunctional cytokine, plays a central role in regulating inflammatory and immune responses, and important roles in the progression, including proliferation, migration, and angiogenesis, of several cancers. We showed that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions. Furthermore, CAFs contribute to drug-resistance acquisition in cancer cells. The interaction between cancer cells and the stroma could be a potential target for anti-cancer therapy.
Collapse
|