251
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
252
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
253
|
Li W, Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. J Hepatol 2016; 64:S32-S40. [PMID: 27084034 PMCID: PMC7114860 DOI: 10.1016/j.jhep.2016.02.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/30/2022]
Abstract
For almost three decades following the discovery of the human Hepatitis B Virus (HBV) the early events of virus infection (attachment to hepatocytes, specific binding to a receptor on hepatocytes) remained enigmatic. The gradual improvement of tissue culture systems for HBV has enabled the identification of viral determinants for viral infectivity and facilitated the discovery of the human sodium taurocholate co-transporting polypeptide (hNTCP) as a liver specific receptor of HBV and its satellite, the human Hepatitis Delta Virus (HDV). These findings are currently leading basic and clinical research activities in new directions. (1) Stable hNTCP-expressing cell lines have become a valuable platform to study the full HBV replication cycle from its native template, the cccDNA. (2) The suitability of NTCP complemented cell culture systems for high throughput screening approaches will facilitate identification of novel host factors involved in HBV replication (including those that determine the peculiar host specificity of HBV infection) and will enable identification and development of novel drug candidates for improved therapeutics. (3) Since NTCP is a major host-specific restriction factor for HBV and HDV, hNTCP-expressing animals provide the basis for future susceptible in vivo models. (4) The concept obtained with the entry inhibitor Myrcludex B demonstrates that NTCP is a suitable target for clinical interference with viral entry. This will foster further clinical approaches aiming at curative combination therapies.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany; German Center of Infectious Diseases (DZIF), Heidelberg, Germany.
| |
Collapse
|
254
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
255
|
Hepatitis B virus receptors and molecular drug targets. Hepatol Int 2016; 10:567-73. [DOI: 10.1007/s12072-016-9718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
|
256
|
|
257
|
Li J, Wands J. Hepatitis B and D viral receptors. Hepatology 2016; 63:11-3. [PMID: 26315853 DOI: 10.1002/hep.28131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
258
|
Meredith LW, Hu K, Cheng X, Howard CR, Baumert TF, Balfe P, van de Graaf KF, Protzer U, McKeating JA. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors. J Gen Virol 2015; 97:121-127. [PMID: 26474824 DOI: 10.1099/jgv.0.000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is one of the world's major unconquered infections, resulting in progressive liver disease, and current treatments rarely cure infection. A limitation to discovering new therapies is our limited knowledge of HBV entry and dissemination pathways that hinders the development of in vitro culture systems. To address this gap in our understanding we optimized the genesis of infectious lentiviral pseudoparticles (HBVpps). The recent discovery that the bile salt transporter sodium taurocholate co-transporting polypeptide (NTCP) acts as a receptor for HBV enabled us to assess the receptor dependency of HBVpp infection. HBVpps preferentially infect hepatoma cells expressing NTCP, whereas other non-liver cells engineered to express NTCP do not support infection, suggesting that additional hepatocyte-specific factors are required for HBVpp internalization. These results highlight the value of the HBVpp system to dissect the pathways of HBV entry and dissemination.
Collapse
Affiliation(s)
- L W Meredith
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K Hu
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - X Cheng
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - C R Howard
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - T F Baumert
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques and Université de Strasbourg, Strasbourg, France
| | - P Balfe
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K F van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMC, Amsterdam, The Netherlands
| | - U Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J A McKeating
- Institute for Advanced Study, Technische Universität München, Garching, Germany.,Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|