251
|
Tischer A, Machha VR, Rösgen J, Auton M. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams. Biopolymers 2018; 109:e23106. [PMID: 29457634 DOI: 10.1002/bip.23106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/09/2022]
Abstract
Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how Δ H and the urea m-value interconvert through the slope of cm versus T, ( ∂ c m / ∂ T ) = Δ H / ( m T ) . This relationship permits the calculation of Δ H at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from Δ H obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of Δ H and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall free energy.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Venkata R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jörg Rösgen
- Department Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania, 17033
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
252
|
Potekhin SA. High-Pressure Scanning Microcalorimetry – A New Method for Studying Conformational and Phase Transitions. BIOCHEMISTRY (MOSCOW) 2018; 83:S134-S145. [DOI: 10.1134/s0006297918140110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
253
|
Krainer G, Hartmann A, Anandamurugan A, Gracia P, Keller S, Schlierf M. Ultrafast Protein Folding in Membrane-Mimetic Environments. J Mol Biol 2018; 430:554-564. [DOI: 10.1016/j.jmb.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
|
254
|
Hall D, Kinjo AR, Goto Y. A new look at an old view of denaturant induced protein unfolding. Anal Biochem 2018; 542:40-57. [DOI: 10.1016/j.ab.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
|
255
|
Haney CM, Werner HM, McKay JJ, Horne WS. Thermodynamic origin of α-helix stabilization by side-chain cross-links in a small protein. Org Biomol Chem 2018; 14:5768-73. [PMID: 27006192 DOI: 10.1039/c6ob00475j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide cross-linking has been widely explored as a means of constraining short sequences into stable folded conformations, most commonly α-helices. The prevailing hypothesis for the origin of helix stabilization is an entropic effect resulting from backbone pre-organization; however, obtaining direct evidence bearing on this hypothesis is challenging. Here, we compare the folding thermodynamics of a small helix-rich protein domain and analogues containing one of three common cross-linking motifs. Analysis of the folding free energy landscapes of linear vs. cyclized species reveal consistent trends in the effect of cyclization on folding energetics, as well as subtle differences based on the chemistry of the cross link. Stabilization in all three systems arises entirely from a reduction in the entropic penalty of folding that more than compensates for an enthalpic destabilization of the folded state.
Collapse
Affiliation(s)
- Conor M Haney
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA.
| | - Halina M Werner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA.
| | - James J McKay
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA.
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA.
| |
Collapse
|
256
|
Shirke AN, White C, Englaender JA, Zwarycz A, Butterfoss GL, Linhardt RJ, Gross RA. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry 2018; 57:1190-1200. [PMID: 29328676 DOI: 10.1021/acs.biochem.7b01189] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutinases are polyester hydrolases that show a remarkable capability to hydrolyze polyethylene terephthalate (PET) to its monomeric units. This revelation has stimulated research aimed at developing sustainable and green cutinase-catalyzed PET recycling methods. Leaf and branch compost cutinase (LCC) is particularly suited toward these ends given its relatively high PET hydrolysis activity and thermostability. Any practical enzymatic PET recycling application will require that the protein have kinetic stability at or above the PET glass transition temperature (Tg, i.e., 70 °C). This paper elucidates the thermodynamics and kinetics of LCC conformational and colloidal stability. Aggregation emerged as a major contributor that reduces LCC kinetic stability. In its native state, LCC is prone to aggregation owing to electrostatic interactions. Further, with increasing temperature, perturbation of LCC's tertiary structure and corresponding exposure of hydrophobic domains leads to rapid aggregation. Glycosylation was employed in an attempt to impede LCC aggregation. Owing to the presence of three putative N-glycosylation sites, expression of native LCC in Pichia pastoris resulted in the production of glycosylated LCC (LCC-G). LCC-G showed improved stability to native state aggregation while increasing the temperature for thermal induced aggregation by 10 °C. Furthermore, stabilization against thermal aggregation resulted in improved catalytic PET hydrolysis both at its optimum temperature and concentration.
Collapse
Affiliation(s)
- Abhijit N Shirke
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Christine White
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jacob A Englaender
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Allison Zwarycz
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi , Abu Dhabi, UAE
| | - Robert J Linhardt
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
257
|
Mobbs JI, Di Paolo A, Metcalfe RD, Selig E, Stapleton DI, Griffin MDW, Gooley PR. Unravelling the Carbohydrate-Binding Preferences of the Carbohydrate-Binding Modules of AMP-Activated Protein Kinase. Chembiochem 2018; 19:229-238. [PMID: 29193585 DOI: 10.1002/cbic.201700589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/24/2023]
Abstract
The β subunit of adenosine monophosphate (AMP)-activated protein kinase (AMPK), which exists as two isoforms (β1 and β2) in humans, has a carbohydrate-binding module (CBM) that interacts with glycogen. Although the β1- and β2-CBMs are structurally similar, with strictly conserved ligand-contact residues, they show different carbohydrate affinities. β2-CBM shows the strongest affinity for both branched and unbranched oligosaccharides and it has recently been shown that a Thr insertion into β2-CBM (Thr101) forms a pocket to accommodate branches. This insertion does not explain why β2-CBM binds all carbohydrates with stronger affinity. Herein, it is shown that residue 134 (Val for β2 and Thr for β1), which does not come into contact with a carbohydrate, appears to account for the affinity difference. Characterisation by NMR spectroscopy, however, suggests that mutant β2-Thr101Δ/Val134Thr differs from that of β1-CBM, and mutant β1-Thr101ins/Thr134Val differs from that of β2-CBM. Furthermore, these mutants are less stable to chemical denaturation, relative to that of wild-type β-CBMs, which confounds the affinity analyses. To support the importance of Thr101 and Val134, the ancestral CBM has been constructed. This CBM retains Thr101 and Val134, which suggests that the extant β1-CBM has a modest loss of function in carbohydrate binding. Because the ancestor bound carbohydrate with equal affinity to that of β2-CBM, it is concluded that residue 134 plays an indirect role in carbohydrate binding.
Collapse
Affiliation(s)
- Jesse I Mobbs
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current Address: Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex Di Paolo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current Address: New Technologies Development Department, Kaneka Eurogentec S.A. Biologics Division, 14 Rue Bois Saint-Jean, 4102, Seraing, Belgium
| | - Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Emily Selig
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David I Stapleton
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
258
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
259
|
Esposito C, Vitalis A. Precise estimation of transfer free energies for ionic species between similar media. Phys Chem Chem Phys 2018; 20:27003-27010. [DOI: 10.1039/c8cp05331f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two-dimensional umbrella sampling is combined with molecular dynamics to calculate correction-free estimates of transfer properties for individual ions.
Collapse
Affiliation(s)
- Carmen Esposito
- University of Zurich
- Department of Biochemistry
- CH-8057 Zurich
- Switzerland
| | - Andreas Vitalis
- University of Zurich
- Department of Biochemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
260
|
Suárez IP, Gauto DF, Hails G, Mascali FC, Crespo R, Zhao L, Wang J, Rasia RM. Conformational sampling of the intrinsically disordered dsRBD-1 domain from Arabidopsis thaliana DCL1. Phys Chem Chem Phys 2018; 20:11237-11246. [DOI: 10.1039/c7cp07908g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Partial folding and stability of DCL1-dsRBD1.
Collapse
Affiliation(s)
- Irina P. Suárez
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
| | - Diego F. Gauto
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
| | - Guillermo Hails
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
| | - Florencia C. Mascali
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
| | - Roberta Crespo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
| | - Lingzi Zhao
- College of Physics
- Jilin University
- Jilin
- China
| | - Jin Wang
- State University of New York at Stony Brook
- USA
| | - Rodolfo M. Rasia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR)
- Santa Fe
- Argentina
- Área Biofísica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
| |
Collapse
|
261
|
Molina IG, Josts I, Almeida Hernandez Y, Esperante S, Salgueiro M, Garcia Alai MM, de Prat-Gay G, Tidow H. Structure and stability of the Human respiratory syncytial virus M 2-1 RNA-binding core domain reveals a compact and cooperative folding unit. Acta Crystallogr F Struct Biol Commun 2018; 74:23-30. [PMID: 29372904 PMCID: PMC5947689 DOI: 10.1107/s2053230x17017381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Human syncytial respiratory virus is a nonsegmented negative-strand RNA virus with serious implications for respiratory disease in infants, and has recently been reclassified into a new family, Pneumoviridae. One of the main reasons for this classification is the unique presence of a transcriptional antiterminator, called M2-1. The puzzling mechanism of action of M2-1, which is a rarity among antiterminators in viruses and is part of the RNA polymerase complex, relies on dissecting the structure and function of this multidomain tetramer. The RNA-binding activity is located in a monomeric globular `core' domain, a high-resolution crystal structure of which is now presented. The structure reveals a compact domain which is superimposable on the full-length M2-1 tetramer, with additional electron density for the C-terminal tail that was not observed in the previous models. Moreover, its folding stability was determined through chemical denaturation, which shows that the secondary and tertiary structure unfold concomitantly, which is indicative of a two-state equilibrium. These results constitute a further step in the understanding of this unique RNA-binding domain, for which there is no sequence or structural counterpart outside this virus family, in addition to its implications in transcription regulation and its likeliness as an antiviral target.
Collapse
Affiliation(s)
- Ivana G. Molina
- Protein Structure–Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Yasser Almeida Hernandez
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian Esperante
- Protein Structure–Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Mariano Salgueiro
- Protein Structure–Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Maria M. Garcia Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gonzalo de Prat-Gay
- Protein Structure–Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
262
|
Neira JL, Hornos F, Cozza C, Cámara-Artigas A, Abián O, Velázquez-Campoy A. The histidine phosphocarrier protein, HPr, binds to the highly thermostable regulator of sigma D protein, Rsd, and its isolated helical fragments. Arch Biochem Biophys 2017; 639:26-37. [PMID: 29288053 DOI: 10.1016/j.abb.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
The phosphotransferase system (PTS) controls the preferential use of sugars in bacteria and it is also involved in other processes, such as chemotaxis. It is formed by a protein cascade in which the first two proteins are general (namely, EI and HPr) and the others are sugar-specific permeases. The Rsd protein binds specifically to the RNA polymerase (RNAP) σ70 factor. We first characterized the conformational stability of Escherichia coli Rsd. And second, we delineated the binding regions of Streptomyces coelicolor, HPrsc, and E. coli Rsd, by using fragments derived from each protein. To that end, we used several biophysical probes, namely, fluorescence, CD, NMR, ITC and BLI. Rsd had a free energy of unfolding of 15 kcal mol-1 at 25 °C, and a thermal denaturation midpoint of 103 °C at pH 6.5. The affinity between Rsd and HPrsc was 2 μM. Interestingly enough, the isolated helical-peptides, comprising the third (RsdH3) and fourth (RsdH4) Rsd helices, also interacted with HPrsc in a specific manner, and with affinities similar to that of the whole Rsd. Moreover, the isolated peptide of HPrsc, HPr9-30, comprising the active site, His15, also was bound to intact Rsd with similar affinity. Therefore, binding between Rsd and HPrsc was modulated by the two helices H3 and H4 of Rsd, and the regions around the active site of HPrsc. This implies that specific fragments of Rsd and HPrsc can be used to interfere with other protein-protein interactions (PPIs) of each other protein.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain.
| | - Felipe Hornos
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Concetta Cozza
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería- ceiA3, Almería, Spain
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain.
| |
Collapse
|
263
|
Scaglione A, Monteonofrio L, Parisi G, Cecchetti C, Siepi F, Rinaldo C, Giorgi A, Verzili D, Zamparelli C, Savino C, Soddu S, Vallone B, Montemiglio LC. Effects of Y361-auto-phosphorylation on structural plasticity of the HIPK2 kinase domain. Protein Sci 2017; 27:725-737. [PMID: 29277937 DOI: 10.1002/pro.3367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022]
Abstract
The dual-specificity activity of the homeodomain interacting protein kinase 2 (HIPK2) is regulated by cis-auto-phosphorylation of tyrosine 361 (Y361) on the activation loop. Inhibition of this process or substitution of Y361 with nonphosphorylatable amino acid residues result in aberrant HIPK2 forms that show altered functionalities, pathological-like cellular relocalization, and accumulation into cytoplasmic aggresomes. Here, we report an in vitro characterization of wild type HIPK2 kinase domain and of two mutants, one at the regulating Y361 (Y361F, mimicking a form of HIPK2 lacking Y361 phosphorylation) and another at the catalytic lysine 228 (K228A, inactivating the enzyme). Gel filtration and thermal denaturation analyzes along with equilibrium binding experiments and kinase assays performed in the presence or absence of ATP-competitors were performed. The effects induced by mutations on overall stability, oligomerization and activity support the existence of different conformations of the kinase domain linked to Y361 phosphorylation. In addition, our in vitro data are consistent with both the cross-talk between the catalytic site and the activation loop of HIPK2 and the aberrant activities and accumulation previously reported for the Y361 nonphosphorylated HIPK2 in mammalian cells.
Collapse
Affiliation(s)
- Antonella Scaglione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome.,Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi, 53, Rome, 00144, Italy
| | - Giacomo Parisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome.,Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Cristina Cecchetti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome.,Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Francesca Siepi
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi, 53, Rome, 00144, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi, 53, Rome, 00144, Italy.,CNR Institute of Molecular Biology and Pathology, P.le A. Moro 5, Rome, 00185, Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Daniela Verzili
- CNR Institute of Molecular Biology and Pathology, P.le A. Moro 5, Rome, 00185, Italy
| | - Carlotta Zamparelli
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Carmelinda Savino
- CNR Institute of Molecular Biology and Pathology, P.le A. Moro 5, Rome, 00185, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi, 53, Rome, 00144, Italy
| | - Beatrice Vallone
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome.,Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| | - Linda Celeste Montemiglio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome.,Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Italy, Rome
| |
Collapse
|
264
|
Zimmerman M, Hart KM, Sibbald CA, Frederick TE, Jimah JR, Knoverek CR, Tolia NH, Bowman GR. Prediction of New Stabilizing Mutations Based on Mechanistic Insights from Markov State Models. ACS CENTRAL SCIENCE 2017; 3:1311-1321. [PMID: 29296672 PMCID: PMC5746865 DOI: 10.1021/acscentsci.7b00465] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 05/30/2023]
Abstract
Protein stabilization is fundamental to enzyme function and evolution, yet understanding the determinants of a protein's stability remains a challenge. This is largely due to a shortage of atomically detailed models for the ensemble of relevant protein conformations and their relative populations. For example, the M182T substitution in TEM β-lactamase, an enzyme that confers antibiotic resistance to bacteria, is stabilizing but the precise mechanism remains unclear. Here, we employ Markov state models (MSMs) to uncover how M182T shifts the distribution of different structures that TEM adopts. We find that M182T stabilizes a helix that is a key component of a domain interface. We then predict the effects of other mutations, including a novel stabilizing mutation, and experimentally test our predictions using a combination of stability measurements, crystallography, NMR, and in vivo measurements of bacterial fitness. We expect our insights and methodology to provide a valuable foundation for protein design.
Collapse
Affiliation(s)
- Maxwell
I. Zimmerman
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Kathryn M. Hart
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Carrie A. Sibbald
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Thomas E. Frederick
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Jimah
- Department
of Molecular Microbiology, Washington University
School of Medicine, 660
South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Catherine R. Knoverek
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Niraj H. Tolia
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
- Department
of Molecular Microbiology, Washington University
School of Medicine, 660
South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Gregory R. Bowman
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, St.
Louis, Missouri 63130, United States
| |
Collapse
|
265
|
Danielson TA, Stine JM, Dar TA, Briknarova K, Bowler BE. Effect of an Imposed Contact on Secondary Structure in the Denatured State of Yeast Iso-1-cytochrome c. Biochemistry 2017; 56:6662-6676. [PMID: 29148740 DOI: 10.1021/acs.biochem.7b01002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is considerable evidence that long-range interactions stabilize residual protein structure under denaturing conditions. However, evaluation of the effect of a specific contact on structure in the denatured state has been difficult. Iso-1-cytochrome c variants with a Lys54 → His mutation form a particularly stable His-heme loop in the denatured state, suggestive of loop-induced residual structure. We have used multidimensional nuclear magnetic resonance methods to assign 1H and 15N backbone amide and 13C backbone and side chain chemical shifts in the denatured state of iso-1-cytochrome c carrying the Lys54 → His mutation in 3 and 6 M guanidine hydrochloride and at both pH 6.4, where the His54-heme loop is formed, and pH 3.6, where the His54-heme loop is broken. Using the secondary structure propensity score, with the 6 M guanidine hydrochloride chemical shift data as a random coil reference state for data collected in 3 M guanidine hydrochloride, we found residual helical structure in the denatured state for the 60s helix and the C-terminal helix, but not in the N-terminal helix in the presence or absence of the His54-heme loop. Non-native helical structure is observed in two regions that form Ω-loops in the native state. There is more residual helical structure in the C-terminal helix at pH 6.4 when the loop is formed. Loop formation also appears to stabilize helical structure near His54, consistent with induction of helical structure observed when His-heme bonds form in heme-peptide model systems. The results are discussed in the context of the folding mechanism of cytochrome c.
Collapse
Affiliation(s)
- Travis A Danielson
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Jessica M Stine
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Tanveer A Dar
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Klara Briknarova
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| |
Collapse
|
266
|
Gardner NW, McGinness SM, Panchal J, Topp EM, Park C. A Cooperative Folding Unit as the Structural Link for Energetic Coupling within a Protein. Biochemistry 2017; 56:6555-6564. [PMID: 29166011 DOI: 10.1021/acs.biochem.7b00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we demonstrated that binding of a ligand to Escherichia coli cofactor-dependent phosphoglycerate mutase (dPGM), a homodimeric protein, is energetically coupled with dimerization. The equilibrium unfolding of dPGM occurs with a stable, monomeric intermediate. Binding of several nonsubstrate metabolites stabilizes the dimeric native form over the monomeric intermediate, reducing the population of the intermediate. Both the active site and the dimer interface appear to be unfolded in the intermediate. We hypothesized that a loop containing residues 118-152 was responsible for the energetic coupling between the dimer interface and the distal active site and was unfolded in the intermediate. Here, we investigated the structure of the dPGM intermediate by probing side-chain interactions and solvent accessibility of the peptide backbone. By comparing the effect of a mutation on the global stability and the stability of the intermediate, we determine an equilibrium φ value (φeq value), which provides information about whether side-chain interactions are retained or lost in the intermediate. Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) was used to investigate differences in the solvent accessibility of the peptide backbone in the intermediate and native forms of dPGM. The results of φeq value analysis and HDX-MS reveal the least stable folding unit of dPGM, which is unfolded in the intermediate and links the active site to the dimer interface. The structure of the intermediate reveals how the cooperative network of residues in dPGM gives rise to the observed energetic coupling between dimerization and ligand binding.
Collapse
Affiliation(s)
- Nathan W Gardner
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡Interdisciplinary Life Science Graduate Program, §Department of Industrial and Physical Pharmacy, and ∥Bindley Bioscience Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarah M McGinness
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡Interdisciplinary Life Science Graduate Program, §Department of Industrial and Physical Pharmacy, and ∥Bindley Bioscience Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jainik Panchal
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡Interdisciplinary Life Science Graduate Program, §Department of Industrial and Physical Pharmacy, and ∥Bindley Bioscience Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Elizabeth M Topp
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡Interdisciplinary Life Science Graduate Program, §Department of Industrial and Physical Pharmacy, and ∥Bindley Bioscience Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Chiwook Park
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡Interdisciplinary Life Science Graduate Program, §Department of Industrial and Physical Pharmacy, and ∥Bindley Bioscience Center, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
267
|
Seelig J. Cooperative protein unfolding. A statistical-mechanical model for the action of denaturants. Biophys Chem 2017; 233:19-25. [PMID: 29232602 DOI: 10.1016/j.bpc.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 01/09/2023]
Abstract
Knowledge of protein stability is of utmost importance in various fields of biotechnology. Protein stability can be assessed in solution by increasing the concentration of denaturant and recording the structural changes with spectroscopic or thermodynamic methods. The standard interpretation of the experimental data is to assume a 2-state equilibrium between completely folded and completely unfolded protein molecules. Here we propose a cooperative model based on the statistical-mechanical Zimm-Bragg theory. In this model protein unfolding is driven by the weak binding of a rather small number of denaturant molecules, inducing the cooperative unfolding with multiple dynamic intermediates. The modified Zimm-Bragg theory is applied to published thermodynamic and spectroscopic data leading to the following conclusions. (i) The binding constant KD is correlated with the midpoint concentration, c0, of the unfolding reaction according to c0≅1/KD. The better the binding of denaturant the lower is the concentration to achieve unfolding. (ii) The binding constant KD agrees with direct thermodynamic measurements. A rather small number of bound denaturants suffices to induce the cooperative unfolding of the whole protein. (iii) Chemical unfolding occurs in the concentration range ΔcD=cend-cini. The theory predicts the unfolding energy per amino acid residue as gnu=RTKD(cend-cini). The Gibbs free energy of an osmotic gradient of the same size is ΔGDiff=-RTln(cend/cini). In all examples investigated ΔGDiff exactly balances the unfolding energy gnu. The total unfolding energy is thus close to zero. (iv) Protein cooperativity in chemical unfolding is rather low with cooperativity parameters σ≥3x10-3. As a consequence, the theory predicts a dynamic mixture of conformations during the unfolding reaction. The probabilities of individual conformations are easily accessible via the partition function Z(cD,σ).
Collapse
Affiliation(s)
- J Seelig
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
268
|
Conservation of folding and association within a family of spidroin N-terminal domains. Sci Rep 2017; 7:16789. [PMID: 29196631 PMCID: PMC5711802 DOI: 10.1038/s41598-017-16881-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Web spiders synthesize silk fibres, nature’s toughest biomaterial, through the controlled assembly of fibroin proteins, so-called spidroins. The highly conserved spidroin N-terminal domain (NTD) is a pH-driven self-assembly device that connects spidroins to super-molecules in fibres. The degree to which forces of self-assembly is conserved across spider glands and species is currently unknown because quantitative measures are missing. Here, we report the comparative investigation of spidroin NTDs originating from the major ampullate glands of the spider species Euprosthenops australis, Nephila clavipes, Latrodectus hesperus, and Latrodectus geometricus. We characterized equilibrium thermodynamics and kinetics of folding and self-association using dynamic light scattering, stopped-flow fluorescence and circular dichroism spectroscopy in combination with thermal and chemical denaturation experiments. We found cooperative two-state folding on a sub-millisecond time scale through a late transition state of all four domains. Stability was compromised by repulsive electrostatic forces originating from clustering of point charges on the NTD surface required for function. pH-driven dimerization proceeded with characteristic fast kinetics yielding high affinities. Results showed that energetics and kinetics of NTD self-assembly are highly conserved across spider species despite the different silk mechanical properties and web geometries they produce.
Collapse
|
269
|
Skvarnavičius G, Toleikis Z, Grigaliūnas M, Smirnovienė J, Norvaišas P, Cimmperman P, Matulis D, Petrauskas V. High pressure spectrofluorimetry – a tool to determine protein-ligand binding volume. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/950/4/042001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
270
|
Rational design of proteins that exchange on functional timescales. Nat Chem Biol 2017; 13:1280-1285. [DOI: 10.1038/nchembio.2503] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
|
271
|
Bisht M, Mondal D, Pereira MM, Freire MG, Venkatesu P, Coutinho JAP. Long-term protein packaging in bio-ionic liquids: Improved catalytic activity and enhanced stability of cytochrome C against multiple stresses. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2017; 19:4900-4911. [PMID: 30271272 PMCID: PMC6157724 DOI: 10.1039/c7gc02011b] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There is a considerable interest in the use of structurally stable and catalytically active enzymes, such as cytochrome C (Cyt C), in the pharmaceutical and fine chemical industries. However, harsh process conditions, such as temperature, pH, and presence of organic solvents, are the major barriers to the effective use of enzymes in biocatalysis. Herein, we demonstrate the suitability of bio-based ionic liquids (ILs) formed by the cholinium cation and dicarboxylate-based anions as potential media for enzymes, in which remarkable enhanced activity and improved stability of Cyt C against multiple stresses were obtained. Among the several bio-ILs studied, an exceptionally high catalytic activity (> 50-fold) of Cyt C was observed in aqueous solutions of cholinium glutarate ([Ch][Glu]; 1g/mL) as compared to the commonly used phosphate buffer solutions (pH 7.2), and > 25-fold as compared to aqueous solutions of cholinium dihydrogen phosphate ([Ch][Dhp]; 0.5g/mL) -the best known IL for long term stability of Cyt C. The catalytic activity of the enzyme in presence of bio-ILs was retained against several external stimulus, such as chemical denaturants (H2O2 and GuHCl), and temperatures up to 120 °C. The observed enzyme activity is in agreement with its structural stability, as confirmed by UV-Vis, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopies. Taking advantage of the multi-ionization states of di/tri-carboxylic acids, the pH was switched from acidic to basic by the addition of the corresponding carboxylic acid and choline hydroxide, respectively. The activity was found to be maximum at a 1:1 ratio of [Ch][carboxylate], with a pH in the range from 3 to 5.5. Moreover, it was found that the bio-ILs studied herein protect the enzyme against protease digestion and allow long-term storage (at least for 21 weeks) at room temperature. An attempt by molecular docking was also made to better understand the efficacy of the investigated bio-ILs towards the enhanced activity and long term stability of Cyt C. The results showed that dicarboxylates anions interact with the active site's amino acids of the enzyme through H-bonding and electrostatic interactions, which are responsible for the observed enhancement of the catalytic activity. Finally, it is demonstrated that Cyt C can be successfully recovered from the aqueous solution of bio-ILs and reused without compromising its yield, structural integrity and catalytic activity, thereby overcoming the major limitations in the use of IL-protein systems in biocatalysis.
Collapse
Affiliation(s)
- Meena Bisht
- Department of Chemistry, University of Delhi, Delhi – 110 007, India
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Dibyendu Mondal
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Matheus M. Pereira
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G. Freire
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - P. Venkatesu
- Department of Chemistry, University of Delhi, Delhi – 110 007, India
| | - J. A. P. Coutinho
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
272
|
Foldability of a Natural De Novo Evolved Protein. Structure 2017; 25:1687-1696.e4. [PMID: 29033289 DOI: 10.1016/j.str.2017.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/22/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo.
Collapse
|
273
|
Garay Sánchez SA, Rodríguez Álvarez FJ, Zavala-Padilla G, Mejia-Cristobal LM, Cruz-Rangel A, Costas M, Fernández Velasco DA, Melendez-Zajgla J, Del Pozo-Yauner L. Stability and aggregation propensity do not fully account for the association of various germline variable domain gene segments with light chain amyloidosis. Biol Chem 2017; 398:477-489. [PMID: 27935845 DOI: 10.1515/hsz-2016-0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022]
Abstract
Variable domain (VL) gene segments exhibit variable tendencies to be associated with light chain amyloidosis (AL). While few of them are very frequent in AL and give rise to most of the amyloidogenic light chains compiled at the sequence databases, other are rarely found among the AL cases. To analyze to which extent these tendencies depend on folding stability and aggregation propensity of the germline VL protein, we characterized VL proteins encoded by four AL-associated germline gene segments and one not associated to AL. We found that the AL-associated germline rVL proteins differ widely in conformational stability and propensity to in vitro amyloid aggregation. While in vitro the amyloid formation kinetics of these proteins correlate well with their folding stabilities, the folding stability does not clearly correlate with their germline's frequencies in AL. We conclude that the association of the VL genes segments to amyloidosis is not determined solely by the folding stability and aggregation propensity of the germline VL protein. Other factors, such as the frequencies of destabilizing mutations and susceptibility to proteolysis, must play a role in determining the light chain amyloidogenicity.
Collapse
|
274
|
Addressing the role of the α-helical extension in the folding of the third PDZ domain from PSD-95. Sci Rep 2017; 7:12593. [PMID: 28974728 PMCID: PMC5626748 DOI: 10.1038/s41598-017-12827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
PDZ domains are one of the most important protein-protein interaction domains in human. While presenting a conserved three dimensional structure, a substantial number of PDZ domains display structural extensions suggested to be involved in their folding and binding mechanisms. The C-terminal α-helix extension (α3) of the third PDZ domain from PSD-95 (PDZ3) has been reported to have a role in function of the domain as well as in the stabilization of the native fold. Here we report an evaluation of the effect of the truncation of this additional helix on the folding and unfolding kinetics of PDZ3. Fluorescent variants of full length and truncated PDZ3 were produced and stopped-flow fluorescence measurements were made under different experimental conditions (pH, ionic strength and temperature) to investigate the folding kinetics of the respective variant. The results show that folding of PDZ3 is robust and that the mechanism is only marginally affected by the truncation, which contributes to a destabilization of the native state, but otherwise do not change the overall observed kinetics. Furthermore, the increase in the unfolding rate constants, but not the folding rate constant upon deletion of α3 suggests that the α-helical extension is largely unstructured in the folding transition state.
Collapse
|
275
|
Samatanga B, Cléry A, Barraud P, Allain FHT, Jelesarov I. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Res 2017; 45:6037-6050. [PMID: 28334819 PMCID: PMC5449602 DOI: 10.1093/nar/gkx136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process.
Collapse
Affiliation(s)
- Brighton Samatanga
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland.,Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Ilian Jelesarov
- Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
276
|
Takekiyo T, Yoshida K, Funahashi Y, Nagata S, Abe H, Yamaguchi T, Yoshimura Y. Helix-forming ability of proteins in alkylammonium nitrate. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
277
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
278
|
Spencer RK, Hochbaum AI. The Phe-Ile Zipper: A Specific Interaction Motif Drives Antiparallel Coiled-Coil Hexamer Formation. Biochemistry 2017; 56:5300-5308. [DOI: 10.1021/acs.biochem.7b00756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan K. Spencer
- Department of Chemistry and Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California 92697-2575, United States
| | - Allon I. Hochbaum
- Department of Chemistry and Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California 92697-2575, United States
| |
Collapse
|
279
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
280
|
Yefremova Y, Melder FTI, Danquah BD, Opuni KFM, Koy C, Ehrens A, Frommholz D, Illges H, Koelbel K, Sobott F, Glocker MO. Apparent activation energies of protein-protein complex dissociation in the gas-phase determined by electrospray mass spectrometry. Anal Bioanal Chem 2017; 409:6549-6558. [PMID: 28900708 DOI: 10.1007/s00216-017-0603-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
We have developed a method to determine apparent activation energies of dissociation for ionized protein-protein complexes in the gas phase using electrospray ionization mass spectrometry following the Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory. Protein-protein complexes were formed in solution, transferred into the gas phase, and separated from excess free protein by ion mobility filtering. Afterwards, complex disassembly was initiated by collision-induced dissociation with step-wise increasing energies. Relative intensities of ion signals were used to calculate apparent activation energies of dissociation in the gas phase by applying linear free energy relations. The method was developed using streptavidin tetramers. Experimentally determined apparent gas-phase activation energies for dissociation ([Formula: see text]) of complexes consisting of Fc parts from immunoglobulins (IgG-Fc) and three closely related protein G' variants (IgG-Fc•protein G'e, IgG-Fc•protein G'f, and IgG-Fc•protein G'g) show the same order of stabilities as can be inferred from their in-solution binding constants. Differences in stabilities between the protein-protein complexes correspond to single amino acid residue exchanges in the IgG-binding regions of the protein G' variants. Graphical abstract Electrospray mass spectrometry and collision-induced dissociation delivers apparent activation energies and supramolecular bond force constants of protein-protein complexes in the gas phase.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - F Teresa I Melder
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Kwabena F M Opuni
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany.,School of Pharmacy, University of Ghana, P.O. Box LG43, Legon Accra, Ghana
| | - Cornelia Koy
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Alexandra Ehrens
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany.,University Hospital of Bonn, Sigmung-Freud-Str. 25, 53105, Bonn, Germany
| | - David Frommholz
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Harald Illges
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Knut Koelbel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael O Glocker
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany.
| |
Collapse
|
281
|
Shah DD, Singh SM, Dzieciatkowska M, Mallela KMG. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP). PLoS One 2017; 12:e0183975. [PMID: 28886061 PMCID: PMC5590874 DOI: 10.1371/journal.pone.0183975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022] Open
Abstract
Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell.
Collapse
Affiliation(s)
- Dinen D Shah
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Monika Dzieciatkowska
- Biological Mass Spectrometry Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.,Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
282
|
Lou X, Yang Q, Sun Y, Pan D, Cao J. The effect of microwave on the interaction of flavour compounds with G-actin from grass carp (Catenopharyngodon idella). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3917-3922. [PMID: 28345129 DOI: 10.1002/jsfa.8325] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/22/2017] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND In order to investigate the influence of non-thermal effects of microwaves on the flavour of fish and meat products, the G-actin of grass carp in ice baths was exposed to different microwave powers (0, 100, 300 or 500 W); the surface hydrophobicity, sulfhydryl contents, secondary structures and adsorption capacity of G-actin to ketones were determined. RESULTS As microwave power increased from 0 to 300 W, the surface hydrophobicity, total and reactive sulfhydryls increased; α-helix, β-sheet and random coil fractions turned into β-turn fractions. As microwave power increased from 300 to 500 W, however, hydrophobicity and sulfhydryl contents decreased; β-turn and random coil fractions turned into α-helix and β-sheet fractions. The tendencies of adsorbed capacity of ketones were similar to hydrophobicity and sulfhydryl contents. CONCLUSION The increased adsorbing of ketones could be attributed to the unfolding of secondary structures by revealing new binding sites, including thiol groups and hydrophobic binding sites. The decreased binding capacity was related to the refolding and aggregation of protein. The results suggested that microwave powers had obvious effects on the flavour retention and proteins structures in muscle foods. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Lou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Qiuli Yang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
283
|
Watson MD, Monroe J, Raleigh DP. Size-Dependent Relationships between Protein Stability and Thermal Unfolding Temperature Have Important Implications for Analysis of Protein Energetics and High-Throughput Assays of Protein–Ligand Interactions. J Phys Chem B 2017; 122:5278-5285. [DOI: 10.1021/acs.jpcb.7b05684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Daniel P. Raleigh
- Research Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
284
|
Exploring the Denatured State Ensemble by Single-Molecule Chemo-Mechanical Unfolding: The Effect of Force, Temperature, and Urea. J Mol Biol 2017; 430:450-464. [PMID: 28782558 DOI: 10.1016/j.jmb.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions.
Collapse
|
285
|
Schwinefus JJ, Baka NL, Modi K, Billmeyer KN, Lu S, Haase LR, Menssen RJ. l-Proline and RNA Duplex m-Value Temperature Dependence. J Phys Chem B 2017; 121:7247-7255. [PMID: 28737394 DOI: 10.1021/acs.jpcb.7b03608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.
Collapse
Affiliation(s)
- Jeffrey J Schwinefus
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Nadia L Baka
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kalpit Modi
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kaylyn N Billmeyer
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Shutian Lu
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Lucas R Haase
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Ryan J Menssen
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| |
Collapse
|
286
|
Rosa DP, Pereira EV, Vasconcelos AVB, Cicilini MA, da Silva AR, Lacerda CD, de Oliveira JS, Santoro MM, Coitinho JB, Santos AMC. Determination of structural and thermodynamic parameters of bovine α-trypsin isoform in aqueous-organic media. Int J Biol Macromol 2017; 101:408-416. [DOI: 10.1016/j.ijbiomac.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
287
|
Nawata M, Tsutsumi H, Kobayashi Y, Unzai S, Mine S, Nakamura T, Uegaki K, Kamikubo H, Kataoka M, Hamada D. Heat-induced native dimerization prevents amyloid formation by variable domain from immunoglobulin light-chain REI. FEBS J 2017; 284:3114-3127. [PMID: 28736891 DOI: 10.1111/febs.14181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is a protein-misfolding disease characterized by accumulation of immunoglobulin light chains (LCs) into amyloid fibrils. Dimerization of a full length or variable domain (VL ) of LC serves to stabilize the native state and prevent the formation of amyloid fibrils. We here analyzed the thermodynamic properties of dimerization and unfolding reactions by nonamyloidogenic VL from REI LC or its monomeric Y96K mutant using sedimentation velocity and circular dichroism. The data indicate that the equilibrium shifts to native dimerization for wild-type REI VL by elevating temperature due to the negative enthalpy change for dimer dissociation (-81.2 kJ·mol-1 ). The Y96K mutation did not affect the stability of the monomeric native state but increased amyloidogenicity. These results suggest that the heat-induced native homodimerization is the major factor preventing amyloid formation by wild-type REI VL . Heat-induced native oligomerization may be an efficient strategy to avoid the formation of misfolded aggregates particularly for thermostable proteins that are used at elevated temperatures under conditions where other proteins tend to misfold. DATABASE Structural data are available in the Protein Data Bank under the accession numbers 5XP1 and 5XQY.
Collapse
Affiliation(s)
| | | | | | - Satoru Unzai
- Protein Design Laboratory, Yokohama City University, Japan
| | - Shouhei Mine
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Tsutomu Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Koichi Uegaki
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Hironari Kamikubo
- Laboratory of Bioenergetics and Biophysics, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Mikio Kataoka
- Laboratory of Bioenergetics and Biophysics, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Daizo Hamada
- Graduate School of Medicine, Kobe University, Japan.,Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan.,Graduate School of Engineering, Kobe University, Japan.,Center for Applied Structural Science (CASS), Kobe University, Japan
| |
Collapse
|
288
|
Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1. Biophys J 2017; 110:2349-2360. [PMID: 27276253 DOI: 10.1016/j.bpj.2016.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/04/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
The forkhead family of transcription factors (Fox) controls gene transcription during key processes such as regulation of metabolism, embryogenesis, and immunity. Structurally, Fox proteins feature a conserved DNA-binding domain known as forkhead. Interestingly, solved forkhead structures of members from the P subfamily (FoxP) show that they can oligomerize by three-dimensional domain swapping, whereby structural elements are exchanged between adjacent subunits, leading to an intertwined dimer. Recent evidence has largely stressed the biological relevance of domain swapping in FoxP, as several disease-causing mutations have been related to impairment of this process. Here, we explore the equilibrium folding and binding mechanism of the forkhead domain of wild-type FoxP1, and of two mutants that hinder DNA-binding (R53H) and domain swapping (A39P), using size-exclusion chromatography, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. Our results show that domain swapping of FoxP1 occurs at micromolar protein concentrations within hours of incubation and is energetically favored, in contrast to classical domain-swapping proteins. Also, DNA-binding mutations do not significantly affect domain swapping. Remarkably, equilibrium unfolding of dimeric FoxP1 follows a three-state N2 ↔ 2I ↔ 2U folding mechanism in which dimer dissociation into a monomeric intermediate precedes protein unfolding, in contrast to the typical two-state model described for most domain-swapping proteins, whereas the A39P mutant follows a two-state N ↔ U folding mechanism consistent with the second transition observed for dimeric FoxP1. Also, the free-energy change of the N ↔ U in A39P FoxP1 is ∼2 kcal⋅mol(-1) larger than the I ↔ U transition of both wild-type and R53H FoxP1. Finally, hydrogen-deuterium exchange mass spectrometry reveals that the intermediate strongly resembles the native state. Our results suggest that domain swapping in FoxP1 is at least partially linked to monomer folding stability and follows an unusual three-state folding mechanism, which might proceed via transient structural changes rather than requiring complete protein unfolding as do most domain-swapping proteins.
Collapse
|
289
|
Kobayashi S, Fujii S, Koga A, Wakai S, Matubayasi N, Sambongi Y. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length. Biosci Biotechnol Biochem 2017; 81:1274-1278. [DOI: 10.1080/09168451.2017.1303361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Reversible denaturation of Pseudomonas aeruginosa cytochrome c551 (PAc551) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc551, for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.
Collapse
Affiliation(s)
- Shinya Kobayashi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aya Koga
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Satoshi Wakai
- Graduate School of Science Technology and Innovation, Kobe University, Kobe, Japan
| | - Nobuyuki Matubayasi
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
290
|
Aslanyan L, Ko J, Kim BG, Vardanyan I, Dalyan YB, Chalikian TV. Effect of Urea on G-Quadruplex Stability. J Phys Chem B 2017; 121:6511-6519. [DOI: 10.1021/acs.jpcb.7b03479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lusine Aslanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Jordan Ko
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Byul G. Kim
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ishkhan Vardanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Yeva B. Dalyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Tigran V. Chalikian
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
291
|
Hong J, Xiong S. TMAO-Protein Preferential Interaction Profile Determines TMAO's Conditional In Vivo Compatibility. Biophys J 2017; 111:1866-1875. [PMID: 27806268 DOI: 10.1016/j.bpj.2016.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) exemplifies how Nature uses the solute effect as a simple chemical strategy to cope with hydrodynamic pressure or urea stress to maintain proteostasis. It is a gut-microbe-generated metabolite that strongly promotes the development of atherosclerosis. It remains unclear how TMAO exerts its effects. In this study, we experimentally characterized the profile of the preferential interaction potential of TMAO with proteins, a thermodynamic key to understanding the effects of TMAO on protein processes and the distinction of TMAO among osmolytes. TMAO is thus found to be highly preferentially excluded from most types of protein surface, which explains why TMAO is a strong globular protein stabilizer and identifies the dominant stabilizing factor as the unfavorable interaction of TMAO with the hydrophobic surface exposed upon unfolding. We dissected the mechanism of the counteracting effects of TMAO and urea: the contrary feature of the interaction profiles of the two solutes maximizes the possibility for them to offset each other's perturbing effect on protein processes. The interaction profile also predicts that TMAO promotes aggregation of amyloidogenic intrinsically disordered peptide, as demonstrated here in Aβ42, and that TMAO has a strong potential to impact protein processes in the absence of stressors. Our data suggest that although TMAO is an evolutionally selected chemical chaperone for some organisms or organs, its compatibility in vivo is conditional and determined by its interaction profile with biopolymers and the nature of the essential biopolymer processes. Our thermodynamic framework plus the TMAO-protein interaction profile provides a basis for exploring the broad biological significance of TMAO, including its pathological impact in the absence of stressors. We argue for the general importance of controlling in vivo background solutes and the pathological significance of a control failure.
Collapse
Affiliation(s)
- Jiang Hong
- School of Life Sciences, Shanghai University, Shanghai, China; Experimental Center for Life Sciences, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Shangqin Xiong
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
292
|
Rogne P, Wolf-Watz M. Urea-Dependent Adenylate Kinase Activation following Redistribution of Structural States. Biophys J 2017; 111:1385-1395. [PMID: 27705762 DOI: 10.1016/j.bpj.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022] Open
Abstract
Proteins are often functionally dependent on conformational changes that allow them to sample structural states that are sparsely populated in the absence of a substrate or binding partner. The distribution of such structural microstates is governed by their relative stability, and the kinetics of their interconversion is governed by the magnitude of associated activation barriers. Here, we have explored the interplay among structure, stability, and function of a selected enzyme, adenylate kinase (Adk), by monitoring changes in its enzymatic activity in response to additions of urea. For this purpose we used a 31P NMR assay that was found useful for heterogeneous sample compositions such as presence of urea. It was found that Adk is activated at low urea concentrations whereas higher urea concentrations unfolds and thereby deactivates the enzyme. From a quantitative analysis of chemical shifts, it was found that urea redistributes preexisting structural microstates, stabilizing a substrate-bound open state at the expense of a substrate-bound closed state. Adk is rate-limited by slow opening of substrate binding domains and the urea-dependent redistribution of structural states is consistent with a model where the increased activity results from an increased rate-constant for domain opening. In addition, we also detected a strong correlation between the catalytic free energy and free energy of substrate (ATP) binding, which is also consistent with the catalytic model for Adk. From a general perspective, it appears that urea can be used to modulate conformational equilibria of folded proteins toward more expanded states for cases where a sizeable difference in solvent-accessible surface area exists between the states involved. This effect complements the action of osmolytes, such as trimethylamine N-oxide, that favor more compact protein states.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
293
|
Troilo F, Bonetti D, Toto A, Visconti L, Brunori M, Longhi S, Gianni S. The Folding Pathway of the KIX Domain. ACS Chem Biol 2017; 12:1683-1690. [PMID: 28459531 DOI: 10.1021/acschembio.7b00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The KIX domain is an 89-residues globular domain with an important role in mediating protein-protein interactions. The presence of two distinct binding sites in such a small domain makes KIX a suitable candidate to investigate the effect of the potentially divergent demands between folding and function. Here, we report an extensive mutational analysis of the folding pathway of the KIX domain, based on 30 site-directed mutants, which allow us to assess the structures of both the transition and denatured states. Data reveal that, while the transition state presents mostly native-like interactions, the denatured state is somewhat misfolded. We mapped some of the non-native contacts in the denatured state using a second round of mutagenesis, based on double mutant cycles on 15 double mutants. Interestingly, such a misfolding arises from non-native interactions involving the residues critical for the function of the protein. The results described in this work appear to highlight the diverging demands between folding and function that may lead to misfolding, which may be observed in the early stages of folding.
Collapse
Affiliation(s)
- Francesca Troilo
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | - Daniela Bonetti
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Maurizio Brunori
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
294
|
Iyer BR, Zadafiya P, Vetal PV, Mahalakshmi R. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. J Biol Chem 2017; 292:12351-12365. [PMID: 28592485 PMCID: PMC5519381 DOI: 10.1074/jbc.m117.789446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Punit Zadafiya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Pallavi Vijay Vetal
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India.
| |
Collapse
|
295
|
Schneider M, Walta S, Cadek C, Richtering W, Willbold D. Fluorescence correlation spectroscopy reveals a cooperative unfolding of monomeric amyloid-β 42 with a low Gibbs free energy. Sci Rep 2017; 7:2154. [PMID: 28526839 PMCID: PMC5438374 DOI: 10.1038/s41598-017-02410-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
The amyloid-beta peptide (Aβ) plays a major role in the progression of Alzheimer's disease. Due to its high toxicity, the 42 amino acid long isoform Aβ42 has become of considerable interest. The Aβ42 monomer is prone to aggregation down to the nanomolar range which makes conventional structural methods such as NMR or X-ray crystallography infeasible. Conformational information, however, will be helpful to understand the different aggregation pathways reported in the literature and will allow to identify potential conditions that favour aggregation-incompetent conformations. In this study, we applied fluorescence correlation spectroscopy (FCS) to investigate the unfolding of Alexa Fluor 488 labelled monomeric Aβ42 using guanidine hydrochloride as a denaturant. We show that our Aβ42 pre-treatment and the low-nanomolar concentrations, typically used for FCS measurements, strongly favour the presence of monomers. Our results reveal that there is an unfolding/folding behaviour of monomeric Aβ42. The existence of a cooperative unfolding curve suggests the presence of structural elements with a Gibbs free energy of unfolding of about 2.8 kcal/mol.
Collapse
Affiliation(s)
- Mario Schneider
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Stefan Walta
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Chris Cadek
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. .,Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, Jülich, Germany.
| |
Collapse
|
296
|
El-Baba TJ, Woodall DW, Raab SA, Fuller DR, Laganowsky A, Russell DH, Clemmer DE. Melting Proteins: Evidence for Multiple Stable Structures upon Thermal Denaturation of Native Ubiquitin from Ion Mobility Spectrometry-Mass Spectrometry Measurements. J Am Chem Soc 2017; 139:6306-6309. [DOI: 10.1021/jacs.7b02774] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tarick J. El-Baba
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Daniel W. Woodall
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A. Raab
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Daniel R. Fuller
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
297
|
Iacovelli F, Idili A, Benincasa A, Mariottini D, Ottaviani A, Falconi M, Ricci F, Desideri A. Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch. J Am Chem Soc 2017; 139:5321-5329. [PMID: 28365993 DOI: 10.1021/jacs.6b11470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we couple experimental and simulative techniques to characterize the structural/dynamical behavior of a pH-triggered switching mechanism based on the formation of a parallel DNA triple helix. Fluorescent data demonstrate the ability of this structure to reversibly switch between two states upon pH changes. Two accelerated, half microsecond, MD simulations of the system having protonated or unprotonated cytosines, mimicking the pH 5.0 and 8.0 conditions, highlight the importance of the Hoogsteen interactions in stabilizing the system, finely depicting the time-dependent disruption of the hydrogen bond network. Urea-unfolding experiments and MM/GBSA calculations converge in indicating a stabilization energy at pH 5.0, 2-fold higher than that observed at pH 8.0. These results validate the pH-controlled behavior of the designed structure and suggest that simulative approaches can be successfully coupled with experimental data to characterize responsive DNA-based nanodevices.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Andrea Idili
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Benincasa
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Davide Mariottini
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessio Ottaviani
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Mattia Falconi
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Francesco Ricci
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Desideri
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| |
Collapse
|
298
|
Narayan A, Naganathan AN. Tuning the Continuum of Structural States in the Native Ensemble of a Regulatory Protein. J Phys Chem Lett 2017; 8:1683-1687. [PMID: 28345920 PMCID: PMC5464678 DOI: 10.1021/acs.jpclett.7b00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mesoscale nature of proteins allows for an efficient coupling between environmental cues and conformational changes, enabling their function as molecular transducers. Delineating the precise structural origins of such a connection and the expected spectroscopic response has, however, been challenging. In this work, we perform a combination of urea-temperature double perturbation experiments and theoretical modeling to probe the conformational landscape of Cnu, a natural thermosensor protein. We observe unique ensemble signatures that point to a continuum of conformational substates in the native ensemble and that respond intricately to perturbations upon monitoring secondary and tertiary structures, distances between an intrinsic FRET pair, and hydrodynamic volumes. Binding assays further reveal a weakening of the Cnu functional complex with temperature, highlighting the molecular origins of signal transduction critical for pathogenic response in enterobacteriaceae.
Collapse
|
299
|
Tripp KW, Sternke M, Majumdar A, Barrick D. Creating a Homeodomain with High Stability and DNA Binding Affinity by Sequence Averaging. J Am Chem Soc 2017; 139:5051-5060. [PMID: 28326770 DOI: 10.1021/jacs.6b11323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is considerable interest in generating proteins with both high stability and high activity for biomedical and industrial purposes. One approach that has been used successfully to increase the stability of linear repeat proteins is consensus design. It is unclear the extent over which the consensus design approach can be used to produce folded and hyperstable proteins, and importantly, whether such stabilized proteins would retain function. Here we extend the consensus strategy to design a globular protein. We show that a consensus-designed homeodomain (HD) sequence adopts a cooperatively folded homeodomain structure. The unfolding free energy of the consensus-HD is 5 kcal·mol-1 higher than that of the naturally occurring engrailed-HD from Drosophila melanogaster. Remarkably, the consensus-HD binds the engrailed-HD cognate DNA in a similar mode as the engrailed-HD with approximately 100-fold higher affinity. 15N relaxation studies show a decrease in ps-ns backbone dynamics in the free state of consensus-HD, suggesting that increased affinity is not a result of increased plasticity. In addition to demonstrating the potential for consensus design of globular proteins with increased stability, these results demonstrate that greatly stabilized proteins can bind cognate substrates with increased affinities, showing that high stability is compatible with function.
Collapse
Affiliation(s)
- Katherine W Tripp
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Matt Sternke
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Doug Barrick
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
300
|
Effects of metal oxide nanoparticles on the structure and activity of lysozyme. Colloids Surf B Biointerfaces 2017; 151:344-353. [DOI: 10.1016/j.colsurfb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 11/21/2022]
|