251
|
Margerie D, Flechtenmacher J, Büttner FH, Karbowski A, Puhl W, Schleyerbach R, Bartnik E. Complexity of IL-1 beta induced gene expression pattern in human articular chondrocytes. Osteoarthritis Cartilage 1997; 5:129-38. [PMID: 9135824 DOI: 10.1016/s1063-4584(97)80006-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mRNA fingerprinting technique, differential display reverse transcription polymerase chain (DDRT-PCR), was used to detect changes in the overall pattern of gene expression in human articular knee chondrocytes-induced by interleukin-1 beta (IL-1 beta), the prototypical inducer of catabolic responses in degenerate joint diseases. One hundred different primer combinations generated approximately 10,000 different PCR fragments for IL-1 beta treated, as well as for untreated human chondrocytes, cultivated in alginate beads. This represented 53% of all expressed chondrocyte genes as based on statistical considerations. Side by side comparisons of differential display patterns originating from two different donor tissues yielded 44 reproducibly, differentially-displayed cDNA fragments, which were subcloned and sequenced. Sequence homology searches revealed sequence identities to the human necrosis factor alpha (TNF-alpha) and IL-1 regulated gene TSG-6, fibronectin, osteopontin, calnexin, and the DNA repair enzyme ERCC5. The differential expression was confirmed with Northern and quantitative PCR analyses. The known function of these genes and their known IL-1 responsiveness indicate that the employed model system reflects the pleiotropic effects of IL-1 on the overall gene expression in human articular chondrocytes and identifies genes involved in very different biochemical pathways. Twenty-seven cDNAs lacked sequence homologies to known genes and may represent novel genes.
Collapse
|
252
|
Järvinen TA, Moilanen T, Järvinen TL, Moilanen E. Endogenous nitric oxide and prostaglandin E2 do not regulate the synthesis of each other in interleukin-1 beta-stimulated rat articular cartilage. Inflammation 1996; 20:683-92. [PMID: 8979155 DOI: 10.1007/bf01488804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased levels of nitric oxide (NO) and prostaglandins (PG) are present in the synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Interleukin-1 beta (IL-1) has been shown to induce the synthesis of both of these mediators. The present work was designed to study the interactions of NO and PGE2 synthesis induced by IL-1 in rat articular cartilage. Incubation of intact cartilage with IL-1 resulted in different dose response curves for NO and PGE2 synthesis. Two inhibitors of nitric oxide synthase N-monomethyl-L-arginine (L-NMMA) and L-N-iminoethylornithine, (L-NIO), abolished the IL-1-induced nitrite production but failed to have any influence on the PGE2 synthesis. Exogenous NO, produced by two chemically different NO-releasing compounds (SIN-1 and GEA 3175) had no effect on PGE2 synthesis in articular cartilage. Dexamethasone and ketoprofen inhibited IL-1 induced PGE2 production, while nitrite synthesis remained unaltered. Acetylsalicylic acid (ASA) reduced PGE2 synthesis and had a slight inhibitory action also on NO production. In conclusion, our results show, that IL-1 induces the synthesis of both PGE2 and NO in articular cartilage but these two inflammatory mediators are not mediating the synthesis of one another.
Collapse
|
253
|
Verschure PJ, Van Noorden CJ, Van Marle J, Van den Berg WB. Articular cartilage destruction in experimental inflammatory arthritis: insulin-like growth factor-1 regulation of proteoglycan metabolism in chondrocytes. THE HISTOCHEMICAL JOURNAL 1996; 28:835-57. [PMID: 9015706 DOI: 10.1007/bf02331388] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rheumatoid arthritis, a disease of unknown aetiology, is characterized by joint inflammation and, in its later stages, cartilage destruction. Inflammatory mediators may exert not only suppression of matrix synthesis but also cartilage degradation, which eventually leads to severe cartilage depletion. Systemically and locally produced growth factors and hormones regulate cartilage metabolism. Alterations in levels of these factors or in their activity can influence the pathogenesis of articular cartilage destruction in arthritic joints. The main topic of the present review is the role of the anabolic factor insulin-like growth factor-1 in the regulation of chondrocyte metabolic functions in normal and in diseased cartilage. This is the most important growth factor that balances chondrocytes proteoglycan synthesis and catabolism to maintain a functional cartilage matrix. A brief overview of how chondrocytes keep the cartilage matrix intact, and how catabolic and anabolic factors are thought to be involved in pathological cartilage destruction precedes the review of the role of this growth factor in proteoglycan metabolism in cartilage.
Collapse
Affiliation(s)
- P J Verschure
- Department of Rheumatology, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
254
|
Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB. A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A 1996; 93:14014-9. [PMID: 8943052 PMCID: PMC19486 DOI: 10.1073/pnas.93.24.14014] [Citation(s) in RCA: 357] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tetracyclines have recently been shown to have "chondroprotective" effects in inflammatory arthritides in animal models. Since nitric oxide (NO) is spontaneously released from human cartilage affected by osteoarthritis (OA) or rheumatoid arthritis in quantities sufficient to cause cartilage damage, we evaluated the effect of tetracyclines on the expression and function of human OA-affected nitric oxide synthase (OA-NOS) and rodent inducible NOS (iNOS). Among the tetracycline group of compounds, doxycycline > minocycline blocked and reversed both spontaneous and interleukin 1 beta-induced OA-NOS activity in ex vivo conditions. Similarly, minocycline > or = doxycycline inhibited both lipopolysaccharide- and interferon-gamma-stimulated iNOS in RAW 264.7 cells in vitro, as assessed by nitrite accumulation. Although both these enzyme isoforms could be inhibited by doxycycline and minocycline, their susceptibility to each of these drugs was distinct. Unlike acetylating agents or competitive inhibitors of L-arginine that directly inhibit the specific activity of NOS, doxycycline or minocycline has no significant effect on the specific activity of iNOS in cell-free extracts. The mechanism of action of these drugs on murine iNOS expression was found to be, at least in part, at the level of RNA expression and translation of the enzyme, which would account for the decreased iNOS protein and activity of the enzyme. Tetracyclines had no significant effect on the levels of mRNA for beta-actin and glyceraldehyde-3-phosphate dehydrogenase nor on levels of protein of beta-actin and cyclooxygenase 2 expression. These studies indicate that a novel mechanism of action of tetracyclines is to inhibit the expression of NOS. Since the overproduction of NO has been implicated in the pathogenesis of arthritis, as well as other inflammatory diseases, these observations suggest that tetracyclines should be evaluated as potential therapeutic modulators of NO for various pathological conditions.
Collapse
Affiliation(s)
- A R Amin
- Department of Rheumatology, Hospital for Joint Diseases, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Frenkel SR, Clancy RM, Ricci JL, Di Cesare PE, Rediske JJ, Abramson SB. Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. ARTHRITIS AND RHEUMATISM 1996; 39:1905-12. [PMID: 8912514 DOI: 10.1002/art.1780391118] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The migration of cells of chondrocyte lineage is believed to play a role in cartilage growth and repair. The present study examined 1) whether chondrocytes are capable of migration in vitro; and 2) the effects of nitric oxide (NO) on chondrocyte migration, adhesion, and cytoskeletal assembly. METHODS Chondrocyte migration was evaluated by 2 assays: 1) "centrifugal" migration within a 3-dimensional collagen matrix (dot culture); and 2) directed migration under agarose in response to bone morphogenetic protein. To assess the effects of NO, chondrocytes were treated with either exogenous NO (S-nitrosoglutathione [SNO-GSH]) or a mixture of cytokines known to induce endogenous NO production. The effects of NO on chondrocyte adhesion to fibronectin-coated surfaces, as well as on actin polymerization (determined by indirect immunofluorescence), were also examined. RESULTS The capacity of chondrocytes to migrate was demonstrated both by the dot culture and by agarose methods. Both SNO-GSH and endogenous NO induced by cytokines inhibited this migration. Exposure to NO also inhibited attachment of chondrocytes to fibronectin and disrupted assembly of actin filaments. These effects of SNO-GSH and cytokine-induced NO production were reversed in the presence of hemoglobin and the NO synthase inhibitor NG-monomethyl arginine, respectively. CONCLUSION NO interferes with chondrocyte migration and attachment to fibronectin, an extracellular matrix protein, probably via effects on the actin cytoskeleton. These effects of NO may result in impairment of cartilage repair, by interfering with the extracellular matrix regulation of chondrocyte function.
Collapse
Affiliation(s)
- S R Frenkel
- Hospital for Joint Diseases, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
256
|
Jang D, Szabo C, Murrell GA. S-substituted isothioureas are potent inhibitors of nitric oxide biosynthesis in cartilage. Eur J Pharmacol 1996; 312:341-7. [PMID: 8894617 DOI: 10.1016/0014-2999(96)00369-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO.) is a multifunctional messenger molecule generated by a family of enzymes, the nitric oxide synthases, and is overproduced in osteoarthritis and rheumatoid arthritis. Chondrocytes are the major native source of NO. in diarthrodial joints. Chondrocytic inducible nitric oxide synthase induced by inflammatory cytokines and bacterial cell wall fragments mediates many of the catabolic events in arthritis. Agents which specifically inhibit chondrocyte inducible NO. synthase, may thus have a role in the management in arthritis. We evaluated a novel class of potential inducible NO. synthase inhibitors, the S-substituted isothioureas, for their ability to inhibit inducible NO. synthase activity in cultured bovine chondrocytes and explants of cartilage from patients with osteoarthritis. Two isothioureas, S-methyl isothiourea and S-(aminoethyl) isothiourea were 2-4 times more potent than NG-monomethyl-L-arginine monoacetate, 5-10 times more potent than aminoguanidine and over 300 times more potent than N omega-nitro-L-arginine and N omega-nitro-L-arginine methyl ester. The rank order of potency of the NO. synthase inhibitors was S-(aminoethyl) isothiourea > S-methyl isothiourea > NG-monomethyl-L-arginine > aminoguanidine > N omega-nitro-L-arginine = N omega-nitro-L-arginine methyl ester. The order of potency was reversed (N omega-nitro-L-arginine methyl ester = N omega-nitro-L-arginine > NG-monomethyl-L-arginine = S-methyl isothiourea > S-(aminoethyl) isothiourea > aminoguanidine) when evaluating the same compounds ability to inhibit constitutive NO. synthase activity in bovine endothelial cells. In comparison to conventional arginine based analogs, the isothioureas represent a more potent and relatively specific class of inhibitors of inducible NO. synthase in cartilage and thus may be beneficial in the management of arthritis.
Collapse
Affiliation(s)
- D Jang
- Laboratory for Soft Tissue Research, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
257
|
Manfield L, Jang D, Murrell GA. Nitric oxide enhances cyclooxygenase activity in articular cartilage. Inflamm Res 1996; 45:254-8. [PMID: 8737749 DOI: 10.1007/bf02259612] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nitric oxide (NO) is a small messenger molecule synthesized by a family of enzymes, the nitric oxide synthases. Cyclooxygenases are a group of proinflammatory enzymes that release prostaglandins including prostaglandin E2 (PGE2). Both nitric oxide synthase and cyclooxygenase are involved in the inflammatory cascade of arthritis. However, the relationship between these two enzymes and their products has not been explored in articular cartilage. Here we show that in cultured bovine chondrocytes and explants of human osteoarthritic cartilage both nitric oxide synthase and cyclooxygenase activities were induced by the inflammatory mediators, lipopolysaccharide, and interleukin-1 beta or tumor necrosis factor-alpha. When nitric oxide synthase activity was inhibited, PGE2, synthesis was inhibited. NO donors also induced PGE2 synthesis and NO scavengers inhibited cyclooxygenase activity. Taken together, these results support the concept that PGE2 synthesis is directly related to NO formation and that NO may modulate cyclooxygenase activity in articular cartilage.
Collapse
Affiliation(s)
- L Manfield
- Hospital for Special Surgery, Cornell University Medical College, New York, NY, USA
| | | | | |
Collapse
|
258
|
Pelletier JP, Mineau F, Ranger P, Tardif G, Martel-Pelletier J. The increased synthesis of inducible nitric oxide inhibits IL-1ra synthesis by human articular chondrocytes: possible role in osteoarthritic cartilage degradation. Osteoarthritis Cartilage 1996; 4:77-84. [PMID: 8731398 DOI: 10.1016/s1063-4584(96)80009-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The degradation of osteoarthritic (OA) cartilage is likely related to the synthesis and the release of catabolic factors by chondrocytes. Nitric oxide (NO) has recently been suggested as playing a role in cartilage degradation. Since NO production is largely dependent on stimulation by IL-1, its effects on factors regulating the IL-1 biological activity, such as IL-1ra, are of the utmost importance. This study examined and compared the level of NO production by normal and OA cartilage and chondrocytes, as well as studied the effect of IL-1-induced NO production on the synthesis and steady-state mRNA of interleukin-1 receptor antagonist (IL-1ra). The NO baseline production by normal cartilage explants was undetectable but inducible by rhIL-1 beta. OA cartilage spontaneously produced NO. About a two-fold increase in NO production was found in OA rhIL-1 beta-stimulated (0.5-100 units/ml) cartilage as compared with the similarly stimulated normal cartilage. on chondrocytes rhIL-1 beta-stimulation (0.5-100 units/ml) produced a dose-dependent enhancement of both NO production and IL-1ra synthesis. Treatment with 200 microM N(g)-monomethyl-L-arginine (L-NMA), a well known NO synthase inhibitor, induced over 70% inhibition of the NO production and a marked increased IL-1ra synthesis (average of 84%) and expression (mRNA level). Inhibition of prostaglandin synthesis by indomethacin had no effect on both the NO production or the IL-1ra level. In the present study, we demonstrated the capacity of OA cartilage to produce a larger amount of NO than the normal controls, both in spontaneous and IL-1-stimulated conditions. These data support the notion that, in vivo, OA chondrocytes are stimulated by factors, possibly IL-1, which in turn may induce the expression of NO synthase, thus the synthesis of NO itself. Importantly, our results showed that the elevation of of NO production may be an important factor in the pathophysiology of OA since it can reduce IL-1ra synthesis by chondrocytes. As such, an increased level of IL-1, associated with a decreased IL-1ra level, may be responsible for the stimulation of OA chondrocytes by this cytokine, leading to an enhancement of cartilage matrix degradation.
Collapse
Affiliation(s)
- J P Pelletier
- Louis-Charles Simard Research Center, Notre-Dame Hospital, Department of Medicine, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
259
|
Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976) 1996; 21:271-7. [PMID: 8742201 DOI: 10.1097/00007632-199602010-00003] [Citation(s) in RCA: 413] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Herniated lumbar disc specimens were obtained from patients undergoing surgical discectomy for persistent radiculopathy and cultured in vitro to determine whether various biochemical agents were being produced. OBJECTIVES Our hypothesis is that biochemical mediators of inflammation and tissue degradation play a role in intervertebral disc degeneration and in the pathophysiology of radiculopathy. SUMMARY OF BACKGROUND DATA Low back pain with or without radiculopathy is a significant clinical problem, but the etiology of low back pain and the exact pathophysiology of radiculopathy remain elusive. The biochemical events that occur with intervertebral disc degeneration and, in particular, the role of biochemical mediators of inflammation and tissue degradation have received sparse attention in the literature. There is some preliminary evidence that inflammatory mediators may have an important role in the pathophysiology of radiculopathy. METHODS Eighteen herniated lumbar discs were obtained from 15 patients undergoing disc surgery. The specimens were cultured and incubated for 72 hours, and the media were collected subsequently for biochemical analysis. Biochemical assays for matrix metalloproteinases, nitric oxide, prostaglandin E2, and a variety of cytokines were performed. As a control group, eight lumbar disc specimens were obtained from four patients undergoing anterior surgery for scoliosis and traumatic burst fractures, and similar biochemical analyses were performed. RESULTS The culture media from the herniated lumbar discs showed increased levels of matrix metalloproteinase activity compared with the control discs. Similarly, the levels of nitric oxide, prostaglandin E2, and interleukin-6 were significantly higher in the herniated discs compared with the control discs. Interleukin 1 alpha, interleukin-1 beta, tumor necrosis factor-alpha, interleukin-1 receptor antagonist protein, and substance P were not detected in the culture media of either the herniated or control discs. CONCLUSIONS Herniated lumbar discs were making spontaneously increased amounts of matrix metalloproteinases, nitric oxide, prostaglandin E2, and interleukin-6. These products may be involved intimately in the biochemistry of disc degeneration and the pathophysiology of radiculopathy. Their exact roles certainly need further investigation, but their mere presence implicates biochemical processes in intervertebral disc degeneration.
Collapse
Affiliation(s)
- J D Kang
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
260
|
Affiliation(s)
- A J Farrell
- Inflammation Group, London Hospital Medical College, Whitechapel, United Kingdom
| | | |
Collapse
|
261
|
Affiliation(s)
- C H Evans
- Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
262
|
Abstract
The pleural mesothelial cell has a critical role in repairing the mesothelium after injury via its ability to produce connective tissue macromolecules. We have recently shown that proinflammatory cytokines and lipopolysaccharide induce pleural mesothelial cells to produce nitric oxide. The present study examined the effect of nitric oxide on pleural mesothelial cell protein synthesis. Rat pleural mesothelial cells were exposed to various combinations of tumor necrosis factor, interleukin-1, interferon-gamma, and lipopolysaccharide or to the nitric oxide donors: 6-morpholino-sydnonimine, S-nitroso-N-acetyl-D,L-penicillamine, sodium nitroprusside, and spermine-NO adduct for 24-48 h. Nitrate and nitrite (an index of nitric oxide production) and not collagen and noncollagen protein production (uptake of 3H-proline into collagenase-sensitive protein) were then determined. Net collagen production was significantly inhibited by the cytokine-lipopolysaccharide combinations tested. Collagen inhibition paralleled the time course of increased nitric oxide production. The inhibition of collagen production was also significantly reversed by the addition of NG-nitro-L-arginine methyl ester, and was reproduced by the addition of a 5:1 molar excess of L-arginine to NG-nitro-L-arginine methyl ester. Additionally, nitric oxide-generating compounds significantly inhibited collagen production in a dose-dependent manner compared to unexposed control cells. Net collagen production was inhibited to a greater degree than noncollagen protein synthesis. These results suggest that nitric oxide may be a significant mediator of PMC collagen production during conditions of significant pleural inflammation.
Collapse
Affiliation(s)
- M W Owens
- Department of Medicine, Overton Brooks VAMC, Shreveport, LA 71101-4295, USA
| | | | | |
Collapse
|
263
|
Amin AR, Di Cesare PE, Vyas P, Attur M, Tzeng E, Billiar TR, Stuchin SA, Abramson SB. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J Exp Med 1995; 182:2097-102. [PMID: 7500055 PMCID: PMC2192230 DOI: 10.1084/jem.182.6.2097] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Classically, osteoarthritis (OA) has been considered a noninflammatory disease. However, the detection of selected inflammatory mediators in osteoarthritic fluid, in the absence of significant inflammatory cell infiltrate, is increasingly appreciated. We sought to identify the inflammatory component in human OA-affected cartilage that may be involved in cartilage damage/destruction. Using Western blot analysis and an antibody to the conserved region of nitric oxide synthase (NOS), we have observed up-regulation of NOS, one of the "key players" of inflammation, in chondrocytes of OA-affected patients. Remarkably, none of the cartilage samples examined from normal joints demonstrated detectable amounts of this NOS. Western blot analysis using the same alpha-NOS antibody indicated that this NOS from OA-affected cartilage (OA-NOS) was larger in size than (and distinct from) transfected human hepatocyte or murine inducible NOS (iNOS) (150 versus 133 kD) and similar in size to neuronal constitutive NOS (ncNOS). Antibodies specific for iNOS showed binding to murine and human iNOS but not to OA-NOS, endothelial constitutive NOS, or ncNOS. Antibodies specific for ncNOS bound to ncNOS and also to OA-NOS, but not to murine or human iNOS or endothelial constitutive NOS. Incubation of OA cartilage in serum-free medium resulted in spontaneous release, for up to 72 h, of substantial amounts of nitrite (up to approximately 80 microM/100 mg wet tissue), which could be inhibited by at least 80% with various inhibitors of iNOS, including inhibitors of protein synthesis and transcription factor NF-kappa B, but which (unlike murine macrophage iNOS) was not sensitive to hydrocortisone or TGF-beta. Exposure of OA-affected cartilage to interleukin 1 beta, tumor necrosis factor-alpha, and lipopolysaccharide resulted in approximately 20-50% augmentation of nitrite accumulation, which was also sensitive to cycloheximide and pyrrolidine dithiocarbamate. Hence, our data indicate that OA-NOS (based on immunoreactivity and molecular weight) is similar to ncNOS and that it releases nitric oxide, which may contribute to the inflammation and pathogenesis of cartilage destruction in OA.
Collapse
Affiliation(s)
- A R Amin
- Department of Rheumatology, Hospital for Joint Diseases Orthopaedic Institute, New York 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Verschure PJ, Joosten LA, Van de Loo FA, Van den Berg WB. IL-1 has no direct role in the IGF-1 non-responsive state during experimentally induced arthritis in mouse knee joints. Ann Rheum Dis 1995; 54:976-82. [PMID: 8546530 PMCID: PMC1010063 DOI: 10.1136/ard.54.12.976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate the involvement of interleukin-1 (IL-1) in the induction or maintenance of the insulin-like growth factor 1 (IGF-1) non-responsive state of chondrocytes during experimental arthritis in mouse knee joints. METHODS To characterise IGF-1 nonresponsiveness during arthritis, we measured chondrocyte proteoglycan (PG) synthesis by assaying incorporation of 35S-sulphate into mouse patellar cartilage, obtained from knee joints with experimentally induced arthritis and normal knee joints, cultured with IGF-1. We investigated whether suppressive mediators produced by the arthritic synovium or chondrocytes abolished the IGF-1 stimulation of normal cartilage, and used IL-1 primed cartilage to mimic the arthritic in vivo state. Specific inflammatory mediators responsible for the maintenance of the suppressed IGF-1 response were sought. We measured IGF-1 responsiveness in normal and arthritic patellae cultured with antibodies against tumour necrosis factor (TNF) or IL-1 alpha/beta, with IL-1 receptor antagonist (IL-1ra), and with several inhibitors of proteolytic enzymes or reactive oxygen species, and analysed the role of IL-1 in the development of IGF-1 non-responsiveness by studying IGF-1 responses in cartilage treated with IL-1 antibodies in vivo, at the onset of arthritis. RESULTS Mediators from the surrounding tissue of both normal and arthritic cartilage suppressed chondrocyte IGF-1 responses. Priming the cartilage with IL-1 did not directly induce IGF-1 non-responsiveness, but enhanced the ability of suppressive mediators from synovium or chondrocytes to downregulate the IGF-1 responsive state. IL-1ra, IL-1 alpha/beta antibody, TNF antibody, or the inhibitors tested did not markedly improve the disturbed IGF-1 response, but treatment with anti-IL-1 at the onset of arthritis prevented the development of IGF-1 non-responsiveness. CONCLUSION IL-1 alone does not induce IGF-1 non-responsiveness and is not critical in the maintenance of this phenomenon. However, IL-1 does appear to be an important cofactor in the generation of the IGF-1 non-responsive state.
Collapse
Affiliation(s)
- P J Verschure
- Department of Rheumatology, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
265
|
Fukuda K, Kumano F, Takayama M, Saito M, Otani K, Tanaka S. Zonal differences in nitric oxide synthesis by bovine chondrocytes exposed to interleukin-1. Inflamm Res 1995; 44:434-7. [PMID: 8564519 DOI: 10.1007/bf01757700] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To determine the role of nitric oxide (NO) in the inhibition of aggrecan synthesis, we measured levels of NO produced by bovine chondrocytes from different layers of articular cartilage in the presence of interleukin-1 (IL-1). Chondrocytes from the superficial layer showed a large increase in NO synthesis in response to IL-1. Although chondrocytes from the deep layer also produced NO in response to IL-1, the amount was less than that from the superficial layer. Enhanced NO production evoked by IL-1 was accompanied by a significant inhibition of aggrecan synthesis. These data suggest that chondrocytes in both superficial and deep layer of articular cartilage inhibit aggrecan synthesis with IL-1 via NO production. In addition, superficial layer cells respond to lower amounts of IL-1 with respect to NO-production and inhibition of proteoglycan synthesis.
Collapse
Affiliation(s)
- K Fukuda
- Department of Orthopaedic Surgery, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
266
|
Hanglow AC, Rowan K, Lusch L, Coffey JW. Degradation of bovine cartilage proteoglycan in vitro is enhanced by inhibition of nitric oxide synthase. Inflamm Res 1995; 44 Suppl 2:S151-2. [PMID: 8548373 DOI: 10.1007/bf01778307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- A C Hanglow
- Department of Inflammation and Autoimmune Diseases, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| | | | | | | |
Collapse
|
267
|
|
268
|
Abstract
This short review deals with the role of a recently found signalling molecule, nitric oxide (NO), in inflammatory and immune responses. NO regulates inflammatory erythema and oedema and has cytotoxic action against micro-organisms. In some instances (such as reperfusion injury) NO has cytoprotective properties. Production of large amounts of NO by activated macrophages accounts for their ability to suppress lymphocyte proliferation. NO synthesis in lymphocytes is questionable but cytokines secreted by activated lymphocytes regulate NO synthesis by macrophages. Constitutive NO synthase is activated in neutrophils in response to inflammatory stimuli and NO has diverse, often biphasic effects on neutrophil functions. Increased concentrations of nitrite and nitrate (metabolites of NO) are present in arthritic joints. NO is synthesized not only by migrated inflammatory cells but also by articular chondrocytes and inflamed synovial membrane. In the inflamed joint, NO regulates the synthesis of several inflammatory mediators and functions of inflammatory cells. In addition, NO seems to mediate some destructive effects of proinflammatory cytokines such as interleukin-1. In conclusion, NO regulates several humoral and cellular responses in inflammation, having both anti-inflammatory and proinflammatory properties depending on the type and phase of the inflammatory reaction.
Collapse
Affiliation(s)
- E Moilanen
- Medical School, University of Tampere, Finland
| | | |
Collapse
|
269
|
Gegout P, Gillet P, Terlain B, Netter P. Zymosan-induced arthritis in rats. II. Effects of anti-inflammatory drugs. Life Sci 1995; 56:PL389-94. [PMID: 7723595 DOI: 10.1016/0024-3205(95)98583-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As zymosan-induced arthritis in rats combines dual activation of early prostaglandin-dependent processes (edema, fever, pain) and IL-1 related effects on cartilage metabolism, we compared the respective influences of indomethacin (IMT) and dexamethasone (DEX) on its course. Different parameters were assessed: knee swelling, febrile response, loss of activity, cartilage metabolism and histology. DEX improved all these parameters, while IMT exerted only light beneficial effects on fever and knee swelling without obvious beneficial influence on cartilage metabolism and histological lesions. These results suggest that anti-inflammatory activities of DEX and IMT are due to interferences with different pathways during zymosan-induced arthritis in rats.
Collapse
Affiliation(s)
- P Gegout
- Laboratoire de Pharmacologie, URA CNRS 1288, Faculté de Médecine, Université Henri Poincaré Nancy I, Vandoeuvre les Nancy
| | | | | | | |
Collapse
|
270
|
Evans CH. Nitric oxide: what role does it play in inflammation and tissue destruction? AGENTS AND ACTIONS. SUPPLEMENTS 1995; 47:107-16. [PMID: 7540350 DOI: 10.1007/978-3-0348-7343-7_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large amount of nitric oxide (NO) are produced at sites of inflammation through the action of inducible nitric oxide synthase (iNOS) present in both infiltrating leucocytes and activated, resident tissue cells. However, the role of NO in inflammation remains unclear. NO is a vasodilator, which inhibits the adhesion of neutrophils to the vascular endothelium; it reduces the production of IL-6 by Kupffer cells and chondrocytes, and the production of gamma-IFN and TNF-alpha by splenocytes. The literature provides contradictory information on the effect of NO on vascular leakiness, chemotaxis, prostaglandin production and tissue damage. Increasingly, data suggest that NO is immunosuppressive. Inhibitors of NOS have potent prophylactic activity in several but not all, animal models of inflammatory disease. However, in rat adjuvant arthritis, therapeutic activity is weak. Whether inhibitors of iNOS will be therapeutically useful in human inflammatory diseases cannot be predicted on the basis of present information.
Collapse
Affiliation(s)
- C H Evans
- University of Pittsburgh School of Medicine, Ferguson Laboratory-Musculoskeletal Research Center, PA, USA
| |
Collapse
|
271
|
Häuselmann HJ, Oppliger L, Michel BA, Stefanovic-Racic M, Evans CH. Nitric oxide and proteoglycan biosynthesis by human articular chondrocytes in alginate culture. FEBS Lett 1994; 352:361-4. [PMID: 7926002 DOI: 10.1016/0014-5793(94)00994-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interleukin-1 alpha and beta induced the production of large amounts of nitric oxide by normal, human articular chondrocytes in alginate culture; at the same time the biosynthesis of proteoglycan was strongly suppressed. In a dose-dependent manner, NG-monomethyl-L-arginine both inhibited nitric oxide formation and relieved the suppression of proteoglycan synthesis. However concentrations of NG-monomethyl-L-arginine which completely prevented nitric oxide production only partially restored proteoglycan biosynthesis, even at low doses of interleukin-1 where suppression of proteoglycan synthesis was modest. The organic donor of nitric oxide, S-nitrosyl-acetyl-D,L- penicillamine also inhibited proteoglycan biosynthesis, but not as extensively as interleukin-1. These data suggest that interleukin-1 suppresses synthesis of the cartilaginous matrix through more than one mechanism, at least one of which is dependent upon the production of nitric oxide.
Collapse
Affiliation(s)
- H J Häuselmann
- Department of Rheumatology, University Hospital, Zürich, Switzerland
| | | | | | | | | |
Collapse
|