251
|
Chan KH, Kwan JSC, Ho PWL, Ho SL, Chui WH, Chu ACY, Ho JWM, Zhang WY, Kung MHW. Aquaporin-4 water channel expression by thymoma of patients with and without myasthenia gravis. J Neuroimmunol 2010; 227:178-84. [PMID: 20728226 DOI: 10.1016/j.jneuroim.2010.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuromyelitis optica (NMO) is a serious idiopathic inflammatory demyelinating disorder characterized by acute transverse myelitis and optic neuritis. A significant proportion of NMO patients are seropositive for NMO-IgG, an autoantibody targeting aquaporin-4 (AQP4) water channel. Paraneoplastic NMO associated various tumors were recently reported. AIM We studied the expression of AQP4 by thymoma from patients with and without myasthenia gravis (MG). METHODS Thymoma obtained from thymomectomy in patients with and without MG were studied by immunohistochemistry and western blot. RESULTS Ten thymoma patients (9 with MG) and two control patients without thymoma or MG were studied. Immunohistochemistry revealed AQP4 immunoreactivity in cell membrane of thymoma cells from all ten thymoma specimens whereas thymic tissues from patients without thymoma or MG were negative for AQP4 immunoreactivity. Western blot revealed that lysates of nine of the ten thymoma specimens reacted with anti-human AQP4 antibody with a band of ~30 kDa compatible with the molecular weight of AQP4. Interestingly, immunofluorescence revealed that IgG isolated from 2 NMO patients seropositive for NMO-IgG bound to cell membrane of thymoma cells from all ten thymoma specimens while IgG from healthy control subject did not. CONCLUSION Thymoma cells of patients with and without MG express AQP4. AQP4 autoantibodies from serum of NMO patients bound to AQP4 expressed on thymoma cell membrane.
Collapse
Affiliation(s)
- K H Chan
- University Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
253
|
Shankardas J, Patil RV, Vishwanatha JK. Effect of down-regulation of aquaporins in human corneal endothelial and epithelial cell lines. Mol Vis 2010; 16:1538-48. [PMID: 20806077 PMCID: PMC2925904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this study was to determine the effects of down-regulation of Aquaporin 1 (AQP1) and Aquaporin 5 (AQP5) on cell proliferation and migration in human corneal endothelial (HCEC) and human corneal epithelial (CEPI17) cell lines, respectively. METHODS AQP1 and AQP5 were down regulated using siRNA following lipofectamine-mediated transfection in corneal endothelial and epithelial cells, respectively. Down-regulation was confirmed using RT-PCR, indirect immunofluorescence, and immunoblot analysis. Total internal reflection fluorescence (TIRF) microscopy was used to detect cell surface aquaporin expression. Cell proliferation was determined by SRB (sulfrodamine B) assay. Cell migration was determined by in vitro wound healing and migration assay. RESULTS In HCEC cells, AQP1 was localized to the cytosol as well as cell membrane and its down-regulation resulted in decreased cell proliferation and migration with a significant decrease in phosphorylated ERK (pERK). In CEPI17 cells AQP5 protein expression was also localized to cytosol as well as cell membrane. AQP5 down-regulation resulted in an increase in proliferation and cell migration with no significant difference in pERK. CONCLUSIONS AQP1 plays a role in HCEC proliferation and migration via the ERK signaling pathway and therefore may have significant implications in corneal endothelial dysfunction whereas; AQP5 may play an indirect role in human corneal epithelial cell proliferation and migration.
Collapse
Affiliation(s)
- Jwalitha Shankardas
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX
| | - Rajkumar V. Patil
- Pharmaceutical Research Division, Alcon Laboratories Inc., Fort Worth, TX
| | - Jamboor K. Vishwanatha
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX
| |
Collapse
|
254
|
Freeman A, Hetzel U, Cripps P, Mobasheri A. Expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and Na, K-ATPase in canine mammary glands and mammary tumours. Vet J 2010; 185:90-3. [PMID: 20570191 DOI: 10.1016/j.tvjl.2010.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and the alpha1 subunit of Na, K-ATPase in normal canine mammary glands and in benign and malignant mammary tumours, using immunohistochemistry and semi-quantitative histomorphometry. AQP1 immunoreactivity was absent from the majority of specimens studied. GLUT1 immunoreactivity was observed in normal mammary tissue and particularly in the epithelial and mesenchymal cells of benign, and in the epithelial cells of malignant tumours, respectively. Na, K-ATPase immunoreactivity was present in normal and neoplastic mammary epithelium and was significantly increased in the epithelium of both benign and malignant tumours. These results suggest that GLUT1 is more highly expressed in neoplastic epithelium and mesenchyme and that Na, K-ATPase is more highly expressed in neoplastic mammary epithelium. In consequence, these membrane proteins may have potential as diagnostic and prognostic biomarkers of canine mammary neoplasia.
Collapse
Affiliation(s)
- Alistair Freeman
- Small Animal Teaching Hospital, School of Veterinary Science, University of Liverpool, Leahurst Campus, Leahurst, Neston, Wirral CH64 7TE, UK
| | | | | | | |
Collapse
|
255
|
Affiliation(s)
- Stefan K. Grebe
- Address correspondence to Stefan K. Grebe, MD, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 ()
| | | |
Collapse
|
256
|
Li J, Tang H, Hu X, Chen M, Xie H. Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas J Dermatol 2010; 51:106-12. [DOI: 10.1111/j.1440-0960.2010.00629.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
257
|
Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol 2010; 221:210-20. [DOI: 10.1002/path.2702] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
258
|
Aquaporin-1 in blood vessels of rat circumventricular organs. Cell Tissue Res 2010; 340:159-68. [PMID: 20177708 DOI: 10.1007/s00441-010-0927-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Although the water channel protein aquaporin-1 (AQP1) is widely observed outside the rat brain in continuous, but not fenestrated, vascular endothelia, it has not previously been observed in any endothelia within the normal rat brain and only to a limited extent in the human brain. In this immunohistochemical study of rat brain, AQP1 has also been found in microvessel endothelia, probably of the fenestrated type, in all circumventricular organs (except the subcommissural organ and the vascular organ of the lamina terminalis): in the median eminence, pineal, subfornical organ, area postrema and choroid plexus. The majority of microvessels in the median eminence, pineal and choroid plexus, known to be exclusively fenestrated, are shown to be AQP1-immunoreactive. In the subfornical organ and area postrema in which many, but not all, microvessels are fenestrated, not all microvessels are AQP1-immunoreactive. In the AQP1-immunoreactive microvessels, the AQP1 probably facilitates water movement between blood and interstitium as one component of the normal fluxes that occur in these specialised sensory and secretory areas. AQP1-immunoreactive endothelia have also been seen in a small population of blood vessels in the cerebral parenchyma outside the circumventricular organs, similar to other observations in human brain. The proposed development of AQP1 modulators to treat various brain pathologies in which AQP1 plays a deleterious role will necessitate further work to determine the effect of such modulators on the normal function of the circumventricular organs.
Collapse
|
259
|
Mo J, Zheng W, Low JJH, Ng J, Ilancheran A, Huang Z. High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia. Anal Chem 2010; 81:8908-15. [PMID: 19817391 DOI: 10.1021/ac9015159] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Raman spectroscopy is a vibrational spectroscopic technique capable of optically probing the biomolecular changes associated with neoplastic transformation. The purpose of this study was to apply near-infrared (NIR) Raman spectroscopy in the high wavenumber (HW) region (2800-3700 cm(-1)) for in vivo detection of cervical dysplasia. A rapid-acquisition NIR Raman spectroscopy system associated with a ball-lens fiber-optic Raman probe was developed for in vivo spectroscopic measurements at 785 nm excitation. A total of 92 in vivo HW Raman spectra (46 normal, 46 dysplasia) were acquired from 46 patients with Pap smear abnormalities of the cervix. Significant difference in Raman intensities of prominent Raman bands at 2850 and 2885 cm(-1) (CH(2) stretching of lipids), 2940 cm(-1) (CH(3) stretching of proteins), and the broad Raman band of water (peaking at 3400 cm(-1) in the 3100-3700 cm(-1) range) were observed in normal and dysplasia cervical tissue. The diagnostic algorithms based on principal components analysis and linear discriminant analysis together with the leave-one-patient-out cross-validation method on in vivo HW Raman spectra yielded a diagnostic sensitivity of 93.5% and specificity of 97.8% for dysplasia tissue identification. This study demonstrates for the first time that HW Raman spectroscopy has the potential for the noninvasive, in vivo diagnosis and detection of precancer of the cervix.
Collapse
Affiliation(s)
- Jianhua Mo
- Optical Bioimaging Laboratory, Department of Bioengineering, National University of Singapore, Singapore 117576
| | | | | | | | | | | |
Collapse
|
260
|
Shen L, Zhu Z, Huang Y, Shu Y, Sun M, Xu H, Zhang G, Guo R, Wei W, Wu W. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed Pharmacother 2010; 64:313-8. [PMID: 20106632 DOI: 10.1016/j.biopha.2009.12.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/01/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND New evidence for involvement of aquaporins (AQPs) in cell migration and proliferation adds AQPs to an expanding list of effectors in tumor biology. But there is few report concerning the expression and role of AQPs in human gastric carcinogenesis so far. The aim of this current study was to investigate the expression profile of AQPs in human gastric carcinoma and its significance. METHODS We screened the expression profile of AQP0 approximately AQP12 in gastric adenocarcinoma tissues and corresponding normal mucosa from 89 patients with gastric cancer by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis and immunochemical assay. The relationship between AQPs expression and clinicopathologic characteristics of patients was evaluated. RESULTS Based on RT-PCR of 13 AQPs examined, AQP1, 3, 4, 5 and 11 were expressed in human gastric cancers or normal gastric tissues, and AQP3, 4 and 5 exhibited differential expression between human gastric carcinomas and corresponding normal tissues, which was confirmed by Western blot analyses. Immunohistochemical assay showed that AQP4 protein was expressed mainly in the membrane of parietal cell and chief cell in the normal gastric mucosa, and absent in carcinoma tissues. AQP3 and AQP5 were detected remarkably stronger in the carcinoma tissues than that in normal mucosa by immunofluorescence. AQP3 expression in cases with undifferentiated tumor was more than that in cases with well-differentiated tumor. Both AQP3 and AQP5 expression were associated with lymph node metastasis and lymphovascular invasion in patients. CONCLUSIONS These findings of differential expressions of AQPs and their correlation with clinicopathologic characteristics implicated AQPs might play a role in human gastric carcinogenesis.
Collapse
Affiliation(s)
- Lizong Shen
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Verkman AS. Aquaporins: translating bench research to human disease. ACTA ACUST UNITED AC 2009; 212:1707-15. [PMID: 19448080 DOI: 10.1242/jeb.024125] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is considerable potential for translating knowledge of aquaporin structure, function and physiology to the clinic. One area is in aquaporin-based diagnostics. The discovery of AQP4 autoantibodies as a marker of the neuromyelitis optica form of multiple sclerosis has allowed precise diagnosis of this disease. Other aquaporin-based diagnostics are possible. Another area is in aquaporin-based genetics. Genetic diseases caused by loss-of-function mutations in aquaporins include nephrogenic diabetes insipidus and cataracts, and functionally significant aquaporin polymorphisms are beginning to be explored. Perhaps of greatest translational potential is aquaporin-based therapeutics. Information largely from aquaporin knockout mice has implicated key roles of aquaporin-facilitated water transport in transepithelial fluid transport (urinary concentrating, gland fluid secretion), water movement into and out of the brain, cell migration (angiogenesis, tumor metastasis, wound healing) and neural function (sensory signaling, seizures). A subset of aquaporins that transport both water and glycerol, the 'aquaglyceroporins', regulate glycerol content in epidermal, fat and other tissues, and are involved in skin hydration, cell proliferation, carcinogenesis and fat metabolism. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of edematous states, cancer, obesity, wound healing, epilepsy and glaucoma. These exciting possibilities and their associated challenges are reviewed.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
262
|
Crane JM, Tajima M, Verkman AS. Live-cell imaging of aquaporin-4 diffusion and interactions in orthogonal arrays of particles. Neuroscience 2009; 168:892-902. [PMID: 19699275 DOI: 10.1016/j.neuroscience.2009.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/03/2009] [Accepted: 08/12/2009] [Indexed: 11/26/2022]
Abstract
Orthogonal arrays of particles (OAPs) have been visualized for many years by freeze-fracture electron microscopy. Our laboratory discovered that aquaporin-4 (AQP4) is the protein responsible for OAP formation by demonstrating OAPs in AQP4-transfected cells and absence of OAPs in AQP4 knockout mice. We recently developed live-cell, single-molecule imaging methods to study AQP4 diffusion and interactions in OAPs. The methods include single particle tracking of quantum-dot labeled AQP4, and total internal reflection fluorescence microscopy of green fluorescent protein (GFP) and small fluorophore-labeled AQP4. The full-length (M1) form of AQP4 diffuses freely in membranes and does not form OAPs, whereas the shorter (M23) form of AQP4 forms OAPs and is nearly immobile. Analysis of a series of AQP4 truncations, point mutants and chimeras revealed that OAP formation by AQP4-M23 is stabilized by hydrophobic tetramer-tetramer interactions involving N-terminus residues, and that absence of OAPs in AQP4-M1 results from blocking of this interaction by residues just upstream from Met23. These biophysical methods are being extended to identify the cellular site of AQP4 assembly, AQP4 isoform interactions, OAP size and dynamics, and the determinants of regulated OAP assembly.
Collapse
Affiliation(s)
- J M Crane
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | | | | |
Collapse
|
263
|
Saadoun S, Papadopoulos MC. Aquaporin-4 in brain and spinal cord oedema. Neuroscience 2009; 168:1036-46. [PMID: 19682555 DOI: 10.1016/j.neuroscience.2009.08.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/28/2009] [Accepted: 08/07/2009] [Indexed: 02/02/2023]
Abstract
Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases.
Collapse
Affiliation(s)
- S Saadoun
- Academic Neurosurgery Unit, St George's University of London, London SW17 0RE, UK
| | | |
Collapse
|
264
|
Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS. A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds. Dev Dyn 2009; 238:1179-94. [PMID: 19384961 DOI: 10.1002/dvdy.21953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Zic1 transcription factor plays multiple roles during early development, for example, in patterning the early neural plate and formation of the neural crest, somites, and cerebellum. To identify direct downstream target genes of Zic1, a microarray screen was conducted in Xenopus laevis that identified 85 genes upregulated twofold or more. These include transcription factors, receptors, enzymes, proteins involved in retinoic acid signaling, and an aquaglyceroporin (aqp-3b), but surprisingly no genes known to be involved in cell proliferation. We show that both aqp-3 and aqp-3b were expressed in adult tissues, while during early embryonic development, only aqp-3b was transcribed. During neurula stages, aqp-3b was expressed specifically in the neural folds. This pattern of aqp-3b expression closely resembled that of NF-protocadherin (NFPC), which is involved in cell adhesion and neural tube closure. Aqp-3b may also be involved in neural tube closure, since mammalian Aqp-3 promotes cell migration and proliferation.
Collapse
Affiliation(s)
- E Jean Cornish
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
265
|
Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 2009; 37:403-9. [PMID: 19566827 DOI: 10.1111/j.1440-1681.2009.05244.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1. Aquaporins (AQPs) are targets for drug discovery for basic research and medicine. Human diseases involving fluid imbalances and oedema are of major concern and involve tissues in which AQPs are expressed. The range of functional properties of AQPs is continuing to expand steadily with ongoing research in the field. 2. Gating domains in AQPs are molecular sites for drug actions. Discovery of the arylsulphonamide AqB013 as an antagonist for AQP1 and AQP4 provided the first pharmacological agent with translational promise for the treatment of diseases in which AQPs have been implicated. The putative binding site for AqB013 in the internal vestibule of the AQP water pore involves amino acid residues that are located in the AQP loop D gating domain. 3. Aquaporins have been proposed as novel targets in cancer and oedema and are associated with a surprising array of important processes in the brain and body, such as angiogenesis, cell migration, development and neuropathological diseases. Functions beyond their simple role as water channels are suggested by the subtype-specific regulation of AQP expression. In both cancer and brain oedema, current therapies are limited and new pharmacological approaches focused on AQPs offer exciting potential for clinical advances.
Collapse
Affiliation(s)
- Andrea J Yool
- Discipline of Physiology, School of Molecular & Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
266
|
AQP4 gene deletion in mice does not alter blood-brain barrier integrity or brain morphology. Neuroscience 2009; 161:764-72. [PMID: 19345723 DOI: 10.1016/j.neuroscience.2009.03.069] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 01/09/2023]
Abstract
The glial cell water channel aquaporin-4 (AQP4) plays an important role in brain edema, astrocyte migration, and neuronal excitability. Zhou et al. [Zhou J, Kong H, Hua X, Xiao M, Ding J, Hu G (2008) Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice. Neuroreport 19:1-5] recently reported that AQP4 deletion significantly altered blood-brain barrier integrity and glial fibrillary acidic protein (GFAP) immunoreactivity in their AQP4 null mice. Here we describe a detailed characterization of baseline brain properties in our AQP4 null mice, including gross appearance, neuronal, astrocyte and oligodendrocyte characteristics, and blood-brain barrier integrity. Gross anatomical measurements included estimates of brain and ventricle size. Neurons, astrocytes and oligodendrocytes were assessed using the neuronal nuclear marker NeuN, the astrocyte marker GFAP, and the myelin stain Luxol Fast Blue. The blood-brain barrier was studied by electron microscopy and the horseradish peroxidase extravasation technique. There were no differences in brain and ventricle sizes between wild type and AQP4 null mice, nor were there differences in the cerebral cortical density of NeuN positive nuclei, perimicrovessel and glia limitans GFAP immunoreactivity, or the thickness and myelination of the corpus callosum. The ultrastructure of microvessels in the frontal cortex and caudate nucleus of wild type vs. AQP4 null mice was indistinguishable, with features including intact endothelial tight junctions, absence of perimicrovessel astrocyte foot process edema, and absence of horseradish peroxidase extravasation. In contrast to the report by Zhou et al. (2008), our data show that AQP4 deletion in mice does not produce major structural abnormalities in the brain.
Collapse
|
267
|
Tradtrantip L, Tajima M, Li L, Verkman AS. Aquaporin water channels in transepithelial fluid transport. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:179-84. [DOI: 10.2152/jmi.56.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Masato Tajima
- Departments of Medicine and Physiology, University of California
| | - Lihua Li
- Departments of Medicine and Physiology, University of California
| | - AS Verkman
- Departments of Medicine and Physiology, University of California
| |
Collapse
|
268
|
Boury-Jamot M, Daraspe J, Bonté F, Perrier E, Schnebert S, Dumas M, Verbavatz JM. Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 2009:205-217. [PMID: 19096779 DOI: 10.1007/978-3-540-79885-9_10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several aquaporins (AQPs) are expressed in mammalian skin. Some are directly involved in water transport, such as AQP5, which is involved in sweat secretion. In contrast, the physiological role of skin aquaglyceroporins, which permeate both water and glycerol, appears more and more complex. AQP3 is the most abundant skin aquaglyceroporin. Both water and glycerol transport by AQP3 appear to play an important role in hydration of mammalian skin epidermis. In addition, recent data suggest that glycerol transport by AQP3 is involved in the metabolism of lipids in skin as well as in the regulation of proliferation and differentiation of keratinocytes. Finally, AQP3 is also believed to be important in wound healing, as a water channel by facilitating cell migration, and as a glycerol transporter by enhancing keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Mathieu Boury-Jamot
- IBITEC-S and CNRS URA 2096, CEA-Saclay F-91191 Gif-sur-Yvette and LRA17V, University Paris-Sud 11, Orsay, F-91400, France
| | | | | | | | | | | | | |
Collapse
|
269
|
Xu H, Zhang Y, Wei W, Shen L, Wu W. Differential expression of aquaporin-4 in human gastric normal and cancer tissues. ACTA ACUST UNITED AC 2009; 33:72-6. [DOI: 10.1016/j.gcb.2008.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 05/27/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
270
|
Aquaporin water channels in mammals. Clin Exp Nephrol 2008; 13:107-117. [PMID: 19085041 DOI: 10.1007/s10157-008-0118-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
Water channels, aquaporins (AQPs), are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. There are 13 members (AQP0-12) in humans. This number is final as the human genome project has been completed. They are divided into three subgroups based on the primary sequences: water selective AQPs (AQP0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, 10), and superaquaporins (AQP11, 12). Since no specific inhibitors are yet available, functional roles of AQPs are suggested by AQP null mice and humans. Abnormal water metabolism was shown with AQP1, 2, 3, 4, 5 null mice, especially with AQP2 null mice: fatal at neonate due to diabetes insipidus. Abnormal glycerol transport was shown with AQP3, 7, 9 null mice, although they appeared normal. AQP0 null mice suffer from cataracts, although the pathogenesis is not clear. Unexpectedly, AQP11 null mice die from uremia as a result of polycystic kidneys. Interestingly, AQP6, 8, 10, 12 null mice are almost normal. AQP null humans have been reported with AQP0, 1, 2, 3, 7: only AQP2 null humans show an outstanding phenotype, diabetes insipidus. This review summarizes the current knowledge on all mammalian AQPs and hopefully will stimulate future research in both clinical and basic fields.
Collapse
|
271
|
The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27:6939-57. [DOI: 10.1038/onc.2008.345] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
272
|
Abstract
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.
Collapse
|