251
|
Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J. KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 1994; 256:263-8. [PMID: 8045270 DOI: 10.1016/0014-2999(94)90551-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
KF17837 is a novel selective adenosine A2A receptor antagonist. Oral administration of KF17837 (2.5, 10.0 and 30.0 mg/kg) significantly ameliorated the cataleptic responses induced by intracerebroventricular administration of an adenosine A2A receptor agonist, CGS 21680 (10 micrograms), in a dose-dependent manner. KF17837 also reduced the catalepsy induced by haloperidol (1 mg/kg i.p.) and by reserpine (5 mg/kg i.p.). These anticataleptic effects were exhibited dose dependently at doses from 0.625 and 2.5 mg/kg p.o., respectively. Moreover, KF17837 (0.625 mg/kg p.o.) potentiated the anticataleptic effects of a subthreshold dose of L-3,4-dihydroxyphenylalanine (L-DOPA; 25 mg/kg i.p.) plus benserazide (6.25 mg/kg i.p.). These results suggested that KF17837 is a centrally active adenosine A2A receptor antagonist and that the dopaminergic function of the nigrostriatal pathway is potentiated by adenosine A2A receptor antagonists. Furthermore, KF17837 may be a useful drug in the treatment of parkinsonism.
Collapse
Affiliation(s)
- T Kanda
- Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., Shizuoka, Japan
| | | | | | | | | |
Collapse
|
252
|
Higgins MJ, Hosseinzadeh H, MacGregor DG, Ogilvy H, Stone TW. Release and actions of adenosine in the central nervous system. PHARMACY WORLD & SCIENCE : PWS 1994; 16:62-8. [PMID: 8032343 DOI: 10.1007/bf01880657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine is released from active neurons into the extracellular fluid at a concentration of about 1 mumol/l. Neither the precise cellular origin nor the biochemical form of release has been firmly established, though the nucleotide is probably released partly directly, as a result of raised intracellular levels, and partly as nucleotides, which are subsequently hydrolysed. Once in the extracellular medium, adenosine markedly inhibits the release of excitatory neurotransmitters and modulatory peptides and has direct inhibitory effects on postsynaptic excitability via A1 receptors. A population of A2 receptors may mediate depolarization and enhanced transmitter release. Adenosine also modulates neuronal sensitivity to acetylcholine and catecholamines, all these effects probably contributing to the behavioural changes observed in conscious animals. As a result of their many actions, adenosine analogues are being intensively investigated for use as anticonvulsant, anxiolytic, and neuroprotective agents.
Collapse
Affiliation(s)
- M J Higgins
- Department of Pharmacology, University of Glasgow, Scotland
| | | | | | | | | |
Collapse
|
253
|
Johansson B, Lindström K, Fredholm BB. Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 1994; 59:837-49. [PMID: 7520134 DOI: 10.1016/0306-4522(94)90288-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Male rats were treated i.p. with either 5 mg/kg amphetamine, 3 and 30 mg/kg cocaine or 100 mg/kg caffeine and killed after 30 min. Brains were sectioned and processed for radioactive in situ hybridization histochemistry for the labelling of either c-fos, enkephalin, substance P, neurokinin B, choline acetyltransferase, somatostatin or adenosine A2A receptor messenger RNA. The distribution of c-fos messenger RNA was investigated both at the regional level using film autoradiography, and at the cellular level using emulsion autoradiography. All drug treatments except 3 mg/kg cocaine induced an increased level of c-fos messenger RNA in cells that had a neuron-like morphology. The cells that contained the c-fos messenger RNA were identified by making pairs of 5-microns sections in which one section was processed for c-fos messenger RNA and the other was processed for one of the other messenger RNA species. After amphetamine treatment, only some 10% of the cells in the striatum were labelled, and to a variable extent. Instead there was prominent labelling of a band in the cortex that runs parallel to the cortical surface. There was also a moderate degree of labelling in the nucleus accumbens. c-fos-positive cells were substance P-positive and negative for enkephalin or A2A receptor messenger RNA. Cocaine (30 mg/kg) induced a modest labelling in the caudate-putamen, as well as in the accumbens. With cocaine treatment (30 mg/kg), about 30% of striatal neuron-like cells were c-fos labelled. Most c-fos-positive cells were substance P-positive, but none of the c-fos-positive cells were enkephalin-positive or A2A-receptor-positive. Cocaine (3 mg/kg) had no significant effect on c-fos. Caffeine gave rise to a strong hybridization signal in the caudate-putamen, particularly the dorsolateral part. No other region examined differed significantly from control. With caffeine treatment, about 73% of neuron-like cells were c-fos labelled in the lateral striatum, but labelling was much less pronounced in the medial part or in the accumbens. c-fos-labelled cells were found in enkephalin-positive and enkephalin-negative, substance P-positive and substance P-negative, neurokinin B-positive and neurokinin B-negative groups. No choline acetyltransferase-positive or somatostatin-positive cells were found that were also c-fos-positive with any of the treatments. We conclude that each of the different CNS stimulant drugs induces a highly specific pattern of c-fos messenger RNA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
254
|
Morelli M, Fenu S, Pinna A, Di Chiara G. Adenosine A2 receptors interact negatively with dopamine D1 and D2 receptors in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1994; 251:21-5. [PMID: 7907985 DOI: 10.1016/0014-2999(94)90438-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In rats bearing a unilateral 6-hydroxydopamine lesion of the dopaminergic nigro-striatal pathway, stimulation of adenosine A2 receptors by CGS 21680 reduced the contralateral turning behavior induced by L-3,4-dihydroxyphenylalanine (L-DOPA). Administration of CGS 21680 completely blocked the contralateral turning induced by the dopamine D1 receptor agonist, SKF 38393, and reduced the turning induced by the dopamine D2 receptor agonist, LY 171555. Quinolinic acid lesion of the striatum or 6-hydroxydopamine lesion of the dopaminergic nigro-striatal neurons demonstrated that [3H]CGS 21680 binding sites are associated to striatal intrinsic neurons. This study provides evidence for a negative postsynaptic interaction of both dopamine D1 and D2 receptors with adenosine A2 receptors.
Collapse
Affiliation(s)
- M Morelli
- Department of Toxicology, University of Cagliari, Italy
| | | | | | | |
Collapse
|
255
|
Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 1994; 64:291-370. [PMID: 7878079 DOI: 10.1016/0163-7258(94)90041-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The description of new dopamine (DA) receptor subtypes, D1-(D1 and D5) and D2-like (D2A, D2B, D3, D4), has given an impetus to DA research. While selective agonists and antagonists are not generally available yet, the receptor distribution in the brain suggests that they could be new targets for drug development. Binding characteristics and second messenger coupling has been explored in cell lines expressing the new cloned receptors. The absence of selective ligands has meant that in vivo studies have lagged behind. However, progress has been made in understanding the function of DA-containing discrete brain nuclei and the functional consequence of the DA's interaction with other neurotransmitters. This review explores some of the latest advances in these various areas.
Collapse
Affiliation(s)
- D M Jackson
- Department of Behavioural, Pharmacology, Astra Arcus AB, Södertälje, Sweden
| | | |
Collapse
|
256
|
Popoli P, Pèzzola A, Domenici MR, Sagratella S, Diana G, Caporali MG, Bronzetti E, Vega J, Scotti de Carolis A. Behavioral and electrophysiological correlates of the quinolinic acid rat model of Huntington's disease in rats. Brain Res Bull 1994; 35:329-35. [PMID: 7850482 DOI: 10.1016/0361-9230(94)90109-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of bilateral intrastriatal injection of quinolinic acid (QA, 300 nmol) was studied in male Wistar rats. Behavioral and electrophysiological experiments were conducted in 15 lesioned plus 15 vehicle-injected (control) animals. With respect to control animals, QA-lesioned rats showed marked, statistically significant alterations from both the behavioral (greater motor activation in response to d-amphetamine, place-learning deficit in the Morris water maze), and the electroencephalographic (reduced voltage amplitude and EEG power at the level of frontal cortex) points of view. In addition, a significant loss in body weight and a marked striatal gliosis (GFAP staining) were observed in lesioned rats. Conversely, QA-lesioned rats did not show modifications in posttetanic potentiation (P.T.P.) or long-term potentiation (L.T.P.) in CA1 hippocampal area. The present results confirm that QA lesions of rat striatum may be regarded as a suitable model of Huntington's disease (HD).
Collapse
Affiliation(s)
- P Popoli
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Diamond I, Gordon AS. The role of adenosine in mediating cellular and molecular responses to ethanol. EXS 1994; 71:175-83. [PMID: 8032148 DOI: 10.1007/978-3-0348-7330-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have found that ethanol-induced increases in extracellular adenosine activate adenosine receptors which, in turn, mediate many of the acute and chronic effects of ethanol in the nervous system. Several laboratories have demonstrated the importance of adenosine in mediating the acute and chronic effects of ethanol at multiple levels of investigation in the nervous system. These include genetic selection for ethanol sensitivity in mice, behavioral responses to ethanol in naive and tolerant animals, neurophysiologic responses in hippocampal slices, and at the level of cAMP signal transduction and gene expression in cultured neural cells. In this review we present results from our laboratory which document the role of adenosine in mediating ethanol-induced changes in neural function at a cellular and molecular level. A schematic summary of our findings is: Etoh-->decreases Ado uptake-->increases Extracellular Ado-->Activation of Adenosine A2 receptor-->increases cAMP-->increases PKA-->-->-->Heterologous Desensitization (decreases cAMP)-->-->-->insensitivity of adenosine uptake to ETOH
Collapse
Affiliation(s)
- I Diamond
- Ernest Gallo Clinic and Research Center, San Francisco, CA
| | | |
Collapse
|
258
|
Jacobson KA, Nikodijević O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW. A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 1993; 336:57-60. [PMID: 8262217 PMCID: PMC4287251 DOI: 10.1016/0014-5793(93)81608-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The behavioral effects of a selective A3 adenosine receptor agonist 3-IB-MECA (N6-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine) in mice and the localization of radioligand binding sites in mouse brain were examined. Low levels of A3 adenosine receptors were detected in various regions of the mouse brain (hippocampus, cortex, cerebellum, striatum), using a radioiodinated, high-affinity A3-agonist radioligand [125I]AB-MECA (N6-(3-iodo-4-aminobenzyl)-5'-N-methylcarboxamidoadenosine). Scatchard analysis in the cerebellum showed that the Kd value for binding to A3 receptors was 1.39 +/- 0.04 nM with a Bmax of 14.8 +/- 2.1 fmol/mg protein. 3-IB-MECA at 0.1 mg/kg i.p. was a locomotor depressant with > 50% reduction in activity. Although selective A1 or A2a antagonists reversed locomotor depression elicited by selective A1 or A2a agonists, respectively, the behavioral depressant effects of 3-IB-MECA were unaffected. 3-IB-MECA also caused scratching in mice, which was prevented by coadministration of the histamine antagonist cyproheptadine. The demonstration of a marked behavioral effect of A3 receptor activation suggests that the A3 receptor represents a potential new therapeutic target.
Collapse
Affiliation(s)
- K A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
259
|
Johansson B, Herrera-Marschitz M, Svenningson P, Fredholm BB. Caffeine-induced expression of the proto-oncogene c-fos in rat striatum is increased after dopamine denervation. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 149:527-9. [PMID: 8128903 DOI: 10.1111/j.1748-1716.1993.tb09651.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Johansson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
260
|
Nikodijevi? O, Jacobson KA, Daly JW. Acute treatment of mice with high doses of caffeine: An animal model for choreiform movement. Drug Dev Res 1993. [DOI: 10.1002/ddr.430300304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
261
|
Zoli M, Agnati LF, Hedlund PB, Li XM, Ferré S, Fuxe K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 1993; 7:293-334. [PMID: 7514001 DOI: 10.1007/bf02769180] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several lines of evidence indicate that interactions among transmission lines can take place at the level of the cell membrane via interactions among macromolecules, integral or associated to the cell membrane, involved in signal recognition and transduction. The present view will focus on this last subject, i.e., on the interactions between receptors for chemical signals at the level of the neuronal membrane (receptor-receptor interaction). By receptor-receptor interaction we mean that a neurotransmitter or modulator, by binding to its receptor, modifies the characteristics of the receptor for another transmitter or modulator. Four types of interactions among transmission lines may be considered, but mainly intramembrane receptor-receptor interactions have been dealt with in this article, exemplified by the heteroregulation of D2 receptors via neuropeptide receptors and A2 receptors. The role of receptor-receptor interactions in the integration of signals is discussed, especially in terms of filtration of incoming signals, of integration of coincident signals, and of neuronal plasticity.
Collapse
Affiliation(s)
- M Zoli
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
262
|
Ji XD, Gallo-Rodriguez C, Jacobson KA. 8-(3-Isothiocyanatostyryl)caffeine Is a Selective, Irreversible Inhibitor of Striatal A(2)-Adenosine Receptors. Drug Dev Res 1993; 29:292-298. [PMID: 22787287 PMCID: PMC3392128 DOI: 10.1002/ddr.430290407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
8-(3-Isothiocyanatostyryl)caffeine (ISC) was synthesized and shown to inhibit selectively the binding of [(3)H]CGS 21680 (an A(2a)-selective agonist) at adenosine receptors in striatal membranes. The K(i) value at A(2a)-receptors was found to be 110 nM (rat), with selectivity ratios for A(2a) versus A(1)-receptors in rat, guinea pig, bovine, and rabbit striatum of >100-fold. Preincubation of membranes with ISC caused a dose-dependent, irreversible antagonism of the binding of [(3)H]CGS 21680, with an IC(50) value of 3 μM. The irreversibility is likely due to the presence of the chemically reactive isothiocyanate group, since the binding of the corresponding analogue in which the isothiocyanate was replaced with a chloro group was completely reversible. The potency of ISC to irreversibly inhibit the binding of [(3)H]CGS 21680 in several species varied in the order rat ≈ guinea pig > bovine ≈ rabbit. In all four species, binding of the A(1)-selective agonist [(3)H]R-N(6)-phenylisopropyladenosine was not diminished by pre-treatment with 2 μM ISC. The kinetics of irreversible inhibition of rat A(2a)-receptors by 2 μM ISC gave a t(1/2) of approximately 3 min. Following partial inactivation, the remaining rat A(2a)-binding sites retained the same K(d) value as in control membranes for saturation by [(3)H]CGS 21680. Thus, ISC appears to be a selective affinity label for A(2a)- versus A(1)-receptors in the brain.
Collapse
Affiliation(s)
- Xiao-Duo Ji
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
263
|
Shi D, Nikodijević O, Jacobson KA, Daly JW. Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol 1993; 13:247-61. [PMID: 8242688 PMCID: PMC3437321 DOI: 10.1007/bf00733753] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors. 2. The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered. 3. The densities of cortical beta 1 and cerebellar beta 2 adrenergic receptors are reduced by ca. 25%, while the densities of cortical alpha 1 and alpha 2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26-30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40-50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered. 4. The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%. 5. The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system.
Collapse
MESH Headings
- Animals
- Brain Chemistry/drug effects
- Caffeine/administration & dosage
- Caffeine/pharmacology
- Calcium Channels/drug effects
- Cerebellum/chemistry
- Cerebellum/drug effects
- Cerebral Cortex/chemistry
- Cerebral Cortex/drug effects
- Corpus Striatum/chemistry
- Corpus Striatum/drug effects
- Male
- Mice
- Receptors, Adrenergic/classification
- Receptors, Adrenergic/drug effects
- Receptors, Cholinergic/classification
- Receptors, Cholinergic/drug effects
- Receptors, Dopamine/analysis
- Receptors, GABA/classification
- Receptors, GABA/drug effects
- Receptors, Glutamate/analysis
- Receptors, Neurotransmitter/drug effects
- Receptors, Purinergic P1/classification
- Receptors, Purinergic P1/drug effects
- Receptors, Serotonin/classification
- Receptors, Serotonin/drug effects
Collapse
Affiliation(s)
- D Shi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
264
|
Jacobson KA, Nikodijević O, Padgett WL, Gallo-Rodriguez C, Maillard M, Daly JW. 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2-adenosine antagonist in vitro and in vivo. FEBS Lett 1993; 323:141-4. [PMID: 8495727 PMCID: PMC3468328 DOI: 10.1016/0014-5793(93)81466-d] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An adenosine antagonist, 8-(3-chlorostyryl)caffeine (CSC), was shown previously to be 520-fold selective for A2a-adenosine receptors in radioligand binding assays in the rat brain. In reversing agonist effects on adenylate cyclase, CSC was 22-fold selective for A2a receptors in rat phenochromocytoma cells (Kb 60 nM) vs. A1 receptors in rat adipocytes (Kb 1.3 microM). Administered i.p. in NIH mice at a dose of 1 mg/kg, CSC shifted the curve for locomotor depression elicited by the A2a-selective agonist APEC to the right (ED50 value for APEC shifted from 20 micrograms/kg i.p. to 190 micrograms/kg). CSC had no effect on locomotor depression elicited by an ED50 dose of the A1-selective agonist CHA. CSC alone at a dose of 5 mg/kg stimulated locomotor activity by 22% over control values. Coadministration of CSC and the A1-selective antagonist CPX, both at non-stimulatory doses, increased activity by 37% (P < 0.001) over CSC alone, suggesting a behavioral synergism of A1- and A2-antagonist effects in the CNS.
Collapse
Affiliation(s)
- K A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
265
|
Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 1993; 36:1333-42. [PMID: 8496902 PMCID: PMC5975975 DOI: 10.1021/jm00062a005] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of substituted 8-styryl derivatives of 1,3,7-alkylxanthines was synthesized as potential A2-selective adenosine receptor antagonists, and the potency at rat brain A1- and A2-receptors was studied in radioligand binding experiments. At the xanthine 7-position, only small hydrophobic substituents were tolerated in receptor binding. 7-Methyl analogues were roughly 1 order of magnitude more selective for A2 versus A1 receptors than the corresponding 7-H analogues. 1,3-Dimethylxanthine derivatives tended to be more selective for A2-receptors than the corresponding 1,3-diallyl, diethyl, or dipropyl derivatives. Substitutions of the phenyl ring at the 3-(monosubstituted) and 3,5-(disubstituted) positions were favored. 1,3, 7-Trimethyl-8-(3-chlorostyryl)xanthine was a moderately potent (Ki vs [3H]CGS 21680 was 54 nM) and highly A2-selective (520-fold) adenosine antagonist. 1,3,7-Trimethyl-8-[(3-carboxy-1-oxopropyl)amino] styryl]xanthine was highly A2-selective (250-fold) and of enhanced water solubility (max 19 mM). 1,3-Dipropyl-7-methyl-8-(3,5-dimethoxystyryl) xanthine was a potent (Ki = 24 nM) and very A2-selective (110-fold) adenosine antagonist.
Collapse
Affiliation(s)
- K A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|