251
|
Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials 2017; 147:1-13. [DOI: 10.1016/j.biomaterials.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022]
|
252
|
Ghorbani S, Tiraihi T, Soleimani M. Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction. J Biomater Appl 2017; 32:702-715. [PMID: 29169271 DOI: 10.1177/0885328217741903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nervous system has little capacity for self-repair after injury because neurons cannot proliferate owing to lack of suitable microenvironment. Therefore, neural tissue engineering that combines neural stem, scaffolds, and growth factors may improve the chance of restoration of damaged neural tissues. A favorable niche for neural regeneration would be both fibrous and electrically conductive scaffolds. Human Wharton jelly-derived mesenchymal stem cells were seeded on wet-electrospun 3D scaffolds composed of poly lactic acid coated with natural polymers including alginate and gelatin, followed by a multi-wall carbon nanotube coating. The results show that a wet-electrospun poly lactic acid scaffold at a concentration of 15% w/v had higher porosity (above 80%) than other concentrations. Moreover, the coated scaffold supported the growth of human Wharton jelly-derived mesenchymal stem cells in 3D culture, and were incubated for 21 days with 1 mM valproic acid as the inducer resulted in improvement in human Wharton jelly-derived mesenchymal stem cells differentiation into neuron-like cells immunoreactivity to nestin, Map2, and neuron specific enolase (NSE), which were also consistent with reverse transcription polymerase chain reaction (RT-PCR) and quantitive Reverse transcription polymerase chain reaction (qRT-PCR) results. The conclusion is that the 3D composite nanofiber poly lactic acid scaffold improved the transdifferentiation of human Wharton jelly-derived mesenchymal stem cells into neuron-like cells.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- 1 Department of Anatomical Sciences, 48503 School of Medical Sciences, Tarbiat Modares University , Tehran, Islamic Republic of Iran
| | - Taki Tiraihi
- 1 Department of Anatomical Sciences, 48503 School of Medical Sciences, Tarbiat Modares University , Tehran, Islamic Republic of Iran
| | - Masoud Soleimani
- 2 Department of Hematology, 48503 School of Medical Sciences, Tarbiat Modares University , Tehran, Islamic Republic of Iran
| |
Collapse
|
253
|
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. LAB ON A CHIP 2017; 17:4134-4147. [PMID: 29114689 DOI: 10.1039/c7lc00802c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight into the interactions occurring at the cell-material interface. The success of such an approach is, however, largely dependent on the ability to miniaturize the biomaterials as well as on the choice of the assay used to study the cell-material interactions. In this work, we developed a microfluidic device, the main component of which is made of a widely used biocompatible polymer, polylactic acid (PLA). This device enabled cell culture under different fluidic regimes, including perfusion and diffusion. Through a combination of photolithography, two-photon polymerization and hot embossing, it was possible to microstructure the surface of the cell culture chamber of the device with highly defined geometrical features. Furthermore, using pyramids with different heights and wall microtopographies as an example, adhesion, morphology and distribution of human MG63 osteosarcoma cells were studied. The results showed that both the height of the topographical features and the microstructural properties of their walls affected cell spreading and distribution. This proof-of-concept study shows that the platform developed here is a useful tool for studying interactions between cells and clinically relevant biomaterials under controlled fluidic regimes.
Collapse
Affiliation(s)
- D Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | | | | | | |
Collapse
|
254
|
Kyzioł A, Michna J, Moreno I, Gamez E, Irusta S. Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
255
|
An in vivo evaluation of a novel malleable composite scaffold (polypropylene carbonate/ poly(D-lactic acid) /tricalcium phosphate elastic composites) for bone defect repair. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
256
|
Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. Int J Pharm 2017; 532:802-812. [DOI: 10.1016/j.ijpharm.2017.08.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
|
257
|
Gugliandolo A, Diomede F, Cardelli P, Bramanti A, Scionti D, Bramanti P, Trubiani O, Mazzon E. Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration. J Biomed Mater Res A 2017; 106:126-137. [PMID: 28879677 DOI: 10.1002/jbm.a.36213] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Cardelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello,", National Research Council of Italy, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
258
|
Zhu S, Jing W, Hu X, Huang Z, Cai Q, Ao Y, Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J Biomed Mater Res A 2017; 105:3369-3383. [PMID: 28795778 DOI: 10.1002/jbm.a.36181] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering using bone mesenchymal stromal cells (BMSCs) is a multidisciplinary strategy that requires biodegradable scaffold, cell, various promoting cues to work simultaneously. Electrical stimulation (ES) is known able to promote osteogenic differentiation of BMSCs, but it is interesting to know how can it play the strongest promotion effect. To strengthen local ES on BMSCs, parallel-aligned conductive nanofibers were electrospun from the mixtures of poly(L-lactide) (PLLA) and multi-walled carbon nanotubes (MWCNTs), and used for cell culture. Osteogenic differentiation of BMSCs was conducted by applying ES (direct current, 1.5 V, 1.5 h/day) perpendicular to the fiber direction during the day 1-7, day 8-14, or day 15-21 period of the osteoinductive culture. In comparison with ES-free groups, bone-related markers and genes were found significantly up-regulated when ES was applied on BMSCs growing on nanofibers having higher conductivity. When the ES was applied at the earlier stage of osteoinductive culture, the promotion effect on osteogenic differentiation would be stronger. In the presence of a BMP blocker, the down-regulated expressions of bone-related genes were able to be slightly recovered by ES, especially when the ES was applied at the beginning of osteoinductive culture (i.e. day 1-7). The promotion effect generated by ES in the early stage was found sustainable to later stages of differentiation, while those ES applied at later stages of differentiation should have missed the optimal point. In other words, later ES was not so necessary in inducing the osteogenic differentiation of BMSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3369-3383, 2017.
Collapse
Affiliation(s)
- Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zirong Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
259
|
Darshan GH, Kong D, Gautrot J, Vootla S. Physico-chemical characterization of Antheraea mylitta silk mats for wound healing applications. Sci Rep 2017; 7:10344. [PMID: 28871135 PMCID: PMC5583262 DOI: 10.1038/s41598-017-10531-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/10/2017] [Indexed: 01/29/2023] Open
Abstract
In the field of plastic reconstructive surgery, development of new innovative matrices for skin repair is in demand. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, not exerting a pathological immune response. The materials used should display optimized mechanical properties to sustain cell growth and limit scaffold contraction. Wound healing is a biological process directed towards restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium wholly replacing the epidermis of the wound. Wild silk from Antheraea mylitta meets these demands to a large extent. To evaluate the effects of the treatment, Antheraea mylitta and Bombyx mori samples were characterized by SEM-EDX, FT-IR, XRD and TGA-DSC techniques. Preliminary cell growth behavior was carried out by culturing epidermal cells and proliferation was quantified via viability assay. Moreover, Antheraea mylitta possesses excellent cell-adhesive capability, effectively promoting cell attachment and proliferation. Antheraea mylitta serves as a delivery vehicle for cells. With all these unique features, it is expected that Antheraea mylitta mat will have wide utility in the areas of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- G H Darshan
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India
| | - Dexu Kong
- School of engineering and Material Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Julien Gautrot
- School of engineering and Material Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Shyamkumar Vootla
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India.
| |
Collapse
|
260
|
Nifant'ev IE, Shlyakhtin AV, Bagrov VV, Minyaev ME, Churakov AV, Karchevsky SG, Birin KP, Ivchenko PV. Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Trans 2017; 46:12132-12146. [PMID: 28869269 DOI: 10.1039/c7dt02469j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous heteroleptic 2,6-di-tert-butyl-4-methylphenolate (BHT) magnesium complexes have been synthesized by treatment of (BHT)MgBu(THF)2 with various alcohols. Molecular structures of the complexes have been determined by X-ray diffraction. The magnesium coordination number in [(BHT)Mg(μ-OBn)(THF)]2 (3) and [(BHT)Mg(μ-O-tert-BuC6H4)(THF)]2 (4) is equal to 4. Complexes formed from esters of glycolic and lactic acids, [(BHT)Mg(μ-OCH2COOEt)(THF)]2 (5) and [(BHT)Mg(μ-OCH(CH3)COOCH2COOtBu)(THF)]2 (6) contain chelate fragments with pentacoordinated magnesium. Compounds 3-6 contain THF molecules coordinated to magnesium atoms. Complex {(BHT)Mg[μ-O(CH2)3CON(CH3)2]}2 (7) does not demonstrate any tendency to form an adduct with THF. It has been experimentally determined that complexes 3 and 5 are highly active catalysts of lactide polymerization. The activity of 4 is rather low, and complex 7 demonstrates moderate productivity. According to DOSY NMR experiments, compounds 3 and 5 retain their dimeric structures even in THF. The free energies of model dimeric [(DBP)Mg(μ-OMe)(Sub)]2 and monomeric (DBP)Mg(OMe)(Sub)2 products on treatment of [(DBP)Mg(μ-OMe)(THF)]2 with a series of σ-electron donors (Sub) have been estimated by DFT calculations. These results demonstrate that the substitution of THF by Sub in a dimeric molecule is an energetically allowed process, whereas the dissociation of dimers is energetically unfavorable. DFT modeling of ε-CL and (dl)-lactide ROP catalyzed by dimeric and monomeric complexes showed that a cooperative effect of two magnesium atoms occurs within the ROP for binuclear catalytic species. A comparison of the reaction profiles for ROP catalyzed by binuclear and mononuclear species allowed us to conclude that the binuclear mechanism is favorable in early stages of ROP initiated by dimers 3 and 5.
Collapse
Affiliation(s)
- I E Nifant'ev
- M.V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation. and A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - A V Shlyakhtin
- M.V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation.
| | - V V Bagrov
- M.V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation.
| | - M E Minyaev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - A V Churakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - S G Karchevsky
- Institute of Petroleum Refining and Petrochemistry of the Republic of Bashkortostan, 12 Iniciativnaya Str., 450065, Ufa, Russian Federation
| | - K P Birin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Building 4, 119071, Moscow, Russian Federation
| | - P V Ivchenko
- M.V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation. and A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
261
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
262
|
Eyni H, Ghorbani S, Shirazi R, Salari Asl L, P Beiranvand S, Soleimani M. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells. J Biomater Appl 2017; 32:373-383. [PMID: 28752802 DOI: 10.1177/0885328217723179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid)/multi-wall carbon nanotubes scaffold-seeded menstrual blood-derived stem cells could be viewed as a novel, safe, and accessible construct for these cells, as they enhance germ-like generation from menstrual blood-derived stem cells.
Collapse
Affiliation(s)
- Hossein Eyni
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Sadegh Ghorbani
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Reza Shirazi
- 2 Department of Anatomical Sciences, Iran University of Medical Sciences University, Tehran, Islamic Republic of Iran
| | - Leila Salari Asl
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Shahram P Beiranvand
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Masoud Soleimani
- 3 Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| |
Collapse
|
263
|
Komatsu D, Mistura DV, Motta A, Domingues JA, Hausen MA, Duek E. Development of a membrane of poly (L-co-D,L lactic acid-co-trimethylene carbonate) with aloe vera: An alternative biomaterial designed to improve skin healing. J Biomater Appl 2017; 32:311-320. [DOI: 10.1177/0885328217719854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The search for new therapies and drugs that act as topical agents to relieve pain and control the infectious processes in burns always attracted interest in clinical trials. As an alternative to synthetic drugs, the use of natural extracts is useful in the development of new strategies and formulations for improving the life quality. The aim of this study was to develop a wound dressing using Poly(L-co-D,L lactic acid-co-TMC) (PLDLA-co-TMC) containing aloe vera (AV). This natural plant extract is known for its modulatory effects under healing process. The membrane of PLDLA-co-TMC+aloe vera was prepared at different concentrations of AV (5, 10, 15 and 50%). The FTIR showed no change in the PLDLA-co-TMC spectrum after AV addition, while the swelling test showed changes only in PLDLA-co-TMC+AV at 50%. The wettability measurements showed decrease in the contact angle in all samples after the AV addition in the polymer, while the AV release test showed that PLDLA-co-TMC+50%AV sample has higher AV release rate than the sample with other AV concentrations. The SEM analysis showed that AV was homogeneously distributed at 5% only. Tensile tests demonstrated an increase in the Young's modulus and a reduction in the elongation till rupture of the PLDLA-co-TMC after the addition of AV. Biocompatibility in vitro evaluation with fibroblast cells seeded in the membranes of PLDLA-co-TMC+AV showed that the cells were able to adhere, proliferate and maintain mitochondrial activity in all AV concentrations tested. Due to the known skin medicinal properties attributed to AV and the results here obtained, we suggest that after in vivo trials, the PLDLA-co-TMC+AV should be a promising biomaterial for application as a device for skin curative and healing agent.
Collapse
Affiliation(s)
- Daniel Komatsu
- Faculdade de Ciencias Medicas e da Saude, Pontificia Universidade Catolica de Sao Paulo, São Paulo, Brazil
| | - Daniel V Mistura
- Universidade Estadual de Campinas Instituto de Biologia, São Paulo, Brazil
| | - Adriana Motta
- Faculdade de Ciencias Medicas e da Saude, Pontificia Universidade Catolica de Sao Paulo, São Paulo, Brazil
| | | | - Moema A Hausen
- Faculdade de Ciencias Medicas e da Saude, Pontificia Universidade Catolica de Sao Paulo, São Paulo, Brazil
| | - Eliana Duek
- Faculdade de Ciencias Medicas e da Saude, Pontificia Universidade Catolica de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
264
|
Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1196-1204. [DOI: 10.1016/j.msec.2017.03.200] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023]
|
265
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
266
|
Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 2017; 65:428-438. [DOI: 10.1016/j.jmbbm.2016.09.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
|
267
|
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems. SENSORS 2016; 16:s16081238. [PMID: 27527184 PMCID: PMC5017403 DOI: 10.3390/s16081238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8–2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.
Collapse
|
268
|
Xiao G, Yin H, Xu W, Lu Y. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1462-75. [DOI: 10.1080/09205063.2016.1211000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| | - Han Yin
- Department of Orthopaedics, The People’s Hospital of Liaocheng, Liaocheng, PR China
| | - Wenhua Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| |
Collapse
|