251
|
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 2019; 53:667-682. [PMID: 30668176 DOI: 10.1080/10409238.2018.1556578] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the "Warburg effect", and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
252
|
Aoi W, Zou X, Xiao JB, Marunaka Y. Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods. EFOOD 2019. [DOI: 10.2991/efood.k.190924.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
253
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2019; 39:70-113. [PMID: 29785785 DOI: 10.1002/med.21511] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2025]
Abstract
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages, and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment (TME). Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the TME and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that TME is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including antitumor agents with those targeting stromal cell metabolism, antiangiogenic drugs, and/or immunotherapy are being developed as promising therapeutics.
Collapse
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Ana R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| |
Collapse
|
254
|
Al-Khawaga S, AlRayahi J, Khan F, Saraswathi S, Hasnah R, Haris B, Mohammed I, Abdelalim EM, Hussain K. A SLC16A1 Mutation in an Infant With Ketoacidosis and Neuroimaging Assessment: Expanding the Clinical Spectrum of MCT1 Deficiency. Front Pediatr 2019; 7:299. [PMID: 31380330 PMCID: PMC6657212 DOI: 10.3389/fped.2019.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
The solute carrier family 16 member 1 (SLC16A1) gene encodes for monocarboxylate transporter 1 (MCT1) that mediates the movement of monocarboxylates, such as lactate and pyruvate across cell membranes. Inactivating recessive homozygous or heterozygous mutations in the SLC16A1 gene were described in patients with recurrent ketoacidosis and hypoglycemia, a potentially lethal condition. In the brain where MCT1 is highly localized around axons and oligodendrocytes, glucose is the most crucial energy substrate while lactate is an alternative substrate. MCT1 mutation or reduced expression leads to neuronal loss due to axonal degeneration in an animal model. Herein, we describe a 28 months old female patient who presented with the first hypoglycemic attack associated with ketoacidosis starting at the age of 3 days old. Whole exome sequencing (WES) performed at 6 months of age revealed a c.218delG mutation in exon 3 in the SLC16A1 gene. The variant is expected to result in loss of normal MCT1 function. Our patient is amongst the youngest presenting with MCT1 deficiency. A detailed neuroimaging assessment performed at 18 months of age revealed a complex white and gray matter disease, with heterotopia. The threshold of blood glucose to circumvent neurological sequelae cannot be set because it is patient-specific, nevertheless, neurodevelopmental follow up is recommended in this patient. Further functional studies will be required to understand the role of the MCT1 in key tissues such as the central nervous system (CNS), liver, muscle and ketone body metabolism. Our case suggests possible neurological sequelae that could be associated with MCT1 deficiency, an observation that could facilitate the initiation of appropriate neurodevelopmental follow up in such patients.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jehan AlRayahi
- Division of Neuroradiology, Diagnostic Imaging, Sidra Medicine, Doha, Qatar
| | - Faiyaz Khan
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Hasnah
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
255
|
Alvarez-Flores MP, Hébert A, Gouelle C, Geller S, Chudzinski-Tavassi AM, Pellerin L. Neuroprotective effect of rLosac on supplement-deprived mouse cultured cortical neurons involves maintenance of monocarboxylate transporter MCT2 protein levels. J Neurochem 2018; 148:80-96. [PMID: 30347438 DOI: 10.1111/jnc.14617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/02/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24 h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24 h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Miryam P Alvarez-Flores
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Laboratory of Molecular Biology - Centre of Excellence in New Target Discover CENTD, Butantan Institute, São Paulo, Brazil
| | - Audrey Hébert
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Cathy Gouelle
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sarah Geller
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Ana M Chudzinski-Tavassi
- Laboratory of Molecular Biology - Centre of Excellence in New Target Discover CENTD, Butantan Institute, São Paulo, Brazil
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
256
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [PMID: 30308256 DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
257
|
Fets L, Driscoll PC, Grimm F, Jain A, Nunes PM, Gounis M, Doglioni G, Papageorgiou G, Ragan TJ, Campos S, Silva Dos Santos M, MacRae JI, O'Reilly N, Wright AJ, Benes CH, Courtney KD, House D, Anastasiou D. MCT2 mediates concentration-dependent inhibition of glutamine metabolism by MOG. Nat Chem Biol 2018; 14:1032-1042. [PMID: 30297875 PMCID: PMC6298574 DOI: 10.1038/s41589-018-0136-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.
Collapse
Affiliation(s)
- Louise Fets
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Paul C Driscoll
- Metabolomics Science Technology Platform, Francis Crick Institute, London, UK
| | - Fiona Grimm
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Aakriti Jain
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Michalis Gounis
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Ginevra Doglioni
- Cancer Metabolism Laboratory, Francis Crick Institute, London, UK
| | - George Papageorgiou
- Peptide Chemistry Science Technology Platform, Francis Crick Institute, London, UK
| | | | - Sebastien Campos
- Crick-GSK Biomedical LinkLabs, GSK Medicines Research Centre, Stevenage, UK
| | | | - James I MacRae
- Metabolomics Science Technology Platform, Francis Crick Institute, London, UK
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, Francis Crick Institute, London, UK
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center & Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kevin D Courtney
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK Medicines Research Centre, Stevenage, UK
| | | |
Collapse
|
258
|
Lactate Transporter Monocarboxylate Transporter 4 Induces Bone Pain in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19113317. [PMID: 30366393 PMCID: PMC6274991 DOI: 10.3390/ijms19113317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses a significant challenge clinically, as it can invade facial bones and cause bone pain that is undertreated and poorly understood. Here we studied HNSCC bone pain (HNSCC-BP) in an intratibial mouse xenograft model that uses a human HNSCC cell line (SAS cells). These mice develop HNSCC-BP associated with an upregulation of phosphorylated ERK1/2 (pERK1/2), which is a molecular indicator of neuron excitation in the dorsal root ganglia (DRGs) of sensory nerve cell bodies. Our experiments demonstrated that the inhibition of monocarboxylate transporter 4 (MCT4) by short hairpin (shRNA) transduction suppressed the HNSCC-BP, the lactate level in bone marrow, and the pERK1/2 expression in DRG. The sensory nerves also expressed increased levels of the acid-sensing receptor TRPV1. DRG neurons co-cultured with SAS cells showed increased neurite outgrowth, and were inhibited by MCT4 silencing with shRNA. Collectively, our results show that HNSCC induced an acidic bone microenvironment that evokes HNSCC-BP via MCT4 expression.
Collapse
|
259
|
Miller JJ, Grist JT, Serres S, Larkin JR, Lau AZ, Ray K, Fisher KR, Hansen E, Tougaard RS, Nielsen PM, Lindhardt J, Laustsen C, Gallagher FA, Tyler DJ, Sibson N. 13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI. Sci Rep 2018; 8:15082. [PMID: 30305655 PMCID: PMC6180068 DOI: 10.1038/s41598-018-33363-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-13C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-13C]pyruvate and ethyl-[1-13C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-13C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-13C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.
Collapse
Affiliation(s)
- Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kevin Ray
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Esben Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | - Nicola Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
260
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
261
|
Park SJ, Smith CP, Wilbur RR, Cain CP, Kallu SR, Valasapalli S, Sahoo A, Guda MR, Tsung AJ, Velpula KK. An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications. Am J Cancer Res 2018; 8:1967-1976. [PMID: 30416849 PMCID: PMC6220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023] Open
Abstract
Monocarboxylate transporters (MCTs) represent a diverse group of transmembrane proteins encoded by the SLC16 gene family found ubiquitously across mammalian species. Two members of this family, MCT1 and MCT4, have been linked to key roles in the metabolic activity of tissues through the proton-coupled transport of monocarboxylates, most notably L-lactate, ketone bodies, and pyruvate. This review aims to provide an overview of MCT1 and MCT4, followed by the implications of their expression in a multitude of cancers and in glioblastoma (GBM) specifically. Further, the possible mechanisms underlying these effects will be discussed. Given the relationships between MCT1 and MCT4 and cancer, they offer a unique opportunity for novel treatment strategies. We aim to explore current therapies focused on MCT1 and MCT4 and propose future studies to better understand their role in GBM to optimize future treatment regimens.
Collapse
Affiliation(s)
- Simon J Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Chase P Smith
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Ryan R Wilbur
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Charles P Cain
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Sankeerth R Kallu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Srijan Valasapalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Arpit Sahoo
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| |
Collapse
|
262
|
Pucino V, Cucchi D, Mauro C. Lactate transporters as therapeutic targets in cancer and inflammatory diseases. Expert Opin Ther Targets 2018; 22:735-743. [PMID: 30106309 DOI: 10.1080/14728222.2018.1511706] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Inflammation is associated with the accumulation of lactate at sites of tumor-growth and inflammation. Lactate initiates tissue-responses contributing to disease. We discuss the potential of targeting lactate transporters in the treatment of cancer and inflammatory conditions. Areas covered: Lactate is the end product of glycolysis, often considered a waste metabolite but also a fuel for oxidative cells. It is however an active signaling molecule with immunomodulatory and angiogenic properties. They are the consequence of lactate binding to membrane receptor(s) or being transported through specific carrier-mediated-transporters across the cellular membrane. Carriers are distinct in proton-linked-monocarboxylate-transporters (MCTs) and Na+-coupled- electrogenic-transporters, expressed by several tissues including immune-system, endothelium and epithelium. Several tumors and inflammatory sites show accumulation of lactate and altered expression of its transporters, thus suggesting a role of this metabolite in cancer and inflammation. We review the most recent evidence on lactate biology, focusing on transporter expression and function in health and disease. Expert opinion: Lactate-initiated signaling is gaining attention for its implications in cancer and inflammation. This review discusses the therapeutic potential of targeting lactate transporters and drugs that are already in clinical use for cancer and discusses the opportunity to develop new therapeutics for inflammation and cancer.
Collapse
Affiliation(s)
- Valentina Pucino
- a William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London , London , UK
| | - Danilo Cucchi
- a William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London , London , UK
| | - Claudio Mauro
- a William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London , London , UK
- b Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
263
|
Minakina LN, Goldapel EG, Usov LA. [The influence of adenosine receptor ligands and hypoxic preconditioning on the metabolism of the brain tissue in the experiment]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:54-58. [PMID: 30132458 DOI: 10.17116/jnevro20181187154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To study the influence of adenosine receptor ligands and hypoxic preconditioning on carbohydrate metabolism in global brain ischemia. MATERIAL AND METHODS The study included 51 outbred white male mice weighing 20-25 g. An effect of adenosine receptor ligands and hypoxic preconditioning on brain tissue metabolism, heat exchange and longevity was explored. RESULTS AND CONCLUSION Adenosine, an agonist of A1 adenosine receptors, and hypoxic preconditioning exert a neuroprotective effect on brain cells. The blocker of A1 adenosine receptors aggravates metabolic disturbances in the brain and removes the protective effect of cyclopenyladenosine and ischemic preconditioning.
Collapse
Affiliation(s)
- L N Minakina
- Irkutsk State Medical University, Irkutsk, Russia
| | - E G Goldapel
- Irkutsk Research Anti-Plague Institute, Irkutsk, Russia
| | - L A Usov
- Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
264
|
Albatany M, Meakin S, Bartha R. The Monocarboxylate transporter inhibitor Quercetin induces intracellular acidification in a mouse model of Glioblastoma Multiforme: in-vivo detection using magnetic resonance imaging. Invest New Drugs 2018; 37:595-601. [PMID: 30101388 DOI: 10.1007/s10637-018-0644-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 01/22/2023]
Abstract
The response of tumor intracellular pH to a pharmacological challenge could help identify aggressive cancer. Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that is dependent on intracellular pH (pHi). pHi is important in the maintenance of normal cell function and is normally maintained within a narrow range by the activity of transporters located at the plasma membrane. In cancer, changes in pHi have been correlated with both cell proliferation and cell death. Quercetin is a bioflavonoid and monocarboxylate transporter (MCT) inhibitor. Since MCTs plays a significant role in maintaining pH balance in the tumor microenvironment, we hypothesized that systemically administered quercetin could selectively acidify brain tumors. The goals of the current study were to determine whether CEST MRI measurements sensitive to tumor pH could detect acidification after quercetin injection and to measure the magnitude of the pH change (ΔpH). Using a 9.4 T MRI, amine and amide concentration independent detection (AACID) CEST spectra were acquired in six mice approximately 15 ± 1 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of quercetin (dose: 200 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle dimethyl sulfoxide (DMSO) injection. Repeated measures t-test was used to compare AACID changes in tumor and contralateral tissue regions of interest. Two hours after quercetin injection there was a significant increase in tumor AACID by 0.07 ± 0.03 corresponding to a 0.27 decrease in pHi, and no change in AACID in contralateral tissue. There was also a small average increase in AACID in tumors within the three mice injected with DMSO only. The use of the natural compound quercetin in combination with pH weighted MRI represents a unique approach to cancer detection that does not require injection of an imaging contrast agent.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Susan Meakin
- Department of Biochemistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
265
|
Jha MK, Morrison BM. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp Neurol 2018; 309:23-31. [PMID: 30044944 DOI: 10.1016/j.expneurol.2018.07.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
The brain is, by weight, only 2% the volume of the body and yet it consumes about 20% of the total glucose, suggesting that the energy requirements of the brain are high and that glucose is the primary energy source for the nervous system. Due to this dependence on glucose, brain physiology critically depends on the tight regulation of glucose transport and its metabolism. Glucose transporters ensure efficient glucose uptake by neural cells and contribute to the physiology and pathology of the nervous system. Despite this, a growing body of evidence demonstrates that for the maintenance of several neuronal functions, lactate, rather than glucose, is the preferred energy metabolite in the nervous system. Monocarboxylate transporters play a crucial role in providing metabolic support to axons by functioning as the principal transporters for lactate in the nervous system. Monocarboxylate transporters are also critical for axonal myelination and regeneration. Most importantly, recent studies have demonstrated the central role of glial cells in brain energy metabolism. A close and regulated metabolic conversation between neurons and both astrocytes and oligodendroglia in the central nervous system, or Schwann cells in the peripheral nervous system, has recently been shown to be an important determinant of the metabolism and function of the nervous system. This article reviews the current understanding of the long existing controversies regarding energy substrate and utilization in the nervous system and discusses the role of metabolic transporters in health and diseases of the nervous system.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Brett M Morrison
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
266
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
267
|
Cavalcanti-de-Albuquerque JP, Kincheski GC, Louzada RA, Galina A, Pierucci APTR, Carvalho DP. Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats. Exp Physiol 2018; 103:1076-1086. [PMID: 29893447 DOI: 10.1113/ep086916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does an acute session of exercise affect food intake of male Wistar rats? What is the main finding and its importance? Food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. This work raises new feeding-related targets that would explain how exercise drives body weight loss. ABSTRACT Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with a well-oriented programme of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this article, we hypothesize that an acute exercise session would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- or high-intensity PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to moderate-intensity PE, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the high-intensity PE group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of the glucose inhibitory effect on food intake.
Collapse
Affiliation(s)
- João Paulo Cavalcanti-de-Albuquerque
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Nutrition Josue de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grasielle Clotildes Kincheski
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | - Ruy Andrade Louzada
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | | | - Denise P Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
268
|
Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Cancer Metab 2018; 6:8. [PMID: 29942509 PMCID: PMC5996481 DOI: 10.1186/s40170-018-0180-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2–6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5% oxygen) or normoxia (21% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro. Electronic supplementary material The online version of this article (10.1186/s40170-018-0180-9) contains supplementary material, which is available to authorized users.
Collapse
|
269
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
270
|
Fisel P, Schaeffeler E, Schwab M. Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy. Clin Transl Sci 2018; 11:352-364. [PMID: 29660777 PMCID: PMC6039204 DOI: 10.1111/cts.12551] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
The solute carrier (SLC) SLC16 gene family comprises 14 members and encodes for monocarboxylate transporters (MCTs), which mediate the absorption and distribution of monocarboxylic compounds across plasma membranes. As the knowledge about their physiological function, activity, and regulation increases, their involvement and contribution to cancer and other diseases become increasingly evident. Moreover, promising opportunities for therapeutic interventions by directly targeting their endogenous functions or by exploiting their ability to deliver drugs to specific organ sites emerge.
Collapse
Affiliation(s)
- Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
271
|
Cao YW, Liu Y, Dong Z, Guo L, Kang EH, Wang YH, Zhang W, Niu HT. Monocarboxylate transporters MCT1 and MCT4 are independent prognostic biomarkers for the survival of patients with clear cell renal cell carcinoma and those receiving therapy targeting angiogenesis. Urol Oncol 2018; 36:311.e15-311.e25. [PMID: 29657088 DOI: 10.1016/j.urolonc.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prognostic biomarkers for patients with clear cell renal cell carcinoma (ccRCC), particularly those receiving therapy targeting angiogenesis, are not well established. In this study, we examined the correlations of monocarboxylate transporter 1 (MCT1) and MCT4, 2 critical transporters for glycolytic metabolism, with various clinicopathological parameters as well as survival of patients with ccRCC and those treated with vascular endothelial growth factor receptor (VEGFR) inhibitors. METHODS A cohort of 150 ccRCC patients were recruited into this study. All patients underwent radical or partial nephrectomy as the first-line treatment, and 38 received targeted therapy (sorafenib or sunitinib) after the surgery. Expression levels of MCT1, MCT4, and CD34 were examined by immunohistochemistry. Correlations between MCT1 or MCT4 expression and different clinicopathological parameters or patient survival were analyzed among all as well as patients receiving targeted therapy. RESULTS MCT1 or MCT4 expression did not significantly correlate with sex, age, tumor diameter, microvascular density, tumor staging, pathological Furmann grade, or MSKCC (P>0.05). High expression of either MCT1 or MCT4 significantly correlated with reduced overall survival (OS) and progression-free survival (PFS) among the total cohort of ccRCC patients. For patients receiving targeted therapy, high expression of either MCT1 or MCT4 significantly correlated with reduced PFS, but not OS. Both conditions were independent prognostic biomarkers for reduced PFS among all patients or those receiving targeted therapy. CONCLUSION MCT1 and MCT4 are prognostic biomarkers for patients with ccRCC or those receiving targeted therapy. High expression of these 2 proteins predicts reduced PFS in these patients.
Collapse
Affiliation(s)
- Yan-Wei Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong Liu
- Department of Ultrasondography, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Zhen Dong
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Guo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - En-Hao Kang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong-Hua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Zhang
- Department of Pathology, 401 Hospital of People's Liberation Army, Qingdao, Shandong, China.
| | - Hai-Tao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
272
|
Morrot A, da Fonseca LM, Salustiano EJ, Gentile LB, Conde L, Filardy AA, Franklim TN, da Costa KM, Freire-de-Lima CG, Freire-de-Lima L. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Front Oncol 2018; 8:81. [PMID: 29629338 PMCID: PMC5876249 DOI: 10.3389/fonc.2018.00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is composed by cellular and non-cellular components. Examples include the following: (i) bone marrow-derived inflammatory cells, (ii) fibroblasts, (iii) blood vessels, (iv) immune cells, and (v) extracellular matrix components. In most cases, this combination of components may result in an inhospitable environment, in which a significant retrenchment in nutrients and oxygen considerably disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One of the main products of this reprogrammed cell metabolism is lactate. "Lactagenic" or lactate-producing cancer cells are characterized by their immunomodulatory properties, since lactate, the end product of the aerobic glycolysis, besides acting as an inducer of cellular signaling phenomena to influence cellular fate, might also play a role as an immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in the TME, the lactate secreted by transformed cells is able to compromise the function and/or assembly of an effective immune response against tumors. Herein, we will discuss recent advances regarding the deleterious effect of high concentrations of lactate on the tumor-infiltrating immune cells, which might characterize an innovative way of understanding the tumor-immune privilege.
Collapse
Affiliation(s)
- Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Eduardo J. Salustiano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Boffoni Gentile
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Almeida Filardy
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiany Nunes Franklim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
273
|
Van Hée VF, Labar D, Dehon G, Grasso D, Grégoire V, Muccioli GG, Frédérick R, Sonveaux P. Radiosynthesis and validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors. Oncotarget 2018; 8:24415-24428. [PMID: 28107190 PMCID: PMC5421858 DOI: 10.18632/oncotarget.14705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/26/2016] [Indexed: 01/17/2023] Open
Abstract
Cancers develop metabolic strategies to cope with their microenvironment often characterized by hypoxia, limited nutrient bioavailability and exposure to anticancer treatments. Among these strategies, the metabolic symbiosis based on the exchange of lactate between hypoxic/glycolytic cancer cells that convert glucose to lactate and oxidative cancer cells that preferentially use lactate as an oxidative fuel optimizes the bioavailability of glucose to hypoxic cancer cells. This metabolic cooperation has been described in various human cancers and can provide resistance to anti-angiogenic therapies. It depends on the expression and activity of monocarboxylate transporters (MCTs) at the cell membrane. MCT4 is the main facilitator of lactate export by glycolytic cancer cells, and MCT1 is adapted for lactate uptake by oxidative cancer cells. While MCT1 inhibitor AZD3965 is currently tested in phase I clinical trials and other inhibitors of lactate metabolism have been developed for anticancer therapy, predicting and monitoring a response to the inhibition of lactate uptake is still an unmet clinical need. Here, we report the synthesis, evaluation and in vivo validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a tracer of lactate for positron emission tomography. [18F]-FLac offers the possibility to monitor MCT1-dependent lactate uptake and inhibition in tumors in vivo.
Collapse
Affiliation(s)
- Vincent F Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Daniel Labar
- Pole of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Gwenaël Dehon
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Debora Grasso
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Vincent Grégoire
- Pole of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| |
Collapse
|
274
|
Brosel S, Grothe B, Kunz L. An auditory brainstem nucleus as a model system for neuronal metabolic demands. Eur J Neurosci 2018; 47:222-235. [PMID: 29205598 DOI: 10.1111/ejn.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/03/2023]
Abstract
The correlation between neuronal activity and metabolism is essential for coding, plasticity, neurological disorders and the interpretation of functional neuroimaging data. Most likely, metabolic requirements depend upon neuron type, and macroscopic energy demands vary with brain region. However, specific needs of individual neuron types are enigmatic. Therefore, we monitored metabolic activity in the lateral superior olive (LSO), an auditory brainstem nucleus containing only one neuron type. LSO neurons exhibit extreme but well-described biophysics with firing rates of several hundred hertz and low input resistances of a few megaohms. We recorded changes in NADH and flavin adenine dinucleotide (FAD) autofluorescence and O2 concentration in acute brainstem slices of Mongolian gerbils (Meriones unguiculatus) following electrical stimulation. The LSO shows the typical biphasic NADH/FAD response up to a physiologically relevant frequency of 400 Hz. In the same animal, we compared the LSO with the hippocampal CA1 region and the cerebral cortex. The rate of NADH/FADH2 consumption and regeneration was slowest in LSO. However, frequency dependence was only similar during the consumption phase but varied during regeneration within the three brain regions. Changes in NADH, FAD and O2 levels and blocking metabolic reactions indicate a pronounced contribution of mitochondrial oxidative phosphorylation in the LSO which is known for the other brain regions as well. Lactate transport and interconversion are involved in LSO metabolism as we found in immunohistochemical and pharmacological experiments. Our findings show that the LSO represents an apt, biophysically distinct model for brain metabolism and that neuronal properties determine metabolic needs.
Collapse
Affiliation(s)
- Sonja Brosel
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Lars Kunz
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
275
|
Salinas-Rubio D, Tovar AR, Noriega LG. Emerging perspectives on branched-chain amino acid metabolism during adipocyte differentiation. Curr Opin Clin Nutr Metab Care 2018; 21:49-57. [PMID: 29035970 DOI: 10.1097/mco.0000000000000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Adipogenesis has been extensively studied in the context of carbohydrate and lipid metabolism. However, little information exists on the role of amino acid metabolism during adipocyte differentiation. Here, we review how branched-chain amino acid (BCAA) metabolism is modified during adipogenesis and, due to the limited information in the area, address questions that remain to be answered with further research. RECENT FINDINGS BCAAs are rapidly consumed during adipocyte differentiation and are indispensable for this process. Furthermore, we describe how BCAA catabolic enzymes and the metabolic fate of BCAAs are modified during adipogenesis. SUMMARY Obesity is a chronic disease characterized by increased adipose tissue due to either an increase in the size (hypertrophy) and/or number of adipocytes (hyperplasia). Hyperplasia is determined by the rate of adipogenesis. Therefore, understanding the mechanism that modulates adipogenesis in the context of amino acid metabolism will help to establish pharmacological and dietary interventions involving the type and amount of dietary protein for the treatment of obesity and its associated comorbidities.Video abstract http://links.lww.com/COCN/A11.
Collapse
Affiliation(s)
- Daniela Salinas-Rubio
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | |
Collapse
|
276
|
Yadav S, Kujur PK, Pandey SK, Goel Y, Maurya BN, Verma A, Kumar A, Singh RP, Singh SM. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol Appl Pharmacol 2018; 339:52-64. [DOI: 10.1016/j.taap.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
277
|
Jung JG, Le A. Targeting Metabolic Cross Talk between Cancer Cells and Cancer-Associated Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:167-178. [PMID: 29946783 DOI: 10.1007/978-3-319-77736-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although tumorigenesis has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [1, 2] but also dependent on angiogenesis [3–6], inflammation [7, 8], and the supporting roles of cancer-associated fibroblasts (CAFs) [9, 10]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [11], many studies have aimed to uncover the cross talk between cancer and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like “metabolic parasites” to uptake the high-energy metabolites, such as lactate, ketone bodies, free fatty acid, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [12, 13]. This chapter provides an overview of the metabolic coupling between CAFs and cancer to further define the therapeutic options to disrupt the CAF-cancer cell interactions.
Collapse
Affiliation(s)
- Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
278
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
279
|
Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol 2017; 8:299-314. [PMID: 29357130 PMCID: PMC6019286 DOI: 10.1002/cphy.c170014] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFA; acetate, propionate, and butyrate) are generated in colon by bacterial fermentation of dietary fiber. Though diffusion in protonated form is a significant route, carrier-mediated mechanisms constitute the major route for the entry of SCFA in their anionic form into colonic epithelium. Several transport systems operate in cellular uptake of SCFA. MCT1 (SLC16A1) and MCT4 (SLC16A3) are H+-coupled and mediate electroneutral transport of SCFA (H+: SCFA stoichiometry; 1:1). MCT1 is expressed both in the apical membrane and basolateral membrane of colonic epithelium whereas MCT4 specifically in the basolateral membrane. SMCT1 (SLC5A8) and SMCT2 (SLC5A12) are Na+-coupled; SMCT1-mediated transport is electrogenic (Na+: SCFA stoichiometry; 2:1) whereas SMCT2-mediated transport is electroneutral (Na+: SCFA stoichiometry; 1:1). SMCT1 and SMCT2 are expressed exclusively in the apical membrane. An anion-exchange mechanism also operates in the apical membrane in which SCFA entry in anionic form is coupled to bicarbonate efflux; the molecular identity of this exchanger however remains unknown. All these transporters are subject to regulation, notably by their substrates themselves; this process involves cell-surface receptors with SCFA as signaling molecules. There are significant alterations in the expression of these transporters in ulcerative colitis and colon cancer. The tumor-associated changes occur via transcriptional regulation by p53 and HIF1α and by promoter methylation. As SCFA are obligatory for optimal colonic health, the transporters responsible for the entry and transcellular transfer of these bacterial products in colonic epithelium are critical determinants of colonic function under physiological conditions and in disease states. © 2018 American Physiological Society. Compr Physiol 8:299-314, 2018.
Collapse
Affiliation(s)
- Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Shengping Yang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
280
|
Wu J, Hong Y, Wu T, Wang J, Chen X, Wang Z, Cheng B, Xia J. Stromal-epithelial lactate shuttle induced by tumor‑derived interleukin‑1β promotes cell proliferation in oral squamous cell carcinoma. Int J Mol Med 2017; 41:687-696. [PMID: 29207019 PMCID: PMC5752169 DOI: 10.3892/ijmm.2017.3267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Stromal-epithelial lactate shuttle is an essential process to support fast‑growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin‑1β (IL‑1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this metabolic reprogramming. In the present study, anaerobic glycolysis of cancer‑associated fibroblasts (CAFs) was evaluated and the role of IL‑1β in regulating stromal‑epithelial lactate shuttle was determined. A co‑culture system of primary fibroblasts and OSCC cell lines (CAL27, UM1 or SCC25) was created to investigate the stromal‑epithelial interaction. α‑smooth muscle actin (α‑SMA) expression of fibroblasts, IL‑1β expression and cell proliferation of OSCC cells, and a series of glycolytic genes were measured. Recombinant IL‑1β treatment and IL‑1β knockdown in UM1 cells were also used to evaluate the effect of IL‑1β. Expression of α‑SMA, glucose transporter 1, hexokinase 2, lactic dehydrogenase and mono‑carboxylate transporter (MCT) 4 were significantly overexpressed in activated fibroblasts, while IL‑1β and MCT1 were upregulated in OSCC cells, indicating enhanced glycolysis in cells of the tumor stroma and a lactate shuttle to the tumor cells. Furthermore, exogenous IL‑1β induced fibroblasts to present similar expression profiles as that in the co‑culture system. Silencing of IL‑1β significantly abrogated the regulatory effect of UM1 cells on stromal glycolysis. Additionally, carboxy‑fluorescein succinimidyl ester cell tracing indicated that OSCC cell proliferation was accelerated during co‑cultivation with fibroblasts. These results indicate that tumor‑derived IL‑1β enhanced stromal glycolysis and induced one‑way lactate flow from the tumor mesenchyme to transformed epithelium, which promotes OSCC proliferation.
Collapse
Affiliation(s)
- Jie Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhi Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Bin Cheng
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Xia
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
281
|
Tateishi H, Tsuji AB, Kato K, Sudo H, Sugyo A, Hanakawa T, Zhang MR, Saga T, Arano Y, Higashi T. Synthesis and evaluation of 11C-labeled coumarin analog as an imaging probe for detecting monocarboxylate transporters expression. Bioorg Med Chem Lett 2017; 27:4893-4897. [PMID: 28951078 DOI: 10.1016/j.bmcl.2017.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Upregulated monocarboxylate transporters (MCTs) in tumors are considered diagnostic imaging targets. Herein, we synthesized the positron emission tomography probe candidates coumarin analogs 2 and 3, and showed 55 times higher affinity of 2 for MCTs than a representative MCT inhibitor. Whereas [11C]2 showed low tumor accumulation, probably due to adduct formation with plasma proteins, [11C]2 showed high initial brain uptake, suggesting that the scaffold of 2 has properties that are preferable in imaging probes for the astrocyte-neuron lactate shuttle. Although further optimization of 2 is required, our findings can be used to inform the development of MCT-targeted imaging agents.
Collapse
Affiliation(s)
- Hiroyuki Tateishi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi B Tsuji
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Koichi Kato
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan.
| | - Hitomi Sudo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takashi Hanakawa
- Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tatsuya Higashi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
282
|
Panisova E, Kery M, Sedlakova O, Brisson L, Debreova M, Sboarina M, Sonveaux P, Pastorekova S, Svastova E. Lactate stimulates CA IX expression in normoxic cancer cells. Oncotarget 2017; 8:77819-77835. [PMID: 29100428 PMCID: PMC5652817 DOI: 10.18632/oncotarget.20836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Besides hypoxia, other factors and molecules such as lactate, succinate, and reactive oxygen species activate transcription factor hypoxia-inducible factor-1 (HIF-1) even in normoxia. One of the main target gene products of HIF-1 is carbonic anhydrase IX (CA IX). CA IX is overexpressed in many tumors and serves as prognostic factor for hypoxic, aggressive and malignant cancers. CA IX is also induced in normoxia in high cell density. In this study, we observed that lactate induces CA IX expression in normoxic cancer cells in vitro and in vivo. We further evidenced that participation of both HIF-1 and specificity protein 1 (SP1) transcription factors is crucial for lactate-driven normoxic induction of the CA9 gene. By inducing CA IX, lactate can facilitate the maintenance of cancer cell aggressive behavior in normoxia.
Collapse
Affiliation(s)
- Elena Panisova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Kery
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Sedlakova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Brisson
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais, Tours, France
| | - Michaela Debreova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Sboarina
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliska Svastova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
283
|
Lemma S, Di Pompo G, Porporato PE, Sboarina M, Russell S, Gillies RJ, Baldini N, Sonveaux P, Avnet S. MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: A new rationale for the pathogenesis of osteolytic bone metastases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3254-3264. [PMID: 28866133 DOI: 10.1016/j.bbadis.2017.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Recent progress in dissecting the molecular paracrine circuits of cancer and stromal cells in bone metastases (BM) are offering new options to improve current merely palliative approach. The study of tumor-stroma metabolic interplay may further ameliorate this scenario. In this context, we demonstrated that highly glycolytic MDA-MB-231 cancer cells, that form osteolytic BM in vivo, release a large amount of lactate at a significantly higher level than MCF7 cells. Thus, we speculated that lactate released from carcinoma cells is uptaken and metabolically used by osteoclasts, the key players of osteolysis associated with BM. First, we demonstrated that the release of lactate at the bone site is mediated by monocarboxylate transporter 4 (MCT4), as revealed by immunostaining and MCT4 localization at the plasma membrane of tumor cells in mouse model of BM and in human tissue sections of BM. Then, we showed that in vitro lactate is uptaken by osteoclasts to be used as a fuel for the oxidative metabolism of osteoclasts, ultimately enhancing Type I collagen resorption. The passive transport of lactate into osteoclasts was mediated by MCT1: MCT1 expression is significantly upregulated during osteoclast differentiation and Type I collagen resorption is significantly impaired when osteoclasts are treated with 7-(N-benzyl-N-methylamino)-2-oxo-2H-chromene-3-carboxylic acid, an MCT-1 inhibitor. Together, these data demonstrate that lactate released by glycolytic breast carcinoma cells in the bone microenvironment promotes the formation of osteolytic lesions, and provide the rationale for further studies on the use of MCT1 targeting as a novel therapeutic approach in advanced cancer patients with BM.
Collapse
Affiliation(s)
- Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo E Porporato
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Shonagh Russell
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
284
|
Ristic B, Bhutia YD, Ganapathy V. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:246-257. [PMID: 28512002 PMCID: PMC5997391 DOI: 10.1016/j.bbcan.2017.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.
Collapse
Affiliation(s)
- Bojana Ristic
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
285
|
Heterogeneity of p53 dependent genomic responses following ethanol exposure in a developmental mouse model of fetal alcohol spectrum disorder. PLoS One 2017; 12:e0180873. [PMID: 28723918 PMCID: PMC5516996 DOI: 10.1371/journal.pone.0180873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/22/2017] [Indexed: 11/28/2022] Open
Abstract
Prenatal ethanol exposure can produce structural and functional deficits in the brain and result in Fetal Alcohol Spectrum Disorder (FASD). In rodent models acute exposure to a high concentration of alcohol causes increased apoptosis in the developing brain. A single causal molecular switch that signals for this increase in apoptosis has yet to be identified. The protein p53 has been suggested to play a pivotal role in enabling cells to engage in pro-apoptotic processes, and thus figures prominently as a hub molecule in the intracellular cascade of responses elicited by alcohol exposure. In the present study we examined the effect of ethanol-induced cellular and molecular responses in primary somatosensory cortex (SI) and hippocampus of 7-day-old wild-type (WT) and p53-knockout (KO) mice. We quantified apoptosis by active caspase-3 immunohistochemistry and ApopTag™ labeling, then determined total RNA expression levels in laminae of SI and hippocampal subregions. Immunohistochemical results confirmed increased incidence of apoptotic cells in both regions in WT and KO mice following ethanol exposure. The lack of p53 was not protective in these brain regions. Molecular analyses revealed a heterogeneous response to ethanol exposure that varied depending on the subregion, and which may go undetected using a global approach. Gene network analyses suggest that the presence or absence of p53 alters neuronal function and synaptic modifications following ethanol exposure, in addition to playing a classic role in cell cycle signaling. Thus, p53 may function in a way that underlies the intellectual and behavioral deficits observed in FASD.
Collapse
|
286
|
Teplensky MH, Fantham M, Li P, Wang TC, Mehta JP, Young LJ, Moghadam PZ, Hupp JT, Farha OK, Kaminski CF, Fairen-Jimenez D. Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. J Am Chem Soc 2017; 139:7522-7532. [DOI: 10.1021/jacs.7b01451] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michelle H. Teplensky
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Marcus Fantham
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Peng Li
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy C. Wang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua P. Mehta
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
- Department
of Chemistry, University of Cambridge, Cambridge, U.K
| | - Laurence J. Young
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - David Fairen-Jimenez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| |
Collapse
|
287
|
Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P, Maenhaut C. Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene 2017; 36:2637-2642. [PMID: 27797377 PMCID: PMC5442421 DOI: 10.1038/onc.2016.411] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
The Warburg effect and its accompanying metabolic features (anaplerosis, cataplerosis) are presented in textbooks and reviews as a hallmark (general characteristic): the metabolic map of cancer. On the other hand, research articles on specific tumors since a few years emphasize various biological features of different cancers, different cells in a cancer and the dynamic heterogeneity of these cells. We have analysed the research literature of the subject and show the generality of a dynamic, evolving biological and metabolic, spatial and temporal heterogeneity of individual cancers. We conclude that there is no one metabolic map of cancer but several and describe the two extremes of a panel from the hypoxic to the normoxic state. The implications for the significance of general 'omic' studies, and on therapeutic conclusions drawn from them and for the diagnostic use of fractional biopsies is discussed.
Collapse
Affiliation(s)
- A Strickaert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - M Saiselet
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - G Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - X De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - J E Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - O Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - P Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - C Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
288
|
Ravasz D, Kacso G, Fodor V, Horvath K, Adam-Vizi V, Chinopoulos C. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochem Int 2017; 109:41-53. [PMID: 28300620 DOI: 10.1016/j.neuint.2017.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
GABA is catabolized in the mitochondrial matrix through the GABA shunt, encompassing transamination to succinic semialdehyde followed by oxidation to succinate by the concerted actions of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH), respectively. Gamma-hydroxybutyrate (GHB) is a neurotransmitter and a psychoactive drug that could enter the citric acid cycle through transhydrogenation with α-ketoglutarate to succinic semialdehyde and d-hydroxyglutarate, a reaction catalyzed by hydroxyacid-oxoacid transhydrogenase (HOT). Here, we tested the hypothesis that the elevation in matrix succinate concentration caused by exogenous addition of GABA, succinic semialdehyde or GHB shifts the equilibrium of the reversible reaction catalyzed by succinate-CoA ligase towards ATP (or GTP) hydrolysis, effectively negating substrate-level phosphorylation (SLP). Mitochondrial SLP was addressed by interrogating the directionality of the adenine nucleotide translocase during anoxia in isolated mouse brain and liver mitochondria. GABA eliminated SLP, and this was rescued by the GABA-T inhibitors vigabatrin and aminooxyacetic acid. Succinic semialdehyde was an extremely efficient substrate energizing mitochondria during normoxia but mimicked GABA in abolishing SLP in anoxia, in a manner refractory to vigabatrin and aminooxyacetic acid. GHB could moderately energize liver but not brain mitochondria consistent with the scarcity of HOT expression in the latter. In line with these results, GHB abolished SLP in liver but not brain mitochondria during anoxia and this was unaffected by either vigabatrin or aminooxyacetic acid. It is concluded that when mitochondria catabolize GABA or succinic semialdehyde or GHB through the GABA shunt, their ability to perform SLP is impaired.
Collapse
Affiliation(s)
- Dora Ravasz
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Gergely Kacso
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Viktoria Fodor
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Kata Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Laboratory for Neurobiochemistry, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
289
|
Szutowicz A, Bielarczyk H, Zyśk M, Dyś A, Ronowska A, Gul-Hinc S, Klimaszewska-Łata J. Early and Late Pathomechanisms in Alzheimer's Disease: From Zinc to Amyloid-β Neurotoxicity. Neurochem Res 2017; 42:891-904. [PMID: 28039593 PMCID: PMC5357490 DOI: 10.1007/s11064-016-2154-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022]
Abstract
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-L-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1-42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer's disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland.
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| |
Collapse
|
290
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
291
|
Danhier P, Bański P, Payen VL, Grasso D, Ippolito L, Sonveaux P, Porporato PE. Cancer metabolism in space and time: Beyond the Warburg effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:556-572. [PMID: 28167100 DOI: 10.1016/j.bbabio.2017.02.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/19/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Pierre Danhier
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 73 box B1.73.08, 1200 Brussels, Belgium
| | - Piotr Bański
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium; Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino Italy.
| |
Collapse
|
292
|
Mason S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front Neurosci 2017; 11:43. [PMID: 28210209 PMCID: PMC5288365 DOI: 10.3389/fnins.2017.00043] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding brain energy metabolism—neuroenergetics—is becoming increasingly important as it can be identified repeatedly as the source of neurological perturbations. Within the scientific community we are seeing a shift in paradigms from the traditional neurocentric view to that of a more dynamic, integrated one where astrocytes are no longer considered as being just supportive, and activated microglia have a profound influence. Lactate is emerging as the “good guy,” contrasting its classical “bad guy” position in the now superseded medical literature. This review begins with the evolution of the concept of “lactate shuttles”; goes on to the recent shift in ideas regarding normal neuroenergetics (homeostasis)—specifically, the astrocyte–neuron lactate shuttle; and progresses to covering the metabolic implications whereby homeostasis is lost—a state of allostasis, and the function of microglia. The role of lactate, as a substrate and shuttle, is reviewed in light of allostatic stress, and beyond—in an acute state of allostatic stress in terms of physical brain trauma, and reflected upon with respect to persistent stress as allostatic overload—neurodegenerative diseases. Finally, the recently proposed astrocyte–microglia lactate shuttle is discussed in terms of chronic neuroinflammatory infectious diseases, using tuberculous meningitis as an example. The novelty extended by this review is that the directionality of lactate, as shuttles in the brain, in neuropathophysiological states is emerging as crucial in neuroenergetics.
Collapse
Affiliation(s)
- Shayne Mason
- Centre for Human Metabolomics, North-West University Potchefstroom, South Africa
| |
Collapse
|
293
|
Stock C, Pedersen SF. Roles of pH and the Na +/H + exchanger NHE1 in cancer: From cell biology and animal models to an emerging translational perspective? Semin Cancer Biol 2016; 43:5-16. [PMID: 28007556 DOI: 10.1016/j.semcancer.2016.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/10/2016] [Indexed: 01/30/2023]
Abstract
Acidosis is characteristic of the solid tumor microenvironment. Tumor cells, because they are highly proliferative and anabolic, have greatly elevated metabolic acid production. To sustain a normal cytosolic pH homeostasis they therefore need to either extrude excess protons or to neutralize them by importing HCO3-, in both cases causing extracellular acidification in the poorly perfused tissue microenvironment. The Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed acid-extruding membrane transport protein, and upregulation of its expression and/or activity is commonly correlated with tumor malignancy. The present review discusses current evidence on how altered pH homeostasis, and in particular NHE1, contributes to tumor cell motility, invasion, proliferation, and growth and facilitates evasion of chemotherapeutic cell death. We summarize data from in vitro studies, 2D-, 3D- and organotypic cell culture, animal models and human tissue, which collectively point to pH-regulation in general, and NHE1 in particular, as potential targets in combination chemotherapy. Finally, we discuss the possible pitfalls, side effects and cellular escape mechanisms that need to be considered in the process of translating the plethora of basic research data into a clinical setting.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Stine Falsig Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark.
| |
Collapse
|
294
|
Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci 2016; 17:E1450. [PMID: 27598136 PMCID: PMC5037729 DOI: 10.3390/ijms17091450] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
295
|
Jones RS, Morris ME. Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin Pharmacol Ther 2016; 100:454-463. [PMID: 27351344 DOI: 10.1002/cpt.418] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Abstract
Solute carrier (SLC) transporters represent 52 families of membrane transport proteins that function in endogenous compound homeostasis and xenobiotic disposition, and have been exploited in drug delivery and therapeutic targeting strategies. In particular, the SLC16 family that encodes for the 14 isoforms of the monocarboxylate transporter (MCT) family plays a significant role in the absorption, tissue distribution, and clearance of both endogenous and exogenous compounds. MCTs are required for the transport of essential cell nutrients and for cellular metabolic and pH regulation. Recent publications have indicated their novel roles in disease, and thus their potential as biomarkers and new therapeutic targets in disease are under investigation. More research into MCT isoform function, specificity, expression, and regulation will allow researchers to exploit the potential utility of MCTs in the clinic as therapeutic targets and prognostic factors of disease.
Collapse
Affiliation(s)
- R S Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - M E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
| |
Collapse
|
296
|
Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. Proc Natl Acad Sci U S A 2016; 113:E5344-53. [PMID: 27543333 DOI: 10.1073/pnas.1610954113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer-stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities.
Collapse
|