251
|
Adler M, Tavalai N, Müller R, Stamminger T. Human cytomegalovirus immediate-early gene expression is restricted by the nuclear domain 10 component Sp100. J Gen Virol 2011; 92:1532-1538. [PMID: 21471311 DOI: 10.1099/vir.0.030981-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear domains 10 (ND10s) are discrete subnuclear structures that contain the three major protein components promyelocytic leukaemia protein (PML), hDaxx and Sp100. Previous studies identified the ND10-components PML and hDaxx as cellular restriction factors that independently counteract human cytomegalovirus (HCMV) infection via the repression of viral immediate-early (IE) gene expression. Consequently, we asked whether Sp100 is likewise involved in this repressive activity. Infection of Sp100 knockdown (kd) cells with HCMV resulted in a significantly increased plaque-forming ability. In addition, ablation of Sp100 led to a considerable increase in the number of IE1-expressing cells, indicating that Sp100 suppresses the initiation of viral gene expression. Next, double-kd cells, lacking either Sp100/hDaxx or Sp100/PML, were generated. Here, infection resulted in an additional enhancement in HCMV replication efficacy compared with the single-kd cells. Thus, our results further strengthen the concept that the three major ND10-components independently contribute to the cellular restriction of HCMV replication.
Collapse
Affiliation(s)
- Martina Adler
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nina Tavalai
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Regina Müller
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
252
|
da Silva LF, Gaudreault N, Jones C. Cytoplasmic localized infected cell protein 0 (bICP0) encoded by bovine herpesvirus 1 inhibits β interferon promoter activity and reduces IRF3 (interferon response factor 3) protein levels. Virus Res 2011; 160:143-9. [PMID: 21689696 DOI: 10.1016/j.virusres.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/29/2022]
Abstract
Bovine herpesvirus 1 (BHV-1), an alpha-herpesvirinae subfamily member, establishes a life-long latent infection in sensory neurons. Periodically, BHV-1 reactivates from latency, infectious virus is spread, and consequently virus transmission occurs. BHV-1 acute infection causes upper respiratory track infections and conjunctivitis in infected cattle. As a result of transient immune-suppression, BHV-1 infections can also lead to life-threatening secondary bacterial pneumonia that is referred to as bovine respiratory disease. The infected cell protein 0 (bICP0) encoded by BHV-1 reduces human β-interferon (IFN-β) promoter activity, in part, by inducing degradation of interferon response factor 3 (IRF3) and interacting with IRF7. In contrast to humans, cattle contain three IFN-β genes. All three bovine IFN-β proteins have anti-viral activity: but each IFN-β gene has a distinct transcriptional promoter. We have recently cloned and characterized the three bovine IFN-β promoters. Relative to the human IFN-β promoter, each of the three IFN-β promoters contain differences in the four positive regulatory domains that are required for virus-induced activity. In this study, we demonstrate that bICP0 effectively inhibits bovine IFN-β promoter activity following transfection of low passage bovine cells with interferon response factor 3 (IRF3) or IRF7. A bICP0 mutant that localizes to the cytoplasm inhibits bovine IFN-β promoter activity as efficiently as wt bICP0. The cytoplasmic localized bICP0 protein also induced IRF3 degradation with similar efficiency as wt bICP0. In summary, these studies suggested that cytoplasmic localized bICP0 plays a role in inhibiting the IFN-β response during productive infection.
Collapse
Affiliation(s)
- Leticia Frizzo da Silva
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68503, United States
| | | | | |
Collapse
|
253
|
Zakaryan H, Stamminger T. Nuclear remodelling during viral infections. Cell Microbiol 2011; 13:806-13. [PMID: 21501365 PMCID: PMC7162193 DOI: 10.1111/j.1462-5822.2011.01596.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 01/09/2023]
Abstract
Because of their limited coding capacity, viruses are not able to encode all proteins that are required for their replication. Therefore, they depend on a wide variety of cellular functions and structures, such as the host cell nucleus. It has been shown that DNA, as well as RNA viruses, exploit the nucleus because it provides essential machinery for viral replication. On the other hand, the nucleus undergoes significant remodelling during viral usurpation or exploitation. Moreover, it is becoming increasingly clear that some subnuclear structures, such as promyelocytic leukaemia nuclear bodies, act as an antiviral defence mechanism, and several viruses antagonize this intracellular defence by modifying subnuclear structures. This article reviews the main alterations that take place in nucleus during viral infections.
Collapse
Affiliation(s)
- H Zakaryan
- Laboratory of Cell Biology, Institute of Molecular Biology of NAS, Yerevan, Armenia.
| | | |
Collapse
|
254
|
Cosme-Cruz R, Martínez FP, Perez KJ, Tang Q. H2B homology region of major immediate-early protein 1 is essential for murine cytomegalovirus to disrupt nuclear domain 10, but is not important for viral replication in cell culture. J Gen Virol 2011; 92:2006-2019. [PMID: 21632568 DOI: 10.1099/vir.0.033225-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) major immediate-early protein 1 (IE1) has multiple functions and is important for efficient viral infection. As does its counterpart in human CMV, murine CMV (MCMV) IE1 also functions as a disruptor of mouse-cell nuclear domain 10 (ND10), where many different gene-regulation proteins congregate. It still remains unclear how MCMV IE1 disperses ND10 and whether this dispersion could have any effect on viral replication. MCMV IE1 is 595 aa long and has multiple functional domains that have not yet been fully analysed. In this study, we dissected the IE1 molecule by truncation and/or deletion and found that the H2B homology domain (amino acid sequence NDIFERI) is required for the dispersion of ND10 by IE1. Furthermore, we made additional deletions and point mutations and found that the minimal truncation in the H2B homology domain required for IE1 to lose the ability to disperse ND10 is just 3 aa (IFE). Surprisingly, the mutated IE1 still interacted with PML and co-localized with ND10 but failed to disperse ND10. This suggests that binding to ND10 key protein is essential to, but not sufficient for, the dispersal of ND10, and that some other unknown mechanism must be involved in this biological procedure. Finally, we generated MCMV with IFE-deleted IE1 (MCMVdlIFE) and its revertant (MCMVIFERQ). Although MCMVdlIFE lost the ability to disperse ND10, plaque assays and viral gene production assays showed that the deletion of IFE did not increase viral replication in cell culture. We conclude that the dispersion of ND10 appears not to be important for MCMV replication in a mouse-cell culture.
Collapse
Affiliation(s)
- Ruth Cosme-Cruz
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Francisco Puerta Martínez
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Kareni J Perez
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Qiyi Tang
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| |
Collapse
|
255
|
Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 2011; 157:128-33. [DOI: 10.1016/j.virusres.2010.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
|
256
|
Cosme RC, Martínez FP, Tang Q. Functional interaction of nuclear domain 10 and its components with cytomegalovirus after infections: cross-species host cells versus native cells. PLoS One 2011; 6:e19187. [PMID: 21552525 PMCID: PMC3084273 DOI: 10.1371/journal.pone.0019187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection.
Collapse
Affiliation(s)
- Ruth Cruz Cosme
- Department of Microbiology/AIDS Research Program, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico, United States of America
| | | | | |
Collapse
|
257
|
Smith MC, Boutell C, Davido DJ. HSV-1 ICP0: paving the way for viral replication. Future Virol 2011; 6:421-429. [PMID: 21765858 DOI: 10.2217/fvl.11.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) has two distinct phases of its viral life cycle: lytic and latent. One viral immediate-early protein that is responsible for determining the balance between productive lytic replication and reactivation from latency is infected cell protein 0 (ICP0). ICP0 is a 775-amino acid really interesting new gene (RING)-finger-containing protein that possesses E3 ubiquitin ligase activity, which is required for ICP0 to activate HSV-1 gene expression, disrupt nuclear domain (ND) 10 structures, mediate the degradation of cellular proteins, and evade the host cell's intrinsic and innate antiviral defenses. This article examines our current understanding of ICP0's transactivating, E3 ubiquitin ligase, and antihost defense activities and their inter-relationships to one another. Lastly, we will discuss how these properties of ICP0 may be utilized as possible targets for HSV-1 antiviral therapies.
Collapse
Affiliation(s)
- Miles C Smith
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, 7047 Haworth Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
258
|
The alphaherpesvirus serine/threonine kinase us3 disrupts promyelocytic leukemia protein nuclear bodies. J Virol 2011; 85:5301-11. [PMID: 21430051 DOI: 10.1128/jvi.00022-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles during virus infection, including preventing virus-induced apoptosis, facilitating nuclear egress of capsids, stimulating mRNA translation and promoting cell-to-cell spread of virus infection. Given this diversity, the full spectrum of Us3 function may not yet be recognized. We noted, in transiently transfected cells, that herpes simplex virus type 2 (HSV-2) Us3 disrupted promyelocytic leukemia protein nuclear bodies (PML-NBs). However, PML-NB disruption was not observed in cells expressing catalytically inactive HSV-2 Us3. Analysis of PML-NBs in Vero cells transfected with pseudorabies virus (PRV) Us3 and those in Vero cells infected with Us3-null or -repaired PRV strains indicated that PRV Us3 expression also leads to the disruption of PML-NBs. While loss of PML-NBs in response to Us3 expression was prevented by the proteasome inhibitor MG132, Us3-mediated degradation of PML was not observed in infected cells or in transfected cells expressing enhanced green fluorescent protein (EGFP)-tagged PML isoform IV. These findings demonstrate that Us3 orthologues derived from distantly related alphaherpesviruses cause a disruption of PML-NBs in a kinase- and proteasome-dependent manner but, unlike the alphaherpesvirus ICP0 orthologues, do not target PML for degradation.
Collapse
|
259
|
Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 2011; 85:4993-5002. [PMID: 21411540 DOI: 10.1128/jvi.02265-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ICP0 is a transcriptional activating protein required for the efficient replication and reactivation of latent herpes simplex virus 1 (HSV-1). Multiple regions of ICP0 contribute its activity, the most prominent of which appears to be the RING finger, which confers E3 ubiquitin ligase activity. A region in the C terminus of ICP0 has also been implicated in several activities, including the disruption of a cellular repressor complex, REST/CoREST/HDAC1/2/LSD1. We used quiescent infection of MRC-5 cells with a virus that does not express immediate-early proteins, followed by superinfection with various viral mutants to quantify the ability of ICP0 variants to reactivate gene expression and alter chromatin structure. Superinfection with wild-type virus resulted in a 400-fold increase in expression from the previously quiescent d109 genome, the removal of heterochromatin and histones from the viral genome, and an increase in histone marks associated with activated transcription. RING finger mutants were unable to reactivate transcription or remove heterochromatin from d109, while mutants that are unable to bind CoREST activate gene expression from quiescent d109, albeit to a lesser degree than the wild-type virus. One such mutant, R8507, resulted in the partial removal of heterochromatin. Infection with R8507 did not result in the hyperacetylation of H3 and H4. The results demonstrate that (i) consistent with previous findings, the RING finger domain of ICP0 is required for the activation of quiescent genomes, (ii) the RF domain is also crucial for the ultimate removal of repressive chromatin, (iii) activities or interactions specified by the carboxy-terminal region of ICP0 significantly contribute to activation, and (iv) while the effects of the R8507 on chromatin are consistent with a role for REST/CoREST/HDAC1/2/LSD1 in the repression of quiescent genomes, the mutation may also affect other activities involved in derepression.
Collapse
|
260
|
Nagai S, Davoodi N, Gasser SM. Nuclear organization in genome stability: SUMO connections. Cell Res 2011; 21:474-85. [PMID: 21321608 DOI: 10.1038/cr.2011.31] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent findings show that chromatin dynamics and nuclear organization are not only important for gene regulation and DNA replication, but also for the maintenance of genome stability. In yeast, nuclear pores play a role in the maintenance of genome stability by means of the evolutionarily conserved family of SUMO-targeted Ubiquitin ligases (STUbLs). The yeast Slx5/Slx8 STUbL associates with a class of DNA breaks that are shifted to nuclear pores. Functionally Slx5/Slx8 are needed for telomere maintenance by an unusual recombination-mediated pathway. The mammalian STUbL RNF4 associates with Promyelocytic leukaemia (PML) nuclear bodies and regulates PML/PML-fusion protein stability in response to arsenic-induced stress. A subclass of PML bodies support telomere maintenance by the ALT pathway in telomerase-deficient tumors. Perturbation of nuclear organization through either loss of pore subunits in yeast, or PML body perturbation in man, can lead to gene amplifications, deletions, translocations or end-to-end telomere fusion events, thus implicating SUMO and STUbLs in the subnuclear organization of select repair events.
Collapse
Affiliation(s)
- Shigeki Nagai
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
261
|
Abstract
BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection. BK virus (BKV) is a human pathogen that causes severe diseases, including polyomavirus-associated nephropathy in kidney transplant patients and hemorrhagic cystitis in bone marrow transplant recipients. How BKV replication is regulated and the effects of a lytic BKV infection on host cells at the molecular level are not well understood. Currently, there is no specific antiviral treatment for BKV-associated disease, and a better understanding of the complete life cycle of the virus is necessary. Here, we report the interplay between BKV and one of the regulatory structures in the host cell nucleus, promyelocytic leukemia nuclear bodies (PML-NBs). Our results show that BKV infection reorganizes PML-NBs as a strategy to inactivate the negative functions of PML-NBs.
Collapse
|
262
|
Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011; 7:e1001266. [PMID: 21304940 PMCID: PMC3033373 DOI: 10.1371/journal.ppat.1001266] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/30/2010] [Indexed: 12/24/2022] Open
Abstract
The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
The herpes simplex virus immediate-early ubiquitin ligase ICP0 induces degradation of the ICP0 repressor protein E2FBP1. J Virol 2011; 85:3356-66. [PMID: 21248039 DOI: 10.1128/jvi.02105-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
E2FBP1/hDRIL1, a DNA-binding A/T-rich interaction domain (ARID) family transcription factor, is expressed ubiquitously in human tissues and plays an essential role in maintaining the proliferation potential of passage-limited human fibroblasts by dissociating promyelocytic leukemia nuclear bodies (PML-NBs). This effect on PML-NBs is similar to that of viral immediate-early gene products, such as infected cellular protein 0 (ICP0) from human herpes simplex virus 1 (HSV-1), which also disrupts PML-NBs to override the intrinsic cellular defense. Here we report that E2FBP1 inhibits accumulation of ICP0 RNA and, at the same time, is degraded via ICP0's herpes ubiquitin ligase 2 (HUL-2) activity upon HSV-1 infection. These reciprocal regulatory roles of ICP0 and E2FBP1 are linked in an ARID-dependent fashion. Our results suggest that E2FBP1 functions as an intrinsic cellular defense factor in spite of its PML-NB dissociation function.
Collapse
|
264
|
Ning S. Innate immune modulation in EBV infection. HERPESVIRIDAE 2011; 2:1. [PMID: 21429244 PMCID: PMC3063194 DOI: 10.1186/2042-4280-2-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 01/05/2011] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) belongs to the gammaherpesvirus family, members of which are oncogenic. Compared with other closely related herpesviruses, EBV has developed much more elaborate and sophisticated strategies for subverting host immune system, which may account for its high prevalence in immune competent hosts. Thus, study of EBV-specific immune dysregulation is important for understanding EBV latency and oncogenesis, and will identify potential molecular targets for immunotherapeutic interventions. Here I summarize the recent findings of individual EBV products in regulating host immune responses, with emphasis on the innate immune modulation.
Collapse
Affiliation(s)
- Shunbin Ning
- Viral Oncology Program, Sylvester Comprehensive Cancer Center; Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
265
|
Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 2011; 31:145-58. [PMID: 21198351 DOI: 10.1089/jir.2010.0111] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several pathways have been implicated in the establishment of antiviral state in response to interferon (IFN), one of which implicates the promyelocytic leukemia (PML) protein. The PML gene has been discovered 20 years ago and has led to new insights into oncogenesis, apoptosis, cell senescence, and antiviral defense. PML is induced by IFN, leading to a marked increase of expression of PML isoforms and the number of PML nuclear bodies (NBs). PML is the organizer of the NBs that contains at least 2 permanent NB-associated proteins, the IFN-stimulated gene product Speckled protein of 100 kDa (Sp100) and death-associated dead protein (Daxx), as well as numerous other transient proteins recruited in these structures in response to different stimuli. Accumulating reports have implicated PML in host antiviral defense and revealed various strategies developed by viruses to disrupt PML NBs. This review will focus on the regulation of PML and the implication of PML NBs in conferring resistance to DNA and RNA viruses. The role of PML in mediating an IFN-induced antiviral state will also be discussed.
Collapse
|
266
|
Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2010; 124:280-91. [PMID: 21172801 DOI: 10.1242/jcs.075390] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsic antiviral resistance mediated by constitutively expressed cellular proteins is one arm of defence against virus infection. Promyelocytic leukaemia nuclear bodies (PML-NBs, also known as ND10) contribute to host restriction of herpes simplex virus type 1 (HSV-1) replication via mechanisms that are counteracted by viral regulatory protein ICP0. ND10 assembly is dependent on PML, which comprises several different isoforms, and depletion of all PML isoforms decreases cellular resistance to ICP0-null mutant HSV-1. We report that individual expression of PML isoforms I and II partially reverses the increase in ICP0-null mutant HSV-1 plaque formation that occurs in PML-depleted cells. This activity of PML isoform I is dependent on SUMO modification, its SUMO interaction motif (SIM), and each element of its TRIM domain. Detailed analysis revealed that the punctate foci formed by individual PML isoforms differ subtly from normal ND10 in terms of composition and/or Sp100 modification. Surprisingly, deletion of the SIM motif from PML isoform I resulted in increased colocalisation with other major ND10 components in cells lacking endogenous PML. Our observations suggest that complete functionality of PML is dependent on isoform-specific C-terminal sequences acting in concert.
Collapse
Affiliation(s)
- Delphine Cuchet
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Salomoni P, Betts-Henderson J. The role of PML in the nervous system. Mol Neurobiol 2010; 43:114-23. [PMID: 21161613 DOI: 10.1007/s12035-010-8156-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 11/24/2010] [Indexed: 11/25/2022]
Abstract
The promyeloctic leukemia protein PML is a tumor suppressor that was originally identified due to its involvement in the (15;17) translocation of acute promyelocytic leukemia. While the majority of early research has focused upon the role of PML in the pathogenesis of leukemia, more recent evidence has identified important roles for PML in tissues outside the hemopoietic system, including the central nervous system (CNS). Here, we review recent literature on the role of PML in the CNS, with particular focus on the processes of neurodevelopment and neurodegeneration, and propose new lines of investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
268
|
El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie 2010; 93:389-98. [PMID: 21115099 DOI: 10.1016/j.biochi.2010.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/18/2010] [Indexed: 01/10/2023]
Abstract
PML, also known as TRIM19, belongs to the family encoding a characteristic RBCC/TRIM motif comprising several cysteine-rich zinc-binding domains (RING and B-boxes) and a coiled-coil domain. The RBCC domain and the covalent modification of PML by the small ubiquitin-like modifier (SUMO) are required for PML localization within the nuclear bodies (NBs). Analysis of PML(-/-) mice provided evidence for a physiological role of PML in apoptosis. Cells derived from these mice are defective in the induction of apoptosis by interferon (IFN). PML is expressed as a family of cytoplasmic and nuclear isoforms (PML I-VII) as a result of alternative splicing. Herein, we show that overexpression of all nuclear PML isoforms (I-VI) in human cells increased IFNγ-induced STAT1 phosphorylation, resulting in higher binding of STAT1 to DNA, higher activation of IFN-stimulated genes (ISGs), and an increase in the expression of their products. These effects, observed with IFNγ and not IFNα, required PML localization in the nucleus as they were not observed with the cytoplasmic isoform PMLVIIb or the cytoplasmic variants of PMLIV. They also necessitated PML SUMOylation and its RING finger domain. Conversely, downregulation of PML by RNA interference was accompanied by decrease in IFNγ-induced STAT1 phosphorylation, STAT1 DNA binding, transcription of ISGs and in the expression of their products. In addition, IFNγ-mediated STAT1 DNA-binding activity was decreased in PML(-/-) MEFs compared with wild-type MEFs. Taken together these results demonstrate that PML functions as a positive regulator of IFNγ signaling.
Collapse
Affiliation(s)
- Jamila El Bougrini
- CNRS FRE3238, Institut André Lwoff, 7 rue Guy Môquet, Villejuif Cedex, France
| | | | | |
Collapse
|
269
|
Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 2010; 10:M110.004796. [PMID: 21098080 DOI: 10.1074/mcp.m110.004796] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His(6) tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation.
Collapse
|
270
|
Jul-Larsen A, Grudic A, Bjerkvig R, Bøe SO. Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein. BMC Mol Biol 2010; 11:89. [PMID: 21092142 PMCID: PMC2998510 DOI: 10.1186/1471-2199-11-89] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/21/2010] [Indexed: 01/09/2023] Open
Abstract
Background The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein. Results Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain. Conclusions This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.
Collapse
Affiliation(s)
- Asne Jul-Larsen
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | | | |
Collapse
|
271
|
Abstract
The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.
Collapse
Affiliation(s)
- Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Ilinois 60064, USA.
| | | |
Collapse
|
272
|
Smith AJ, Li Q, Wietgrefe SW, Schacker TW, Reilly CS, Haase AT. Host genes associated with HIV-1 replication in lymphatic tissue. THE JOURNAL OF IMMUNOLOGY 2010; 185:5417-24. [PMID: 20935203 DOI: 10.4049/jimmunol.1002197] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Much effort has been spent recently in identifying host factors required for HIV-1 to effectively replicate in cultured human cells. However, much less is known about the genetic factors in vivo that impact viral replication in lymphatic tissue, the primary anatomical site of virus-host interactions where the bulk of viral replication and pathogenesis occurs. To identify genetic determinants in lymphatic tissue that critically affect HIV-1 replication, we used microarrays to transcriptionally profile and identify host genes expressed in inguinal lymph nodes that were associated determinants of viral load. Strikingly, ∼95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset 1) inhibit cellular activation/proliferation (e.g., TCFL5, SOCS5 and SCOS7, KLF10), 2) promote heterochromatin formation (e.g., HIC2, CREBZF, ZNF148/ZBP-89), 3) increase collagen synthesis (e.g., PLOD2, POSTN, CRTAP), and 4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (e.g., NR3C1, HNRNPU, PACT). Only ∼5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all of these genes function in innate and adaptive immunity, particularly highlighting heightened gene expression in the IFN system. We conclude that this conventional host response cannot contain HIV-1 replication and, in fact, could well contribute to increased replication through immune activation. More importantly, genes that have a negative association with virus replication point to target cell availability and potentially new viral restriction factors as principal determinants of viral load.
Collapse
Affiliation(s)
- Anthony J Smith
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
273
|
Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210-25. [PMID: 20861261 DOI: 10.1128/jvi.01442-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.
Collapse
|
274
|
ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J Virol 2010; 84:12152-64. [PMID: 20861269 DOI: 10.1128/jvi.01643-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the herpes simplex virus type 1 (HSV-1) genome might be expected to induce a DNA damage response, the ATR kinase is not activated in infected cells. We previously proposed that spatial uncoupling of ATR from its interaction partner, ATRIP, could be the basis for inactivation of the ATR kinase in infected cells; however, we now show that ATR and ATRIP are in fact both recruited to HSV-1 replication compartments and can be coimmunoprecipitated from infected-cell lysates. ATRIP and replication protein A (RPA) are recruited to the earliest detectable prereplicative sites, stage II microfoci. In a normal cellular DNA damage response, ATR/ATRIP are recruited to stretches of RPA-coated single-stranded DNA in an RPA- and kinase-dependent manner, resulting in the phosphorylation of RPA by ATR in damage foci. In contrast, in HSV-1-infected cells, RPA is not phosphorylated, and endogenous phosphorylated RPA is excluded from stage II microfoci; in addition, the recruitment of ATR/ATRIP is independent of RPA and the kinase activity of ATR. Furthermore, we show that ATR/ATRIP play a beneficial role in viral gene expression and virus production. Although ICP0 has been shown to be important for partial inactivation of other cellular DNA repair pathways, we show that ICP0 is not responsible for the inactivation of ATR signaling and, furthermore, that neither ATR nor ATRIP is a target of ICP0 degradation. Thus, ATR and ATRIP may function outside the context of the canonical ATR damage signaling pathway during HSV-1 infection to participate in the viral life cycle.
Collapse
|
275
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010. [PMID: 20826694 DOI: 10.1128/jvi.01321-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
276
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010; 84:11634-45. [PMID: 20826694 DOI: 10.1128/jvi.01321-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
277
|
Shishido-Hara Y. Progressive multifocal leukoencephalopathy and promyelocytic leukemia nuclear bodies: a review of clinical, neuropathological, and virological aspects of JC virus-induced demyelinating disease. Acta Neuropathol 2010; 120:403-17. [PMID: 20464404 PMCID: PMC2910879 DOI: 10.1007/s00401-010-0694-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/11/2010] [Accepted: 05/02/2010] [Indexed: 12/01/2022]
Abstract
Progressive multifocal leukoencephalopathy is a fatal viral-induced demyelinating disease that was once rare but has become more prevalent today. Over the past decades, much has been learned about the disease from molecular study of the etiological agent of the disease, JC virus. Recently, promyelocytic leukemia nuclear bodies (PML-NBs), punctuate structures for important nuclear functions in eukaryotic cells, were identified as an intranuclear target of JC virus infection. Neuropathologically, JC virus-infected glial cells display diffuse amphophilic viral inclusions by hematoxylin–eosin staining (full inclusions), a diagnostic hallmark of this disease. Recent results using immunohistochemistry, however, revealed the presence of punctate viral inclusions preferentially located along the inner nuclear periphery (dot-shaped inclusions). Dot-shaped inclusions reflect the accumulation of viral progeny at PML-NBs, which may be disrupted after viral replication. Structural changes to PML-NBs have been reported for a variety of human diseases, including cancers and neurodegenerative disorders. Thus, PML-NBs may provide clues to the further pathogenesis of JC virus-induced demyelinating disease. Here, we review what we have learned since the disease entity establishment, including a look at recent progress in understanding the relationship between JC virus, etiology and PML-NBs.
Collapse
Affiliation(s)
- Yukiko Shishido-Hara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan.
| |
Collapse
|
278
|
Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 2010; 84:11113-23. [PMID: 20719947 DOI: 10.1128/jvi.01183-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is an important causative factor in the development of several cancers, including nasopharyngeal carcinoma (NPC). The one EBV protein expressed in the nucleus of NPC cells, EBNA1, has been shown to disrupt promyelocitic leukemia (PML) nuclear bodies (NBs) by inducing the degradation of PML proteins, leading to impaired DNA repair and increased cell survival. Although EBNA1-mediated PML disruption is likely to be an important factor in the development of NPC, little is known about its mechanism. We now show that an interaction between EBNA1 and the host CK2 kinase is crucial for EBNA1 to disrupt PML bodies and degrade PML proteins. EBNA1 increases the association of CK2 with PML proteins, thereby increasing the phosphorylation of PML proteins by CK2, a modification that is known to trigger the polyubiquitylation and degradation of PML. The interaction between EBNA1 and CK2 is direct and occurs through the β regulatory subunit of CK2 and EBNA1 amino acids 387 to 394. The binding of EBNA1 to the host ubiquitin specific protease USP7 has also been shown to be important for EBNA1-mediated PML disruption. We show that EBNA1 also increases the occupancy of USP7 at PML NBs and that CK2 and USP7 bind independently and simultaneously to EBNA1 to form a ternary complex. The combined results indicate that EBNA1 usurps two independent cellular pathways to trigger the loss of PML NBs.
Collapse
|
279
|
Abstract
Various reports implicate PML and PML nuclear bodies (NBs) in an intrinsic antiviral response targeting diverse cytoplasmic replicating RNA viruses. PML conjugation to the small ubiquitin-like modifier (SUMO) is required for its localization within NBs. PML displays antiviral effects in vivo, as PML deficiency renders mice more susceptible to infection with the rhabdovirus vesicular stomatitis virus (VSV). Cells derived from these mice are also more sensitive to infection with rabies virus, another member of the rhabdovirus family. Alternative splicing from a single gene results in the synthesis of several PML isoforms, and these are classified into seven groups, designated PMLI to -VII. We report here that expression of PMLIV or PMLIVa, which is missing exon 5, inhibited viral mRNA and protein synthesis, leading to a reduction in viral replication. However, the expression of other nuclear isoforms (PMLI to -VI) and cytoplasmic PMLVIIb failed to impair viral production. This antiviral effect required PMLIV SUMOylation, as it was not observed with PMLIV 3KR, in which the lysines involved in SUMO conjugation were mutated. Thus, PMLIV and PMLIVa may exert this isoform-specific function through interaction with specific NB protein partners via their common C-terminal region.
Collapse
|
280
|
Interwoven roles of cyclin D3 and cdk4 recruited by ICP0 and ICP4 in the expression of herpes simplex virus genes. J Virol 2010; 84:9709-17. [PMID: 20660182 DOI: 10.1128/jvi.01050-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elsewhere this laboratory reported that (i) ICP0 interacts with cyclin D3 but not D1 or D2. The 3 cyclins independently partially rescue DeltaICP0 mutants. (ii) Interaction with cyclin D3 is required for the switch from nuclear to cytoplasmic accumulation of ICP0. (iii) In infected cells cdk4 is activated whereas cdk2 is not. Inhibition of cdk4 results in nuclear retention of ICP0. Overexpression of cyclin D3 reverses the effect of the inhibitor. Here we report the following. (i) cdk4 interacts with ICP0, ICP4, and possibly with ICP8. This interaction is required to recruit cdk4 initially to ND10 and later to the viral replication compartments. (ii) cdk4 inhibitor I reduced or delayed the transcription and ultimately translation of mRNAs of ICP4, ICP27, or ICP8 and to a lesser extent that of the ICP0 gene in wild-type virus-infected cells. (iii) Overexpression of cyclin D3 resulted in a more rapid transcription of these genes. In the presence of inhibitor, the rates of accumulation of the products of these genes resemble those of wild-type virus in the absence of inhibitor. (iv) Overexpression of cyclin D3 also results in mobilization of cdk6 in nuclei of infected cells. We conclude that ICP0 encodes a function that enhances the recruitment of cyclin D3 to ND10 structures to activate cdk4 and that ICP0 along with other viral proteins recruits cdk4 to ND10 structures and ultimately to replication compartments for enhanced expression of viral genes and viral DNA synthesis.
Collapse
|
281
|
Munday DC, Emmott E, Surtees R, Lardeau CH, Wu W, Duprex WP, Dove BK, Barr JN, Hiscox JA. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Mol Cell Proteomics 2010; 9:2438-59. [PMID: 20647383 PMCID: PMC2984239 DOI: 10.1074/mcp.m110.001859] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.
Collapse
Affiliation(s)
- Diane C Munday
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29:5511-22. [PMID: 20639899 DOI: 10.1038/onc.2010.284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Collapse
|
283
|
Reeves M, Woodhall D, Compton T, Sinclair J. Human cytomegalovirus IE72 protein interacts with the transcriptional repressor hDaxx to regulate LUNA gene expression during lytic infection. J Virol 2010; 84:7185-94. [PMID: 20444888 PMCID: PMC2898242 DOI: 10.1128/jvi.02231-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A putative latency-associated transcript (LUNA) complementary to the human cytomegalovirus (HCMV) UL81-82 region previously identified in seropositive donors' monocytes is also expressed during lytic infection. Thus, the LUNA promoter is active during both lytic and latent infection. Consequently, the mechanisms regulating this promoter may provide further insight into factors that determine whether the outcome of HCMV infection is latent or lytic. By transfection, the LUNA promoter exhibited low but reproducible activity. Substantial activation by virus infection suggested that a viral factor was important for LUNA expression during lytic infection. IE72, a known transactivator of viral promoters, activated the LUNA promoter in cotransfection assays. Furthermore, coinfection with wild-type HCMV but not an IE72 deletion virus (CR208) also activated the LUNA promoter. Finally, diminished LUNA gene expression in CR208 virus-infected cells supported a role for IE72 in LUNA gene expression. The initial regulation of herpesvirus immediate-early gene expression is associated with proteins found at cellular nuclear domain 10 (ND10) bodies, such as PML, hDaxx, and ATRX. hDaxx transfection repressed LUNA promoter activity. Furthermore, we observed binding of hDaxx to the LUNA promoter, which was abrogated by IE72 gene expression via direct interaction. Finally, we show that small interfering RNA (siRNA) knockdown of the hDaxx interaction partner ATRX rescued LUNA gene expression in CR208-infected cells. Overall, these data show that hDaxx/ATRX-mediated repression of LUNA during lytic infection absolutely requires IE72 gene expression. It also suggests that the targeting of cellular factors by IE72 is important throughout the different phases of HCMV gene expression during productive infection.
Collapse
Affiliation(s)
- Matthew Reeves
- Novartis Institutes for Biomedical Research, 500 Technology Square, Cambridge, Massachusetts, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | - David Woodhall
- Novartis Institutes for Biomedical Research, 500 Technology Square, Cambridge, Massachusetts, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Teresa Compton
- Novartis Institutes for Biomedical Research, 500 Technology Square, Cambridge, Massachusetts, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | - John Sinclair
- Novartis Institutes for Biomedical Research, 500 Technology Square, Cambridge, Massachusetts, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
- Corresponding author. Mailing address: Department of Medicine, Level 5, Box 157, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom. Phone: 44 1223 336850. Fax: 44 1223 336846. E-mail:
| |
Collapse
|
284
|
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, Dobner T. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 2010; 84:7029-38. [PMID: 20484509 PMCID: PMC2898266 DOI: 10.1128/jvi.00074-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/06/2010] [Indexed: 01/19/2023] Open
Abstract
The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin alpha3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Wimmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Hüseyin Sirma
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Roger D. Everett
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Paola Blanchette
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Groitl
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Thomas Dobner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
285
|
Paladino P, Mossman KL. Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response. J Interferon Cytokine Res 2010; 29:599-607. [PMID: 19694546 DOI: 10.1089/jir.2009.0074] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The interferon (IFN) family of cytokines constitutes potent inducers of innate antiviral responses that also influence adaptive immune processes. Despite eliciting such formidable cellular defense responses, viruses have evolved ways to interfere with the IFN response. Herpes simplex virus 1 (HSV-1) is an enveloped, dsDNA virus and a member of the herpesvirus family. Like other herpesvirus family members, HSV-1 has become highly specialized for its host and establishes a lifelong infection by undergoing latency within neurons. A leading reason for the success of HSV-1 as a pathogen results from its ability to evade the IFN response. Specifically, HSV-1 encodes several proteins that function to inhibit both IFN production and subsequent signal transduction. This review will identify and summarize the current understanding of viral proteins encoded by HSV-1 involved in the evasion of the IFN response.
Collapse
Affiliation(s)
- Patrick Paladino
- Department of Pathology and Molecular Medicine, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
286
|
Rieder M, Conzelmann KK. Rhabdovirus evasion of the interferon system. J Interferon Cytokine Res 2010; 29:499-509. [PMID: 19715459 DOI: 10.1089/jir.2009.0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The family Rhabdoviridae contains important pathogens of humans, livestock, and crops, including the insect-transmitted vesicular stomatitis virus (VSV) and the neurotropic rabies virus (RV), which is directly transmitted between mammals. In spite of a highly similar organization of RNA genomes, proteins, and virus particles, cell biology of VSV and RV is divergent in several aspects, particularly with respect to their interplay with the cellular host defense. While infection with both rhabdoviruses is recognized via viral triphosphate RNAs by the cytoplasmic RNA helicase/translocase RIG-I, the viral counteractions to limit the response are contrasting. VSV infection is characterized by a rapid general shutdown of host gene expression and severe cytopathic effects, due to multiple activities of the matrix (M) protein affecting host polymerase functions and mRNA nuclear export, and by rapid and high-level virus replication. In contrast, RV spread and transmission relies on preserving the integrity of host cells, particularly of neurons. While a general cell shutdown by RV M is not observed, RV phosphoprotein (P) has developed independent functions to interfere with activation of IRFs and with STAT signaling. The molecular mechanisms employed are different from those of the paramyxovirus P gene products serving similar functions, and illustrate evolution of IFN antagonists to specifically support virus survival in the natural niches.
Collapse
Affiliation(s)
- Martina Rieder
- Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
287
|
Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 2010; 84:5594-604. [PMID: 20335255 DOI: 10.1128/jvi.00348-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) persists for the life of its host by establishing a latent infection. The identification of viral and cellular determinants of latency is the first step toward developing antiviral treatments that target and might clear or control the reservoir of latent virus. HCMV latency is established in CD34(+) cells when expression of viral immediate early (IE) proteins that initiate lytic infection is silenced. Viral IE gene expression during lytic infection is controlled by a cellular intrinsic immune defense mediated by promyelocytic leukemia nuclear body (PML-NB) proteins such as Daxx and histone deacetylases (HDACs). This defense is inactivated at the start of lytic infection by the HCMV virion tegument protein pp71, which upon viral entry traffics to the nucleus and induces Daxx degradation. Here we show that a similar defense is present, active, and not neutralized during experimental latency in CD34(+) cells infected in vitro because tegument-delivered pp71 remains in the cytoplasm. Artificial inactivation of this defense by HDAC inhibition or Daxx knockdown rescues viral IE gene expression upon infection of CD34(+) cells with a laboratory-adapted viral strain but not with clinical strains. Interestingly, coinfection of CD34(+) cells with clinical viral strains blocked the ability of an HDAC inhibitor to activate IE1 and early protein expression during infection with a laboratory-adapted strain. This suggests that in addition to the intrinsic defense, HCMV clinical strains contribute an HDAC-independent, trans-acting dominant means of control over viral gene expression during the early stages of experimental HCMV latency modeled in vitro in CD34(+) cells.
Collapse
|
288
|
Filippakis H, Spandidos DA, Sourvinos G. Herpesviruses: hijacking the Ras signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:777-85. [PMID: 20303365 DOI: 10.1016/j.bbamcr.2010.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 12/25/2022]
Abstract
Cancer is the final result of the accumulation of several genetic alterations occurring in a cell. Several herpesviruses and especially gamma-herpesviruses have played an important role in Cancer Biology, contributing significantly to our comprehension of cell signaling and growth control pathways which lead to malignancy. Unlike other infectious agents, herpesviruses persist in the host by establishing a latent infection, so that they can reactivate periodically. Interestingly, some herpesviruses are able to either deliver or induce the expression of cellular oncogenes. Such alterations can result in the derailment of the normal cell cycle and ultimately shift the balance between continuous proliferation and programmed cell death. Herpesvirus infection employs key molecules of cellular signaling cascades mostly to enhance viral replication. However, most of these molecules are also involved in essential cellular functions, such as proliferation, cellular differentiation and migration, as well as in DNA repair mechanisms. Ras proteins are key molecules that regulate a wide range of cellular functions, including differentiation, proliferation and cell survival. A broad field of medical research is currently focused on elucidating the role of ras oncogenes in human tumor initiation as well as tumor progression and metastasis. Upon activation, Ras proteins employ several downstream effector molecules such as phosphatidylinositol 3-kinase (PI3-K) and Raf and Ral guanine nucleotide-dissociation stimulators (RALGDS) to regulate a cascade of events ranging from cell proliferation and survival to apoptosis and cellular death. In this review, we give an overview of the impact that herpesvirus infection has on the host-cell Ras signaling pathway, providing an outline of their interactions with the key cascade molecules with which they associate. Several of these interactions of viral proteins with member of the Ras signaling pathway may be crucial in determining herpesviruses' oncogenic potential or their oncomodulatory behavior. The questions that emerge concern the potential role of these molecules as therapeutic targets both for viral infections and cancer. Understanding the means by which viruses may cause oncogenesis would therefore provide a deeper knowledge of the overall oncogenic process.
Collapse
Affiliation(s)
- Harilaos Filippakis
- Department of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | |
Collapse
|
289
|
Abstract
Resveratrol is a natural compound produced by certain plants on various stimuli. In recent years, extensive research on resveratrol has been carried out, demonstrating its capacity to prevent a wide variety of conditions, including cardiovascular diseases and cancer, and to control fungal, bacterial and viral infections. In the present review, we summarize the current knowledge of the activity of resveratrol against viral infection and describe the possible molecular pathways through which resveratrol exerts its antiviral activity.
Collapse
|
290
|
Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 2010; 84:4383-94. [PMID: 20181712 DOI: 10.1128/jvi.02369-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation.
Collapse
|
291
|
Shapira SD, Gat-Viks I, Shum BOV, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 2010; 139:1255-67. [PMID: 20064372 DOI: 10.1016/j.cell.2009.12.018] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 12/20/2022]
Abstract
During the course of a viral infection, viral proteins interact with an array of host proteins and pathways. Here, we present a systematic strategy to elucidate the dynamic interactions between H1N1 influenza and its human host. A combination of yeast two-hybrid analysis and genome-wide expression profiling implicated hundreds of human factors in mediating viral-host interactions. These factors were then examined functionally through depletion analyses in primary lung cells. The resulting data point to potential roles for some unanticipated host and viral proteins in viral infection and the host response, including a network of RNA-binding proteins, components of WNT signaling, and viral polymerase subunits. This multilayered approach provides a comprehensive and unbiased physical and regulatory model of influenza-host interactions and demonstrates a general strategy for uncovering complex host-pathogen relationships.
Collapse
Affiliation(s)
- Sagi D Shapira
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Simian TRIM5alpha proteins reduce replication of herpes simplex virus. Virology 2010; 398:243-50. [PMID: 20060996 DOI: 10.1016/j.virol.2009.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/22/2009] [Accepted: 11/23/2009] [Indexed: 12/22/2022]
Abstract
Old World monkey TRIM5alpha proteins are known to block the replication of human immunodeficiency virus and other retroviruses in a species-specific fashion. In this report, we show that specific forms of simian TRIM5alpha proteins can restrict herpes simplex virus (HSV) infection. To define the effect of TRIM5alpha on HSV replication, we examined HSV infection in HeLa cell lines that stably express simian and human orthologs of TRIM5alpha proteins. We demonstrated that several simian TRIM5alpha proteins can restrict HSV replication, with the TRIM5alpha protein of rhesus macaques showing the strongest inhibition of HSV infection. We also found that the level of the inhibition of virus replication was viral strain-specific. TRIM5alpha is likely to inhibit HSV at the early stage of infection; however, at later times of infection, the levels of TRIM5alpha are significantly decreased. Thus, some TRIM5alpha proteins exhibit antiviral effects that extend beyond retroviral infections, but HSV may be able to reduce this restriction by reducing TRIM5alpha levels during the later phases of virus replication. Our results also argue that TRIM5alpha is only part of the reduced level of HSV replication in rhesus macaques, which are known to be less susceptible to HSV infection than other primates.
Collapse
|
293
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
294
|
Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5 alpha and 22. Amino Acids 2009; 39:1-9. [PMID: 19943174 DOI: 10.1007/s00726-009-0393-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/11/2009] [Indexed: 12/26/2022]
Abstract
Viral tropism, replication, and pathogenesis are determined by multiple interactions between the pathogen and the host. In the case of retroviruses, and in particular, the human immunodeficiency virus, the specific interaction of the envelope protein with the host receptors and co-receptors is essential to gain entry in the cells. After entry, the success of retroviruses to complete their life cycle depends on a complex interplay between the virus and host proteins. Indeed, the cell environment is endowed with a number of factors that actively block distinct stage(s) in the microbial life cycle. Among these restriction factors, Tripartite Motif-5 alpha (TRIM5 alpha) has been extensively studied; however, other TRIM family members have been demonstrated to be anti-retroviral effector proteins. This article reviews, in particular, the current knowledge on the anti-retroviral effects of TRIM5 alpha and TRIM22.
Collapse
|
295
|
Gomes R, Guerra-Sá R, Arruda E. Coxsackievirus B5 induced apoptosis of HeLa cells: effects on p53 and SUMO. Virology 2009; 396:256-63. [PMID: 19906394 DOI: 10.1016/j.virol.2009.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/27/2009] [Accepted: 10/03/2009] [Indexed: 12/21/2022]
Abstract
Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rogério Gomes
- Department of Cell Biology, University of São Paulo School of Medicine at Ribeirão Preto, Av. dos Bandeirantes, 3900, 14049-900, SP, Brazil.
| | | | | |
Collapse
|
296
|
Brouwer AK, Schimmel J, Wiegant JC, Vertegaal AC, Tanke HJ, Dirks RW. Telomeric DNA mediates de novo PML body formation. Mol Biol Cell 2009; 20:4804-15. [PMID: 19793919 PMCID: PMC2777109 DOI: 10.1091/mbc.e09-04-0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/12/2009] [Accepted: 09/21/2009] [Indexed: 11/11/2022] Open
Abstract
The cell nucleus harbors a variety of different bodies that vary in number, composition, and size. Although these bodies coordinate important nuclear processes, little is known about how they are formed. Among the most intensively studied bodies in recent years is the PML body. These bodies have been implicated in gene regulation and other cellular processes and are disrupted in cells from patients suffering from acute promyelocytic leukemia. Using live cell imaging microscopy and immunofluorescence, we show in several cell types that PML bodies are formed at telomeric DNA during interphase. Recent studies revealed that both SUMO modification sites and SUMO interaction motifs in the promyelocytic leukemia (PML) protein are required for PML body formation. We show that SMC5, a component of the SUMO ligase MMS21-containing SMC5/6 complex, localizes temporarily at telomeric DNA during PML body formation, suggesting a possible role for SUMO in the formation of PML bodies at telomeric DNA. Our data identify a novel role of telomeric DNA during PML body formation.
Collapse
Affiliation(s)
- Anneke K. Brouwer
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Joost Schimmel
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Joop C.A.G. Wiegant
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Alfred C.O. Vertegaal
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hans J. Tanke
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Roeland W. Dirks
- *Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
297
|
Antrobus R, Grant K, Gangadharan B, Chittenden D, Everett RD, Zitzmann N, Boutell C. Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome. Proteomics 2009; 9:3913-27. [PMID: 19670248 DOI: 10.1002/pmic.200900207] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During infection by herpes simplex virus type-1 (HSV-1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV-1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV-1 replication, 2-DE and LC-MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock- and HSV-1-infected HEp-2 cells revealed a total of 103 protein spot changes. Of these, 63 were up-regulated and 40 down-regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV-1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV-1 infection.
Collapse
Affiliation(s)
- Robin Antrobus
- Oxford Glycobiology Institute, Department of Biochemistry, Oxford University, UK
| | | | | | | | | | | | | |
Collapse
|
298
|
|
299
|
Physical requirements and functional consequences of complex formation between the cytomegalovirus IE1 protein and human STAT2. J Virol 2009; 83:12854-70. [PMID: 19812155 DOI: 10.1128/jvi.01164-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous work has shown that efficient evasion from type I interferon responses by human cytomegalovirus (hCMV) requires expression of the 72-kDa immediate-early 1 (IE1) protein. It has been suggested that IE1 inhibits interferon signaling through intranuclear sequestration of the signal transducer and activator of transcription 2 (STAT2) protein. Here we show that physical association and subnuclear colocalization of IE1 and STAT2 depend on short acidic and serine/proline-rich low-complexity motifs in the carboxy-terminal region of the 491-amino-acid viral polypeptide. These motifs compose an essential core (amino acids 373 to 420) and an adjacent ancillary site (amino acids 421 to 445) for STAT2 interaction that are predicted to form part of a natively unstructured domain. The presence of presumably "disordered" carboxy-terminal domains enriched in low-complexity motifs is evolutionarily highly conserved across all examined mammalian IE1 orthologs, and the murine cytomegalovirus IE1 protein appears to interact with STAT2 just like the human counterpart. A recombinant hCMV specifically mutated in the IE1 core STAT2 binding site displays hypersensitivity to alpha interferon, delayed early viral protein accumulation, and attenuated growth in fibroblasts. However, replication of this mutant virus is specifically restored by knockdown of STAT2 expression. Interestingly, complex formation with STAT2 proved to be entirely separable from disruption of nuclear domain 10 (ND10), another key activity of IE1. Finally, our results demonstrate that IE1 counteracts the antiviral interferon response and promotes viral replication by at least two distinct mechanisms, one depending on sequestration of STAT2 and the other one likely involving ND10 interaction.
Collapse
|
300
|
Chung YL, Tsai TY. Promyelocytic leukemia nuclear bodies link the DNA damage repair pathway with hepatitis B virus replication: implications for hepatitis B virus exacerbation during chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:1672-85. [PMID: 19808906 DOI: 10.1158/1541-7786.mcr-09-0112] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism responsible for hepatitis B virus (HBV) exacerbation during chemotherapy and radiotherapy remains unknown. We investigated whether the activation of DNA repair pathways influences HBV replication. The upregulation of the promyelocytic leukemia (PML) protein and its associated PML nuclear body (PML-NB) by chemotherapy and irradiation-induced DNA repair signaling correlated with the upregulation of HBV pregenomic transcription, HBV-core expression, and HBV DNA replication. The HBV-core protein and HBV DNA localized to PML-NBs, where they associated with PML and histone deacetylase 1 (HDAC1). Chemotherapy and radiotherapy affected the interactions between PML, HBV-core, and HDAC1. The enhanced protein-protein interaction between PML and HBV-core inhibited PML-mediated apoptosis and decreased PML-associated HDAC activity. The reversal of HDAC-mediated repression on the HBV covalently closed circular DNA basal core promoter resulted in the amplification of HBV-core and pregenomic expression. These results suggest that PML in PML-NBs links the DNA damage response with HBV replication and may cooperate with HBV-core and HDAC1 on the HBV covalently closed circular DNA basal core promoter to form a positive feedback loop for HBV exacerbation during chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan.
| | | |
Collapse
|