251
|
Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res 2014; 58:125-31. [PMID: 24366663 DOI: 10.1007/s12026-013-8477-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells kill virus-infected and tumor target cells without prior sensitization. Each NK cell expresses a multitude of activating and inhibitory receptors, and the interplay of signals determines the outcome of NK cell activity. NK cell-mediated cytolysis of target cell involves polarized degranulation at effector-target interface. Peripheral blood NK cell constitutes about 10% of lymphocytes, and approximately 90% of peripheral blood NK cells are CD56(dim)CD16(+); however, there is a distinct subset of NK cells, CD56(bright)CD16(-), expressed by certain lymphoid organs which are able to produce large amounts of cytokines including interferon-γ, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor, but the cytotoxicity is attained only on their prolonged activation. In this review, we discuss the accumulated data on distinct phenotypes of NK cells in human uterus, liver, intestine, skin, and lung and also attempt to correlate their phenotype with corresponding activity and functions, with significant stress on the role of NK cells in pathology in the specific organs. Our detailed understanding of altered NK cell activity in different organs and their inherent cytotoxic activity against tumor target cells will help us design better immunotherapeutic strategies in NK cell-mediated cancer therapies.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, New Delhi, 110042, Delhi, India
| | | |
Collapse
|
252
|
Peng YP, Zhang JJ, Liang WB, Tu M, Lu ZP, Wei JS, Jiang KR, Gao WT, Wu JL, Xu ZK, Miao Y, Zhu Y. Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 2014; 14:738. [PMID: 25274283 PMCID: PMC4287420 DOI: 10.1186/1471-2407-14-738] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023] Open
Abstract
Background Natural killer (NK) cells play a key role in non-specific immune response in different cancers, including pancreatic cancer. However the anti-tumor effect of NK cells decreases during pancreatic cancer progression. The regulatory pathways by which NK cells facilitate tumor immune escape are unclear, therefore our purpose was to investigate the roles of the contributory factors. Methods NK cells isolated from fresh healthy peripheral blood were co-cultured with normal human pancreatic ductal cells hTERT-HPNE and human pancreatic cancer cell lines SW1990 and BxPc-3 in vitro. Then NK cell function was determined by Flow cytometric analysis of surface receptors and cytotoxic granules in NK cells, NK cell apoptosis and cytotoxicity, and Enzyme-linked immunosorbent assay of cytokines. Expression level of MMP-9, IDO and COX-2 in hTERT-HPNE and SW1990 cells were detected by quantitative RT-PCR. Statistical differences between data groups were determined by independent t-tests using SPSS 19.0 software. Results Our results showed that NK cell function was significantly downregulated following exposure to pancreatic cancer cells compared to normal pancreatic cells, as demonstrated by lower expressions of activating surface receptors (NKG2D, DNAM-1, NKp30 and NKp46) and cytotoxic granules (Perforin and Granzyme B); decreased secretion of cytokines (TNF-α and IFN-γ); and reduced cytotoxicity against myelogenous leukemia K562 cells. Further investigations revealed that MMP-9 and IDO may be implicated in SW1990 cell-induced NK cell dysfunction by facilitating tumor immune evasion. Blockade by TIMP-1 and/or 1-MT could partially restore NK function. Conclusions Taken together, elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates NK cell dysfunction. Our findings could contribute to the development of NK cell-based immunotherapy in patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Miao
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People's Republic of China.
| | | |
Collapse
|
253
|
Abstract
Dr. Tuveson and colleagues provide a comprehensive review on the fundamental role of cancer-associated fibroblasts in shaping the tumor microenvironment and promoting tumor initiation and progression. Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
254
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
255
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
256
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
257
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
258
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
259
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- dyrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
260
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
261
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
262
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
263
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
264
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
265
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
266
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
267
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
268
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
269
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
270
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
271
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
272
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
273
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
274
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- eloc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
275
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
276
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
277
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
278
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
279
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
280
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
281
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
282
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
283
|
Sui Q, Zhang J, Sun X, Zhang C, Han Q, Tian Z. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. THE JOURNAL OF IMMUNOLOGY 2014; 193:2016-23. [PMID: 25015826 DOI: 10.4049/jimmunol.1302389] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
STAT3 is highly activated in a wide variety of cancers and functions to promote tumor survival. We previously reported that blocking STAT3 activation inhibited human hepatocellular carcinoma (HCC) growth in vitro, but whether this treatment also triggered antitumor immune responses in vivo remained unknown. In this study, we found that blocking the STAT3 pathway in HCC cells dramatically inhibited murine HCC growth in vivo and prolonged survival of tumor-bearing mice. Importantly, the presence of STAT3-blocked HCC augmented NK cell cytotoxicity against HCC and increased expression of molecules associated with NK cell activation and cytotoxicity. In T cell-deficient nude mice, a unique NK cell-mediated antitumor function against STAT3-blocked HCC was suggested. NK cells were shown to be necessary and sufficient in NK or T cell depletion experiments, or by adoptively transferring NK cells. Furthermore, regulatory T cells and immunosuppressive IL-10 and TGF-β cytokines were reduced in mice bearing STAT3-blocked HCC cells, suggesting that these factors may be involved in HCC-induced NK cell suppression. These findings indicate that blocking STAT3 in HCC cells can initiate innate immunity in vivo.
Collapse
Affiliation(s)
- Qiangjun Sui
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and
| | - Xiaoxia Sun
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and
| | - Qiuju Han
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and
| | - Zhigang Tian
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; and Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
284
|
Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol 2014; 44:1582-92. [DOI: 10.1002/eji.201344272] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/21/2014] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Massimo Vitale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
- Centro di Eccellenza per la Ricerca Biomedica; Genova Italy
- Istituto Giannina Gaslini; Genova Italy
| | - Gabriella Pietra
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
| | - Maria Cristina Mingari
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
- Centro di Eccellenza per la Ricerca Biomedica; Genova Italy
| | | |
Collapse
|
285
|
Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett 2014; 159:55-72. [PMID: 24657523 DOI: 10.1016/j.imlet.2014.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Alessandra Musso
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Irene Dapino
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Istituto Scientifico San Raffaele Milan, 20132 Milan, Italy
| |
Collapse
|
286
|
Tumor microenvironment: a new treatment target for cancer. ISRN BIOCHEMISTRY 2014; 2014:351959. [PMID: 25937967 PMCID: PMC4392996 DOI: 10.1155/2014/351959] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/03/2014] [Indexed: 12/21/2022]
Abstract
Recent advances in cancer therapy encounter a bottleneck. Relapsing/recurrent disease almost always developed eventually with resistance to the initially effective drugs. Tumor microenvironment has been gradually recognized as a key contributor for cancer progression, epithelial-mesenchymal transition of the cancer cells, angiogenesis, cancer metastasis, and development of drug resistance, while dysregulated immune responses and interactions between various components in the microenvironment all play important roles. Future development of anticancer treatment should take tumor microenvironment into consideration. Besides, we also discuss the limitations of current pre-clinical testing models that mainly come from the impossibility in simulating all detailed carcinogenic mechanisms in human, especially failure to create the same tumor microenvironment. With the cumulating knowledge about tumor microenvironment, the design of a novel anticancer therapy may be facilitated and may have better chance for success in cancer eradication.
Collapse
|
287
|
|
288
|
Li T, Yi S, Liu W, Jia C, Wang G, Hua X, Tai Y, Zhang Q, Chen G. Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity. Med Oncol 2013; 30:663. [PMID: 23873014 DOI: 10.1007/s12032-013-0663-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/05/2013] [Indexed: 12/20/2022]
Abstract
Substantial evidence indicates that cancer-associated fibroblasts (CAFs) are critical components in the process of cancer progression. However, the role of CAFs in the immunopathogenesis of human cancer remains elusive. In this study, we demonstrate that purified colorectal carcinoma-derived fibroblasts exhibit activated phenotypes characterized by substantial α-smooth muscle actin expression. These CAFs sharply suppress natural killer (NK) cell functions in co-culture experiments. In contrast, normal skin fibroblasts had only a minimal effect on NK cell phenotype and function. Moreover, we demonstrated that prostaglandin E2 (PGE2) was released by fibroblasts in co-culture experiments. Thus, the functional modulation of NK cells by CAFs may represent a novel mechanism linking the pro-inflammatory response to immune tolerance within the tumor milieu.
Collapse
Affiliation(s)
- Tuanjie Li
- Department of Hepatic Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, Li TJ, Li X, Wu XY, Tai Y, Zhou J, Chen GH, Zhang Q. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 2013; 8:e63243. [PMID: 23667593 PMCID: PMC3647063 DOI: 10.1371/journal.pone.0063243] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 04/01/2013] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are reported to support tumorigenesis by stimulating angiogenesis, cancer cell proliferation, and invasion in most solid tumors. However, the roles of CAFs in the liver cancer microenvironment have not been thoroughly studied. In our previous study, we successfully isolated CAFs from hepatocellular carcinoma (HCC) (H-CAFs) and proved that H-CAFs suppressed the activation of NK cells and thereby created favorable conditions for HCC progression. In our present study, we found that the proliferation of MHCC97L and Hep3B cells was significantly promoted by treatment with conditioned medium from H-CAFs. Pathological analysis also revealed that H-CAFs increased the proportion of Ki-67 (+) malignant cells and prevented them from undergoing necrosis. Moreover, the concentration of hepatocyte growth factor (HGF) cytokine in the conditioned medium of H-CAFs was higher than conditioned medium from normal skin fibroblasts (NSFs). Anti-HGF significantly reduced the proliferation-promoting capability of H-CAFs. In addition, we found that the abundance of H-CAFs correlated positively with tumor size. These results indicate that H-CAFs are an important factor for promoting the growth of HCC in vitro and in vivo, and that HGF plays a key role in HCC proliferation induced by H-CAFs.
Collapse
Affiliation(s)
- Chang-Chang Jia
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Tian-Tian Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Bin-Sheng Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XueFeng Hua
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guo-Ying Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Tuan-Jie Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Tai
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gui-Hua Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
290
|
Servais C, Erez N. From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol 2012; 229:198-207. [DOI: 10.1002/path.4103] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Charlotte Servais
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel 69978
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel-Aviv Israel 69978
| |
Collapse
|
291
|
Abstract
Cancer stem cells have recently been isolated from several different solid tumors. In breast cancer, the CD44+CD24−/low population is considered to comprise stem-like cells. The identification of cancer stem cells has provided new targets for the development of therapeutics. Oncolytic herpes simplex viruses (oHSVs) are an effective strategy for killing breast cancer cells and treating breast tumors in preclinical models. Here, we examined the efficacy of the oHSV G47Δ in killing breast cancer stem cells. Human breast cancer cell line SK-BR-3 and human primary breast cancer cells were cultured in suspension under conditions conducive to the growth of stem cells. They generated mammospheres, which had cancer stem cell properties. The proportion of CD44+CD24−/low cells in these mammospheres exceeded 95%, as determined by flow cytometry. The mammospheres were found to be highly tumorigenic when implanted subcutaneously in nude BALB/c mice. G47Δ contains the LacZ gene, and X-gal staining of infected cells in vitro and in vivo showed the replication and spread of the virus. G47Δ was found to be highly cytotoxic to the CD44+CD24−/low population in vitro, even when injected at low multiplicities of infection, and G47Δ treatment in vivo significantly inhibited tumor growth compared with mock treatment. This study demonstrates that oHSV is effective against breast cancer stem cells and could be a beneficial strategy for treating breast cancer patients.
Collapse
|