251
|
|
252
|
Beyersmann PG, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, Detter JC, Rohde M, Gronow S, Kyrpides NC, Woyke T, Simon M, Göker M, Klenk HP, Brinkhoff T. Genome sequence of Phaeobacter caeruleus type strain (DSM 24564T), a surface-associated member of the marine Roseobacter clade. Stand Genomic Sci 2013. [DOI: 10.4056/sigs.3927626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
253
|
Beyersmann PG, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, Detter JC, Rohde M, Gronow S, Kyrpides NC, Woyke T, Simon M, Göker M, Klenk HP, Brinkhoff T. Genome sequence of Phaeobacter caeruleus type strain (DSM 24564(T)), a surface-associated member of the marine Roseobacter clade. Stand Genomic Sci 2013; 8:403-19. [PMID: 24501626 PMCID: PMC3910702 DOI: 10.4056/sigs.3927623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In 2009 Phaeobacter caeruleus was described as a novel species affiliated with the marine Roseobacter clade, which, in turn, belongs to the class Alphaproteobacteria. The genus Phaeobacter is well known for members that produce various secondary metabolites. Here we report of putative quorum sensing systems, based on the finding of six N-acyl-homoserine lactone synthetases, and show that the blue color of P. caeruleus is probably due to the production of the secondary metabolite indigoidine. Therefore, P. caeruleus might have inhibitory effects on other bacteria. In this study the genome of the type strain DSM 24564T was sequenced, annotated and characterized. The 5,344,419 bp long genome with its seven plasmids contains 5,227 protein-coding genes (3,904 with a predicted function) and 108 RNA genes.
Collapse
Affiliation(s)
- Paul G Beyersmann
- Institute for Chemistry and Biology of the Marine Environment (ICMB), Oldenburg, Germany
| | - Olga Chertkov
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne Fiebig
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne A Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Manfred Rohde
- HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICMB), Oldenburg, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICMB), Oldenburg, Germany
| |
Collapse
|
254
|
Abstract
The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.
Collapse
Affiliation(s)
- Kim Lewis
- Department of Biology and Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts 02115, USA.
| |
Collapse
|
255
|
Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 2013; 67:7-22. [DOI: 10.1038/ja.2013.49] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/22/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
|
256
|
Detection of photoactive siderophore biosynthetic genes in the marine environment. Biometals 2013; 26:507-16. [DOI: 10.1007/s10534-013-9635-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023]
|
257
|
Fujita MJ, Nakano K, Sakai R. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum. Molecules 2013; 18:3917-26. [PMID: 23549298 PMCID: PMC6270104 DOI: 10.3390/molecules18043917] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 12/03/2022] Open
Abstract
A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Masaki J Fujita
- Creative Research Institution, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | |
Collapse
|
258
|
Mattos ALC, Constantino VRL, de Couto RAA, Pinto DML, Kaneko TM, Espósito BP. Desferrioxamine-cadmium as a 'Trojan horse' for the delivery of Cd to bacteria and fungi. J Trace Elem Med Biol 2013; 27:103-8. [PMID: 23122029 DOI: 10.1016/j.jtemb.2012.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
Abstract
Molecules naturally designed for the acquisition of essential metals can be used as a shuttle to deliver toxic metal ions to target organisms. In this study, we describe for the first time the synthesis of a derivative of cadmium and desferrioxamine B, a bacterial siderophore. The new compound was characterized by elemental analysis, vibrational (infrared and Raman) spectroscopy, mass coupled thermal analyses and X-ray diffraction methods. Studies on the in vitro toxicity toward a fungus and two bacterial strains indicated that the coordination compound is more active against microrganisms than cadmium chloride on a Cd-concentration basis, indicating that desferrioxamine can work as a "Trojan horse" in the delivery of a toxic metal.
Collapse
Affiliation(s)
- Ana Luiza Costa Mattos
- Universidade de São Paulo, Instituto de Química, Laboratório de Química Bioinorgânica Ambiental e Metalofármacos, Av Lineu Prestes 748, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
259
|
Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 2013; 11:700-17. [PMID: 23528949 PMCID: PMC3705366 DOI: 10.3390/md11030700] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 01/05/2023] Open
Abstract
Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed.
Collapse
|
260
|
Kosman DJ. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation. Coord Chem Rev 2013; 257:210-217. [PMID: 23264695 PMCID: PMC3524981 DOI: 10.1016/j.ccr.2012.06.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron's aqueous chemistry, occurs as 'rust', insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H(2)O)(6)](3+). Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting Fe(II) which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the 'rusting out' of Fe(III) and the ROS-generating autoxidation of Fe(II) so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology.
Collapse
Affiliation(s)
- Daniel J. Kosman
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
261
|
Ejje N, Soe CZ, Gu J, Codd R. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 2013; 5:1519-28. [DOI: 10.1039/c3mt00230f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
262
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
263
|
Divergent effects of desferrioxamine on bacterial growth and characteristics. J Antibiot (Tokyo) 2012; 66:199-203. [PMID: 23232933 DOI: 10.1038/ja.2012.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Desferrioxamines (DF's) are siderophores produced by some groups of bacteria. Previously, we discovered that DFE, produced by Streptomyces griseus, induced divergent developmental phenotypes in various Streptomyces isolates. In this study, we isolated bacteria whose phenotype was affected by the presence of 0.1 mM DFB from soil samples, and studied their phylogenetic position via 16 S rRNA gene-based analysis. Isolates belonging to Microbacterium grew only in the presence of DFB in the medium. DFB promoted growth of some isolates, while significantly inhibiting that of other divergent bacteria. Different groups of isolates were affected, not because of growth-related changes, but because of changes in the colony morphology based on possible stimulation of motility. An isolate affiliated with Janthinobacterium was stimulated for violacein production as well as for pilus formation. The wide and divergent effects of DFB suggest that availability of siderophores significantly affect the structure of microbial community.
Collapse
|
264
|
Miethke M, Kraushaar T, Marahiel MA. Uptake of xenosiderophores in Bacillus subtilis occurs with high affinity and enhances the folding stabilities of substrate binding proteins. FEBS Lett 2012; 587:206-13. [PMID: 23220087 DOI: 10.1016/j.febslet.2012.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/26/2022]
Abstract
Siderophores play an essential role in a multitude of microbial iron acquisition pathways. Many bacteria use xenosiderophores as iron sources that are produced by different microbial species in their habitat. We investigated the capacity of xenosiderophore uptake in the soil bacterium Bacillus subtilis and found that it employs several substrate binding proteins with high specificities and affinities for different ferric siderophore species. Protein-ligand interaction studies revealed dissociation constants in the low nanomolar range, while the protein folding stabilities were remarkably increased by their high-affinity ligands. Complementary growth studies confirmed the specificity of xenosiderophore uptake in B. subtilis and showed that its fitness is strongly enhanced by the extensive utilization of non-endogenous siderophores.
Collapse
Affiliation(s)
- Marcus Miethke
- Department of Chemistry/Biochemistry, Philipps University Marburg, Hans Meerwein Strasse 4, and Loewe-Center for Synthetic Microbiology, D-35032 Marburg, Germany.
| | | | | |
Collapse
|
265
|
Abstract
The human body is colonized by a vast array of microbes, which form communities of bacteria, viruses and microbial eukaryotes that are specific to each anatomical environment. Every community must be studied as a whole because many organisms have never been cultured independently, and this poses formidable challenges. The advent of next-generation DNA sequencing has allowed more sophisticated analysis and sampling of these complex systems by culture-independent methods. These methods are revealing differences in community structure between anatomical sites, between individuals, and between healthy and diseased states, and are transforming our view of human biology.
Collapse
Affiliation(s)
- George M Weinstock
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA.
| |
Collapse
|
266
|
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 2012; 86:628-44. [PMID: 22931126 PMCID: PMC3481010 DOI: 10.1111/mmi.12008] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/31/2022]
Abstract
While soil-dwelling actinomycetes are renowned for secreting natural products, little is known about the roles of these molecules in mediating actinomycete interactions. In a previous co-culture screen, we found that one actinomycete, Amycolatopsis sp. AA4, inhibited aerial hyphae formation in adjacent colonies of Streptomyces coelicolor. A siderophore, amychelin, mediated this developmental arrest. Here we present genetic evidence that confirms the role of the amc locus in the production of amychelin and in the inhibition of S. coelicolor development. We further characterize the Amycolatopsis sp. AA4 - S. coelicolor interaction by examining expression of developmental and iron acquisition genes over time in co-culture. Manipulation of iron availability and/or growth near Amycolatopsis sp. AA4 led to alterations in expression of the critical developmental gene bldN, and other key downstream genes in the S. coelicolor transcriptional cascade. In Amycolatopsis sp. AA4, siderophore genes were downregulated when grown near S. coelicolor, leading us to find that deferrioxamine E, produced by S. coelicolor, could be readily utilized by Amycolatopsis sp. AA4. Collectively these results suggest that competition for iron via siderophore piracy and species-specific siderophores can alter patterns of gene expression and morphological differentiation during actinomycete interactions.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts 02115
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts 02115
| |
Collapse
|
267
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
268
|
Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA. Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS One 2012; 7:e46754. [PMID: 23071628 PMCID: PMC3465284 DOI: 10.1371/journal.pone.0046754] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. METHODS AND PRINCIPAL FINDINGS Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. CONCLUSIONS We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.
Collapse
Affiliation(s)
- Conrado Adler
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia S. Corbalán
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - María Fernanda Pomares
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E. de Cristóbal
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula A. Vincent
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
269
|
Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 2012; 22:1845-50. [PMID: 22959348 DOI: 10.1016/j.cub.2012.08.005] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/06/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
Abstract
Microbial cells secrete numerous enzymes, scavenging molecules, and signals that can promote the growth and survival of other cells around them [1-4]. This observation is consistent with the evolution of cooperation within species [5], and there is now an increasing emphasis on the importance of cooperation between different microbial species [4, 6]. We lack, however, a systematic test of the importance of mutually positive interactions between different species, which is vital for assessing the commonness and importance of cooperative evolution in natural communities. Here, we study the extent of mutually positive interaction among bacterial strains isolated from a common aquatic environment. Using data collected from two independent experiments evaluating community productivity across diversity gradients, we show that (1) in pairwise species combinations, the great majority of interactions are net negative and (2) there is no evidence that strong higher-order positive effects arise when more than two species are mixed together. Our data do not exclude the possibility of positive effects in one direction where one species gains at the expense of another, i.e., predator-prey-like interactions. However, these do not constitute cooperation and our analysis suggests that the typical result of adaptation to other microbial species will be competitive, rather than cooperative, phenotypes.
Collapse
Affiliation(s)
- Kevin R Foster
- Department of Zoology and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3PS, UK.
| | | |
Collapse
|
270
|
Abstract
Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.
Collapse
|
271
|
Roberts AA, Schultz AW, Kersten RD, Dorrestein PC, Moore BS. Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores. FEMS Microbiol Lett 2012; 335:95-103. [PMID: 22812504 DOI: 10.1111/j.1574-6968.2012.02641.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022] Open
Abstract
Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.
Collapse
Affiliation(s)
- Alexandra A Roberts
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
272
|
Marx CJ. Recovering from a bad start: rapid adaptation and tradeoffs to growth below a threshold density. BMC Evol Biol 2012; 12:109. [PMID: 22762241 PMCID: PMC3495640 DOI: 10.1186/1471-2148-12-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial growth in well-mixed culture is often assumed to be an autonomous process only depending upon the external conditions under control of the investigator. However, increasingly there is awareness that interactions between cells in culture can lead to surprising phenomena such as density-dependence in the initiation of growth. RESULTS Here I report the unexpected discovery of a density threshold for growth of a strain of Methylobacterium extorquens AM1 used to inoculate eight replicate populations that were evolved in methanol. Six of these populations failed to grow to the expected full density during the first couple transfers. Remarkably, the final cell number of six populations crashed to levels 60- to 400-fold smaller than their cohorts. Five of these populations recovered to full density soon after, but one population remained an order of magnitude smaller for over one hundred generations. These variable dynamics appeared to be due to a density threshold for growth that was specific to both this particular ancestral strain and to growth on methanol. When tested at full density, this population had become less fit than its ancestor. Simply increasing the initial dilution 16-fold reversed this result, revealing that this population had more than a 3-fold advantage when tested at this lower density. As this population evolved and ultimately recovered to the same final density range as the other populations this low-density advantage waned. CONCLUSIONS These results demonstrate surprisingly strong tradeoffs during adaptation to growth at low absolute densities that manifest over just a 16-fold change in density. Capturing laboratory examples of transitions to and from growth at low density may help us understand the physiological and evolutionary forces that have led to the unusual properties of natural bacteria that have specialized to low-density environments such as the open ocean.
Collapse
Affiliation(s)
- Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
273
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
274
|
Abstract
The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field.
Collapse
|
275
|
Hou Y, Braun DR, Michel CR, Klassen J, Adnani N, Wyche TP, Bugni TS. Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 2012; 84:4277-83. [PMID: 22519562 PMCID: PMC3352271 DOI: 10.1021/ac202623g] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/22/2012] [Indexed: 12/16/2022]
Abstract
Natural products profoundly impact many research areas, including medicine, organic chemistry, and cell biology. However, discovery of new natural products suffers from a lack of high throughput analytical techniques capable of identifying structural novelty in the face of a high degree of chemical redundancy. Methods to select bacterial strains for drug discovery have historically been based on phenotypic qualities or genetic differences and have not been based on laboratory production of secondary metabolites. Therefore, untargeted LC/MS-based secondary metabolomics was evaluated to rapidly and efficiently analyze marine-derived bacterial natural products using LC/MS-principal component analysis (PCA). A major goal of this work was to demonstrate that LC/MS-PCA was effective for strain prioritization in a drug discovery program. As proof of concept, we evaluated LC/MS-PCA for strain selection to support drug discovery, for the discovery of unique natural products, and for rapid assessment of regulation of natural product production.
Collapse
Affiliation(s)
- Yanpeng Hou
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cole R. Michel
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jonathan
L. Klassen
- Department of Bacteriology, University of Wisconsin,
Madison, Wisconsin 53705,
United States
| | - Navid Adnani
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
276
|
Gaonkar T, Nayak PK, Garg S, Bhosle S. Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. ScientificWorldJournal 2012; 2012:857249. [PMID: 22629215 PMCID: PMC3353706 DOI: 10.1100/2012/857249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022] Open
Abstract
Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe(+3) creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process.
Collapse
Affiliation(s)
- Teja Gaonkar
- Department of Microbiology, Goa University, Taleigao Plateau, Goa 403 206, India
| | | | | | | |
Collapse
|
277
|
Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012; 3:e00036-12. [PMID: 22448042 PMCID: PMC3315703 DOI: 10.1128/mbio.00036-12] [Citation(s) in RCA: 736] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and "Candidatus Pelagibacter," and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism's limiting resources, provided the gene's function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates "beneficiaries" of reduced genomic content that are dependent on leaky "helpers," and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.
Collapse
|
278
|
Lamsa A, Liu WT, Dorrestein PC, Pogliano K. The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis. Mol Microbiol 2012; 84:486-500. [PMID: 22469514 DOI: 10.1111/j.1365-2958.2012.08038.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus subtilis SDP is a peptide toxin that kills cells outside the biofilm to support continued growth. We show that purified SDP acts like endogenously produced SDP; it delays sporulation, and the SdpI immunity protein confers SDP resistance. SDP kills a variety of Gram-positive bacteria in the phylum Firmicutes, as well as Escherichia coli with a compromised outer membrane, suggesting it participates in defence of the B. subtilis biofilm against Gram-positive bacteria as well as cannibalism. Fluorescence microscopy reveals that the effect of SDP on cells differs from that of nisin, nigericin, valinomycin and vancomycin-KCl, but resembles that of CCCP, DNP and azide. Indeed, SDP rapidly collapses the PMF as measured by fluorometry and flow cytometry, which triggers the slower process of autolysis. This secondary consequence of SDP treatment is not required for cell death since the autolysin-defective lytC, lytD, lytE, lytF strain fails to be lysed but is nevertheless killed by SDP. Collapsing the PMF is an ideal mechanism for a toxin involved in cannibalism and biofilm defence, since this would incapacitate neighbouring cells by inhibiting motility and secretion of proteins and toxins. It would also induce autolysis in many Gram-positive species, thereby releasing nutrients that promote biofilm growth.
Collapse
Affiliation(s)
- Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
279
|
Diversity of integron- and culture-associated antibiotic resistance genes in freshwater floc. Appl Environ Microbiol 2012; 78:4367-72. [PMID: 22467502 DOI: 10.1128/aem.00405-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance gene cassette types detected across sites was positively correlated with total (the sum of Ag, As, Cu, and Pb) trace element concentrations in aqueous solution and in a component of floc readily accessible to bacteria. In particular, concentrations of Cu and Pb in the floc component were positively correlated with floc resistance gene cassette diversity. Collectively, these results identify suspended floc as an important reservoir, distinct from bulk water and bed sediment, for antibiotic resistance in aquatic environments ranging from heavily impacted urban sites to remote areas of nature reserves and indicate that trace elements, particularly Cu and Pb, are geochemical markers of resistance diversity in this environmental reservoir. The increase in contamination of global water supplies suggests that aquatic environments will become an even more important reservoir of clinically important antibiotic resistance in the future.
Collapse
|
280
|
Kreutzer MF, Kage H, Nett M. Structure and Biosynthetic Assembly of Cupriachelin, a Photoreactive Siderophore from the Bioplastic Producer Cupriavidus necator H16. J Am Chem Soc 2012; 134:5415-22. [DOI: 10.1021/ja300620z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin F. Kreutzer
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Hirokazu Kage
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Nett
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
281
|
Abstract
This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed.
Collapse
Affiliation(s)
- Pedro N Leão
- CIIMAR/CIMAR, Center for Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | | | | | | | | |
Collapse
|
282
|
Hameş-Kocabaş EE, Uzel A. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. J Microbiol Methods 2012; 88:342-7. [PMID: 22285852 DOI: 10.1016/j.mimet.2012.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
During the last two decades, discoveries of new members of actinomycetes and novel metabolites from marine environments have drawn attention to such environments, such as sediment and sponge. For the successful isolation of actinomycetes from marine environments, many factors including the use of enrichment and pre-treatment techniques, and the selection of growth media and antibiotic supplements should be taken into account. High-throughput cultivation is an innovative technique that mimics nature, eliminates undesired, fast-growing bacteria and creates suitable conditions for rare, slow-growing actinomycetes. This review comprehensively evaluates the traditional and innovative techniques and strategies used for the isolation of actinomycetes from marine sponge and sediment samples.
Collapse
Affiliation(s)
- E Esin Hameş-Kocabaş
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| | | |
Collapse
|
283
|
Johnston C, Ibrahim A, Magarvey N. Informatic strategies for the discovery of polyketides and nonribosomal peptides. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20120h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A modern challenge and opportunity exists for in the ability to link genomic and metabolomic data, using novel informatic methods to find new bioactive natural products.
Collapse
Affiliation(s)
- Chad Johnston
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| | - Ashraf Ibrahim
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| | - Nathan Magarvey
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| |
Collapse
|
284
|
Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking. Appl Environ Microbiol 2011; 78:1345-52. [PMID: 22194284 DOI: 10.1128/aem.06585-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of microbial ecology has been significantly furthered in recent years by advances in sequencing techniques, but comprehensive surveys of the phenotypic characteristics of environmental bacteria remain rare. Such phenotypic data are crucial for understanding the microbial strategies for growth and the diversity of microbial ecosystems. Here, we describe a high-throughput measurement of the growth of thousands of bacterial colonies using an array of flat-bed scanners coupled with automated image analysis. We used this system to investigate the growth properties of members of a microbial community from untreated soil. The system provides high-quality measurements of the number of CFU, colony growth rates, and appearance times, allowing us to directly study the distribution of these properties in mixed environmental samples. We find that soil bacteria display a wide range of growth strategies which can be grouped into several clusters that cannot be reduced to any of the classical dichotomous divisions of soil bacteria, e.g., into copiotophs and oligotrophs. We also find that, at early times, cells are most likely to form colonies when other, nearby colonies are present but not too dense. This maximization of culturability at intermediate plating densities suggests that the previously observed tendency for high density to lead to fewer colonies is partly offset by the induction of colony formation caused by interactions between microbes. These results suggest new types of growth classification of soil bacteria and potential effects of species interactions on colony growth.
Collapse
|
285
|
Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange--the chemotype-to-phenotype link. Nat Chem Biol 2011; 8:26-35. [PMID: 22173357 DOI: 10.1038/nchembio.739] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function of microbial interactions is to enable microorganisms to survive by establishing a homeostasis between microbial neighbors and local environments. A microorganism can respond to environmental stimuli using metabolic exchange-the transfer of molecular factors, including small molecules and proteins. Microbial interactions not only influence the survival of the microbes but also have roles in morphological and developmental processes of the organisms themselves and their neighbors. This, in turn, shapes the entire habitat of these organisms. Here we highlight our current understanding of metabolic exchange as well as the emergence of new technologies that are allowing us to eavesdrop on microbial conversations comprising dozens to hundreds of secreted metabolites that control the behavior, survival and differentiation of members of the community. The goal of the rapidly advancing field studying multifactorial metabolic exchange is to devise a microbial 'Rosetta stone' in order to understand the language by which microbial interactions are negotiated and, ultimately, to control the outcome of these conversations.
Collapse
Affiliation(s)
- Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | | | | | | |
Collapse
|
286
|
Russo TA, Shon AS, Beanan JM, Olson R, MacDonald U, Pomakov AO, Visitacion MP. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than "classical" K. pneumoniae thereby enhancing its virulence. PLoS One 2011; 6:e26734. [PMID: 22039542 PMCID: PMC3200348 DOI: 10.1371/journal.pone.0026734] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/03/2011] [Indexed: 12/26/2022] Open
Abstract
Background A new hypervirulent (hypermucoviscous) clinical variant of Klebsiella pneumoniae (hvKP) has emerged over the last decade. Our goal is to identify new mechanisms, which increase the virulence hvKP compared to “classic” K. pneumoniae (cKP). Methodology/Principal Findings Various growth assays were performed in human ascites, human serum, and laboratory medium with the hvKP strain hvKP1 (wt), randomly chosen blood isolates of cKP strains (cKP1-4), and mutant constructs deficient in the secretion of selected compounds. An in vivo mouse model that mimics infection due to hvKP and a quantitative siderophore assay were also used. It was established that a molecule(s)/factor(s) was secreted by hvKP1 significantly enhanced its growth and/or survival in human ascites. This molecule(s)/factor(s) also increased the growth and/or survival of hvKP1 in serum ex vivo and in an in vivo mouse model that measures metastatic spread after subcutaneous challenge, thereby further establishing biologic significance. Although features such as a size of <3kD, heat stability, and growth characteristics in ascites suggested this molecule(s) was a quorum-sensing compound, data presented demonstrates that this molecule(s)/factor(s) is involved in iron uptake and is likely a siderophore(s) or another iron-acquisition molecule. Although it is known that iron acquisition is critical for virulence, a novel aspect of this observation is that hvKP1 produces quantitatively more siderophores that appear to be biologically more active (increased affinity for iron or more resistant to host factors) than those produced by cKP strains. Conclusions/Significance The data presented delineates a new mechanism by which hvKP increases its pathogenic potential compared to cKP strains. This paradigm may be broadly applicable to other extraintestinal gram-negative bacilli.
Collapse
Affiliation(s)
- Thomas A Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo-State University of New York, Buffalo, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
287
|
Detection and quantification of microbial cells in subsurface sediments. ADVANCES IN APPLIED MICROBIOLOGY 2011; 76:79-103. [PMID: 21924972 DOI: 10.1016/b978-0-12-387048-3.00003-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantification of total cell abundance is one of the most fundamental parameters in the exploration of subsurface life. Despite all recent advances in molecular techniques, this parameter is usually determined by fluorescence microscopy. In order to obtain reliable and reproducible results, it is important not just to focus on the actual cell enumeration but also to consider the entire chain of processing. Starting with the retrieval of the sample, over subsampling and sample processing to the final step of fluorescence microscopy, there are many potential sources of contamination that have to be assessed and, if possible, avoided. Because some degree of sample contamination will always occur, it is necessary to employ some form of contamination control. Different tracers are available, each one with its specific advantages and drawbacks. In many cases, the problems arise not after the sample has arrived in a well-equipped laboratory with highly trained personnel, but much earlier at the drill site or in a field camp. In this review, I discuss the different aspects of cell enumeration in subsurface sediment, evaluating every step in the long process chain.
Collapse
|
288
|
Affiliation(s)
- Diego Romero
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Matthew F. Traxler
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
289
|
Amin SA, Green DH, Al Waheeb D, Gärdes A, Carrano CJ. Iron transport in the genus Marinobacter. Biometals 2011; 25:135-47. [DOI: 10.1007/s10534-011-9491-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/20/2011] [Indexed: 11/27/2022]
|
290
|
Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD, Rabin HR, Surette MG. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 2011; 6:e22702. [PMID: 21829484 PMCID: PMC3145661 DOI: 10.1371/journal.pone.0022702] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/04/2011] [Indexed: 12/30/2022] Open
Abstract
The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured.
Collapse
Affiliation(s)
- Christopher D. Sibley
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Margot E. Grinwis
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Tyler R. Field
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Monica M. Faria
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Scot E. Dowd
- Medical Biofilm Research Institute, Lubbock, Texas, United States of America
- Research and Testing Laboratory of the South Plains, Lubbock, Texas, United States of America
| | - Michael D. Parkins
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Adult Cystic Fibrosis Clinic, University of Calgary, Calgary, Alberta, Canada
| | - Harvey R. Rabin
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Adult Cystic Fibrosis Clinic, University of Calgary, Calgary, Alberta, Canada
| | - Michael G. Surette
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
291
|
Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol 2011; 38 Suppl 11:7-16. [PMID: 21323699 DOI: 10.1111/j.1600-051x.2010.01679.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. AIM This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. RESULTS Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. CONCLUSIONS The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority.
Collapse
|
292
|
Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Bills GF. Confronting the challenges of natural product-based antifungal discovery. ACTA ACUST UNITED AC 2011; 18:148-64. [PMID: 21338914 DOI: 10.1016/j.chembiol.2011.01.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Starting with the discovery of penicillin, the pharmaceutical industry has relied extensively on natural products (NPs) as an unparalleled source of bioactive small molecules suitable for antibiotic development. However, the discovery of structurally novel and chemically tractable NPs with suitable pharmacological properties as antibiotic leads has waned in recent decades. Today, the repetitive "rediscovery" of previously known NP classes with limited antibiotic lead potential dominates most industrial efforts. This limited productivity, exacerbated by the significant financial and resource requirements of such activities, has led to a broad de-emphasis of NP research by most pharmaceutical companies, including most recently Merck. Here we review our strategies--both technological and philosophical--in addressing current antifungal discovery bottlenecks in target identification and validation and how such efforts may improve NP-based antimicrobial discoveries when aligned with NP screening and dereplication.
Collapse
Affiliation(s)
- Terry Roemer
- Department of Infectious Disease, Merck Frosst Canada Ltd., Montreal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Yang YL, Xu Y, Kersten RD, Liu WT, Meehan MJ, Moore BS, Bandeira N, Dorrestein PC. Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew Chem Int Ed Engl 2011; 50:5839-42. [PMID: 21574228 DOI: 10.1002/anie.201101225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/05/2011] [Indexed: 01/14/2023]
Affiliation(s)
- Yu-Liang Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Yang YL, Xu Y, Kersten RD, Liu WT, Meehan MJ, Moore BS, Bandeira N, Dorrestein PC. Connecting Chemotypes and Phenotypes of Cultured Marine Microbial Assemblages by Imaging Mass Spectrometry. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
295
|
Flickinger ST, Copeland MF, Downes EM, Braasch AT, Tuson HH, Eun YJ, Weibel DB. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc 2011; 133:5966-75. [PMID: 21434644 PMCID: PMC3076519 DOI: 10.1021/ja111131f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This manuscript describes the fabrication of arrays of spatially confined chambers embossed in a layer of poly(ethylene glycol) diacrylate (PEGDA) and their application to studying quorum sensing between communities of Pseudomonas aeruginosa. We hypothesized that biofilms may produce stable chemical signaling gradients in close proximity to surfaces, which influence the growth and development of nearby microcolonies into biofilms. To test this hypothesis, we embossed a layer of PEGDA with 1.5-mm wide chambers in which P. aeruginosa biofilms grew, secreted homoserine lactones (HSLs, small molecule regulators of quorum sensing), and formed spatial and temporal gradients of these compounds. In static growth conditions (i.e., no flow), nascent biofilms secreted N-(3-oxododecanoyl) HSL that formed a gradient in the hydrogel and was detected by P. aeruginosa cells that were ≤8 mm away. Diffusing HSLs increased the growth rate of cells in communities that were <3 mm away from the biofilm, where the concentration of HSL was >1 μM, and had little effect on communities farther away. The HSL gradient had no observable influence on biofilm structure. Surprisingly, 0.1-10 μM of N-(3-oxododecanoyl) HSL had no effect on cell growth in liquid culture. The results suggest that the secretion of HSLs from a biofilm enhances the growth of neighboring cells in contact with surfaces into communities and may influence their composition, organization, and diversity.
Collapse
Affiliation(s)
- Shane T. Flickinger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Matthew F. Copeland
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Eric M. Downes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Andrew T. Braasch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Ye-Jin Eun
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 U.S.A
| |
Collapse
|
296
|
O’ Halloran J, Barbosa T, Morrissey J, Kennedy J, O’ Gara F, Dobson A. Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. J Appl Microbiol 2011; 110:1495-508. [DOI: 10.1111/j.1365-2672.2011.05008.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
297
|
Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 2011; 38:769-90. [DOI: 10.1007/s10295-011-0968-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/26/2011] [Indexed: 11/26/2022]
|
298
|
Bomar L, Maltz M, Colston S, Graf J. Directed culturing of microorganisms using metatranscriptomics. mBio 2011; 2:e00012-11. [PMID: 21467263 PMCID: PMC3069634 DOI: 10.1128/mbio.00012-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The vast majority of bacterial species remain uncultured, and this severely limits the investigation of their physiology, metabolic capabilities, and role in the environment. High-throughput sequencing of RNA transcripts (RNA-seq) allows the investigation of the diverse physiologies from uncultured microorganisms in their natural habitat. Here, we report the use of RNA-seq for characterizing the metatranscriptome of the simple gut microbiome from the medicinal leech Hirudo verbana and for utilizing this information to design a medium for cultivating members of the microbiome. Expression data suggested that a Rikenella-like bacterium, the most abundant but uncultured symbiont, forages on sulfated- and sialated-mucin glycans that are fermented, leading to the secretion of acetate. Histological stains were consistent with the presence of sulfated and sialated mucins along the crop epithelium. The second dominant symbiont, Aeromonas veronii, grows in two different microenvironments and is predicted to utilize either acetate or carbohydrates. Based on the metatranscriptome, a medium containing mucin was designed, which enabled the cultivation of the Rikenella-like bacterium. Metatranscriptomes shed light on microbial metabolism in situ and provide critical clues for directing the culturing of uncultured microorganisms. By choosing a condition under which the desired organism is rapidly proliferating and focusing on highly expressed genes encoding hydrolytic enzymes, binding proteins, and transporters, one can identify an organism's nutritional preferences and design a culture medium. IMPORTANCE The number of prokaryotes on the planet has been estimated to exceed 10(30) cells, and the overwhelming majority of them have evaded cultivation, making it difficult to investigate their ecological, medical, and industrial relevance. The application of transcriptomics based on high-throughput sequencing of RNA transcripts (RNA-seq) to microorganisms in their natural environment can provide investigators with insight into their physiologies under optimal growth conditions. We utilized RNA-seq to learn more about the uncultured and cultured symbionts that comprise the relatively simple digestive-tract microbiome of the medicinal leech. The expression data revealed highly expressed hydrolytic enzymes and transporters that provided critical clues for the design of a culture medium enabling the isolation of the previously uncultured Rikenella-like symbiont. This directed culturing method will greatly aid efforts aimed at understanding uncultured microorganisms, including beneficial symbionts, pathogens, and ecologically relevant microorganisms, by facilitating genome sequencing, physiological characterization, and genetic manipulation of the previously uncultured microbes.
Collapse
Affiliation(s)
- Lindsey Bomar
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | - Sophie Colston
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
299
|
Tierrafría VH, Ramos‐Aboites HE, Gosset G, Barona‐Gómez F. Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3(2) results in impaired growth in spite of multiple iron-siderophore transport systems. Microb Biotechnol 2011; 4:275-85. [PMID: 21342472 PMCID: PMC3818867 DOI: 10.1111/j.1751-7915.2010.00240.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
Ferrioxamines-mediated iron acquisition by Streptomyces coelicolor A3(2) has recently received increased attention. In addition to the biological role of desferrioxamines (dFOs) as hydroxamate siderophores, and the pharmaceutical application of dFO-B as an iron-chelator, the ferrioxamines have been shown to mediate microbial interactions. In S. coelicolor the siderophore-binding receptors DesE (Sco2780) and CdtB (Sco7399) have been postulated to specifically recognize and uptake FO-E (cyclic) and FO-B (linear) respectively. Here, disruption of the desE gene in S. coelicolor, and subsequent phenotypic analysis, is used to demonstrate a link between iron metabolism and physiological and morphological development. Streptomyces coelicolor desE mutants, isolated in both wild-type (M145) and a coelichelin biosynthesis and transport minus background (mutant W3), a second hydroxamate siderophore system only found in S. coelicolor and related species, resulted in impaired growth and lack of sporulation. This phenotype could only be partially rescued by expression in trans of either desE and cdtB genes, which contrasted with the ability of FO-E, and to a lesser extent of FO-B, to fully restore growth at µM concentrations, with a concomitant induction of a marked phenotypic response involving precocious synthesis of actinorhodin and sporulation. Moreover, growth restoration of the desE mutant by complementation with desE and cdtB showed that DesE, which is universally conserved in Streptomyces, and CdtB, only present in certain streptomycetes, have partial equivalent functional roles under laboratory conditions, implying overlapping ferrioxamine specificities. The biotechnological and ecological implications of these observations are discussed.
Collapse
Affiliation(s)
- Víctor H. Tierrafría
- Evolution of Metabolic Diversity Laboratory, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV‐IPN, Km 9.6 Libramiento Norte, Carretera Irapuato – León, Irapuato, C.P. 36822, México
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, C.P. 62210, México
| | - Hilda E. Ramos‐Aboites
- Evolution of Metabolic Diversity Laboratory, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV‐IPN, Km 9.6 Libramiento Norte, Carretera Irapuato – León, Irapuato, C.P. 36822, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, C.P. 62210, México
| | - Francisco Barona‐Gómez
- Evolution of Metabolic Diversity Laboratory, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV‐IPN, Km 9.6 Libramiento Norte, Carretera Irapuato – León, Irapuato, C.P. 36822, México
| |
Collapse
|
300
|
Yeoman CJ, Chia N, Yildirim S, Miller MEB, Kent A, Stumpf R, Leigh SR, Nelson KE, White BA, Wilson BA. Towards an Evolutionary Model of Animal-Associated Microbiomes. ENTROPY (BASEL, SWITZERLAND) 2011; 13:570-594. [PMID: 39963611 PMCID: PMC11831856 DOI: 10.3390/e13030570] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Second-generation sequencing technologies have granted us greater access to the diversity and genetics of microbial communities that naturally reside endo- and ecto-symbiotically with animal hosts. Substantial research has emerged describing the diversity and broader trends that exist within and between host species and their associated microbial ecosystems, yet the application of these data to our evolutionary understanding of microbiomes appears fragmented. For the most part biological perspectives are based on limited observations of oversimplified communities, while mathematical and/or computational modeling of these concepts often lack biological precedence. In recognition of this disconnect, both fields have attempted to incorporate ecological theories, although their applicability is currently a subject of debate because most ecological theories were developed based on observations of macro-organisms and their ecosystems. For the purposes of this review, we attempt to transcend the biological, ecological and computational realms, drawing on extensive literature, to forge a useful framework that can, at a minimum be built upon, but ideally will shape the hypotheses of each field as they move forward. In evaluating the top-down selection pressures that are exerted on a microbiome we find cause to warrant reconsideration of the much-maligned theory of multi-level selection and reason that complexity must be underscored by modularity.
Collapse
Affiliation(s)
- Carl J. Yeoman
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Nicholas Chia
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Suleyman Yildirim
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - Angela Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Rebecca Stumpf
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
| | - Steven R. Leigh
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
| | | | - Bryan A. White
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois, IL 61801, USA
| | - Brenda A. Wilson
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois, IL 61801, USA
| |
Collapse
|