251
|
Marco-Brown JL, Undabeytia T, Torres Sánchez RM, Dos Santos Afonso M. Slow-release formulations of the herbicide picloram by using Fe-Al pillared montmorillonite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10410-10420. [PMID: 28281061 DOI: 10.1007/s11356-017-8699-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Slow-release formulations of the herbicide picloram (PCM, 4-amino-3,5,6-trichloropyridine-2-carboxylic acid) were designed based on its adsorption on pillared clays (pillared clays (PILCs)) for reducing the water-polluting risk derived from its use in conventional formulations. Fe-Al PILCs were synthesized by the reaction of Na+-montmorillonite (SWy-2) with base-hydrolyzed solutions of Fe and Al. The Fe/(Fe + Al) ratios used were 0.15 and 0.50. The PCM adsorption isotherms on Fe-Al PILCs were well fitted to Langmuir and Freundlich models. The PCM adsorption capacity depended on the Fe content in the PILCs. Slow-release formulations were prepared by enhanced adsorption of the herbicide from PCM-cyclodextrin (CD) complexes in solution. CDs were able to enhance up to 2.5-fold the solubility of PCM by the formation of inclusion complexes where the ring moiety of the herbicide was partially trapped within the CD cavity. Competitive adsorption of anions such as sulfate, phosphate, and chloride as well as the FTIR analysis of PCM-PILC complexes provided evidence of formation of inner sphere complexes of PCM-CD on Fe-Al PILCs. Release of the herbicide in a sandy soil was lower from Fe-Al PILC formulations relative to a PCM commercial formulation.
Collapse
Affiliation(s)
- Jose L Marco-Brown
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Buenos Aires, Argentina.
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía de la Facultad de Ciencias Exactas y Naturales (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Investigación e Ingeniería Ambiental (3iA), CONICET, Escuela de Ciencia y Tecnología, UNSAM, 25 de Mayo y Francia (1650), San Martín, Argentina.
| | - Tomás Undabeytia
- Institute of Natural Resources and Agrobiology (IRNAS-CSIC), Reina Mercedes 10. Apdo. 1052, 41080, Sevilla, Spain
| | - Rosa M Torres Sánchez
- Centro de Tecnología en Recursos Minerales y Cerámica (CETMIC), CONICET-CCT La Plata-CIC, Camino Centenario y 506 CC (49), B1897ZCA, M. B. Gonnet, Argentina
| | - María Dos Santos Afonso
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía de la Facultad de Ciencias Exactas y Naturales (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
252
|
Cord-Landwehr S, Ihmor P, Niehues A, Luftmann H, Moerschbacher BM, Mormann M. Quantitative Mass-Spectrometric Sequencing of Chitosan Oligomers Revealing Cleavage Sites of Chitosan Hydrolases. Anal Chem 2017; 89:2893-2900. [PMID: 28192919 DOI: 10.1021/acs.analchem.6b04183] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Partially acetylated chito-oligosaccharides (paCOS) have diverse bioactivities that turn them into promising compounds especially for medical and agricultural applications. These properties likely arise from different acetylation patterns, but determining the sequences of paCOS and producing paCOS with patterns of interest have proven difficult. We present a novel method for sequencing submicrogram amounts of paCOS using quantitative mass spectrometry, allowing one to rapidly analyze the substrate specificities of chitosan hydrolases that can be used to produce paCOS. The method involves four major steps: (i) acetylation of free amino groups in paCOS using a deuterated reagent; (ii) labeling the reducing end with an 18O-tag; (iii) quantifying paCOS using [13C2, 2H3]-labeled isotopologs as internal standards; (iv) sequencing paCOS by tandem MS. Eventually, this method will aid in developing enzymes with cleavage patterns optimized for producing paCOS with defined patterns of acetylation and specific bioactivities.
Collapse
Affiliation(s)
- Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster , Schlossplatz 8, 48143 Münster, Germany
| | - Phillip Ihmor
- Institute for Biology and Biotechnology of Plants, University of Münster , Schlossplatz 8, 48143 Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Münster , Schlossplatz 8, 48143 Münster, Germany
| | - Heinrich Luftmann
- Institute for Organic Chemistry, University of Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster , Schlossplatz 8, 48143 Münster, Germany
| | - Michael Mormann
- Institute for Hygiene, University of Münster , Robert-Koch-Str. 41, 48149 Münster, Germany
| |
Collapse
|
253
|
Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. CHEMOSPHERE 2017; 168:408-417. [PMID: 27810541 DOI: 10.1016/j.chemosphere.2016.10.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 05/24/2023]
Abstract
Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling.
Collapse
Affiliation(s)
- Laila Al-Naamani
- Department of Marine Science and Fisheries, Sultan Qaboos University, 123 Al-Khodh, Oman; School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, Sultan Qaboos University, 123 Al-Khodh, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, 123 Al-Khodh, Oman.
| | - Joydeep Dutta
- Functional Materials Division, Materials and Nano Physics Department, ICT School, KTH Royal Institute of Technology, SE-164 40, Kista, Stockholm, Sweden.
| | - J Grant Burgess
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
254
|
Anza-vhudziki M, Ilunga K, Maggy NBM. Nanoscale development and its application in multidisciplinary area: An African perspective. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
255
|
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2017; 110:194-209. [PMID: 0 DOI: 10.1016/j.plaphy.2016.05.038] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
|
256
|
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 2016; 61:10-19. [DOI: 10.1016/j.niox.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|
257
|
Jo MR, Yu J, Kim HJ, Song JH, Kim KM, Oh JM, Choi SJ. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption. NANOMATERIALS 2016; 6:nano6120225. [PMID: 28335354 PMCID: PMC5302714 DOI: 10.3390/nano6120225] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry.
Collapse
Affiliation(s)
- Mi-Rae Jo
- Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Jin Yu
- Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Hyoung-Jun Kim
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Korea.
| | - Jae Ho Song
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Korea.
| | - Kyoung-Min Kim
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Korea.
- Seoul Institute, National Forensic Service, 139, Jiyang-ro, Yangcheon-gu, Seoul 08036, Korea.
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Korea.
| | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|
258
|
Pereira AES, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B Biointerfaces 2016; 150:141-152. [PMID: 27914250 DOI: 10.1016/j.colsurfb.2016.11.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/16/2022]
Abstract
This work concerns the development of nanocarriers composed of alginate/chitosan (ALG/CS) and chitosan/tripolyphosphate (CS/TPP) for the plant growth regulator gibberellic acid (GA3). ALG/CS nanoparticles with and without GA3 presented mean size of 450±10nm, polydispersity index (PDI) of 0.3, zeta potential of -29±0.5mV, concentrations of 1.52×1011 and 1.92×1011 nanoparticles mL-1, respectively, and 100% encapsulation efficiency. CS/TPP nanoparticles with and without GA3 presented mean size of 195±1nm, PDI of 0.3, zeta potential of +27±3mV, concentrations of 1.92×1012 and 3.54×1012 nanoparticles mL-1, respectively, and 90% encapsulation efficiency. The nanoparticles were stable during 60days and the two systems differed in terms of the release mechanism, with the release depending on factors such as pH and temperature. Bioactivity assays using Phaseolus vulgaris showed that the ALG/CS-GA3 nanoparticles were most effective in increasing leaf area and the levels of chlorophylls and carotenoids. The systems developed showed good potential, providing greater stability and efficiency of this plant hormone in agricultural applications.
Collapse
Affiliation(s)
- Anderson Espirito Santo Pereira
- Department of Biochemistry, State University of Campinas (UNICAMP), Campus Universitário Zeferino Vaz, s/n, Cidade Universitária, CEP 13083-870, Campinas, SP, Brazil; Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (UNESP), Avenida Três de Março, 511, CEP 18087-180, Sorocaba, SP, Brazil
| | - Paula Mayara Silva
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (UNESP), Avenida Três de Março, 511, CEP 18087-180, Sorocaba, SP, Brazil
| | - Jhones Luis Oliveira
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (UNESP), Avenida Três de Março, 511, CEP 18087-180, Sorocaba, SP, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86057-970, Londrina, PR, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Biochemistry, State University of Campinas (UNICAMP), Campus Universitário Zeferino Vaz, s/n, Cidade Universitária, CEP 13083-870, Campinas, SP, Brazil; Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (UNESP), Avenida Três de Março, 511, CEP 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
259
|
Campos EVR, de Oliveira JL, Pascoli M, de Lima R, Fraceto LF. Neem Oil and Crop Protection: From Now to the Future. FRONTIERS IN PLANT SCIENCE 2016; 7:1494. [PMID: 27790224 PMCID: PMC5061770 DOI: 10.3389/fpls.2016.01494] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future.
Collapse
Affiliation(s)
- Estefânia V. R. Campos
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
- Department of Biochemistry, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Mônica Pascoli
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
| | - Renata de Lima
- Department of Biotechnology, University of SorocabaSorocaba, Brazil
| | - Leonardo F. Fraceto
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
- Department of Biochemistry, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
260
|
Sathiyabama M, Parthasarathy R. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 2016; 151:321-325. [DOI: 10.1016/j.carbpol.2016.05.033] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 01/18/2023]
|
261
|
|
262
|
|
263
|
González JW, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Band BF. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:11-18. [PMID: 27062341 DOI: 10.1016/j.ecoenv.2016.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index.
Collapse
Affiliation(s)
- Jorge Werdin González
- FIA Laboratory, Analytical Chemistry Section, INQUISUR-CONICET, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Laboratorio de Zoología de Invertebrados II. Departamento de Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, B8000CPB Bahía Blanca, Buenos Aires, Argentina.
| | - Cristhian Yeguerman
- Laboratorio de Zoología de Invertebrados II. Departamento de Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - Diego Marcovecchio
- Laboratorio de Ciencias de las Imágenes, IIIE - CONICET. Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - Claudio Delrieux
- Laboratorio de Ciencias de las Imágenes, IIIE - CONICET. Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - Adriana Ferrero
- Laboratorio de Zoología de Invertebrados II. Departamento de Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Laboratorio de Zoología de Invertebrados II, INBIOSUR-CONICET, San Juan 670, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - Beatriz Fernández Band
- FIA Laboratory, Analytical Chemistry Section, INQUISUR-CONICET, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
264
|
N,N-dimethylhexadecyl carboxymethyl chitosan as a potential carrier agent for rotenone. Int J Biol Macromol 2016; 88:263-72. [DOI: 10.1016/j.ijbiomac.2016.03.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
|
265
|
Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. NANOMATERIALS 2016; 6:nano6070126. [PMID: 28335254 PMCID: PMC5224598 DOI: 10.3390/nano6070126] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023]
Abstract
Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs) with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC) (to 40.3%) compared to using bare MSNs as a single encapsulant (26.7%). The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc.), which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.
Collapse
|
266
|
Cao L, Zhang H, Cao C, Zhang J, Li F, Huang Q. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. NANOMATERIALS (BASEL, SWITZERLAND) 2016. [PMID: 28335254 DOI: 10.1039/c4ay01203h] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs) with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC) (to 40.3%) compared to using bare MSNs as a single encapsulant (26.7%). The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc.), which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Huirong Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Chong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jiakun Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Fengmin Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
267
|
Ma J, Fu K, Shi J, Sun Y, Zhang X, Ding L. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohydr Polym 2016; 151:565-575. [PMID: 27474601 DOI: 10.1016/j.carbpol.2016.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
In the present work, a new flocculant, polyacrylamide-grafted chitosan nanoparticles (NCS-g-PAM), was synthesized by the copolymerization of acrylamide (AM) and chitosan nanoparticle (NCS) under ultraviolet irradiation using 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone as photo-initiator. The NCS was prepared by the ionic gelation between chitosan and sodium tripolyphosphate. The structure and morphology of NCS-g-PAM were characterized by Fourier Transform Infraredspectroscopy (FT-IR), X-ray diffraction, (1)H-nuclear magnetic resonance spectrometry, scanning electron microscopy, and thermogravimetric analysis. The factors affecting the intrinsic viscosity and the yield of copolymer were studied, which showed that the optimum conditions for the synthesis of NCS-g-PAM were mAM:mNCS=8:1, 0.15g of initiator dosage, mCS:mTPP=4.5:1, 1min of ultrasonication time, 4h of illumination time, and 30min of stirring time. The NCS-g-PAM was found to be more effective than NC-g-PAM in the flocculation of both kaolin suspension and Cu(2+) simulated wastewater. With 5mg/L of polyaluminium chloride (PAC) coordinated and 1mg/L of NCS-g-PAM it was confirmed to be appropriate for flocculating kaolin suspension.
Collapse
Affiliation(s)
- Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| | - Kun Fu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Jun Shi
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Yongjun Sun
- Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Xinxi Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| |
Collapse
|
268
|
Fernández-Gutiérrez M, Fusco S, Mayol L, San Román J, Borzacchiello A, Ambrosio L. Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:109. [PMID: 27138966 DOI: 10.1007/s10856-016-5719-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The aim of this work was to synthesize semi-interpenetrating polymer networks (semi-IPNs) by free radical polymerization of N-isopropylacrylamide [poly (NIPAAm)], in the presence of chitosan (CHI), and to study the effect of pH and temperature changes on their rheological and swelling properties. The semi-IPNs are thermally stable up to about 400 °C and the presence of CHI increases the thermal degradation rate compared to bare poly (NIPAAm). The prepared systems presents a well-defined porosity and proved to be non-toxic, in vitro, on human embryonic skin fibroblast, thus offering appropriate support for cell proliferation. The semi-IPNs present, at physiological pH, swelling degrees well below those of the pure poly (NIPAAm). Differently, at acidic pH, the CHI macromolecules are protonated and become much more permeable to the diffusion of water giving a swelling degree that approaches that of bare poly (NIPAAm). The viscoelastic moduli of the semi-IPNs increase as a function of pH while the LCST remain unchanged. Moreover, the semi-IPNs viscoelastic moduli increase with the increase of CHI content and, in particular, the difference between the elastic modulus before and after the sol/gel transition is higher for the semi-IPN than for bare poly (NIPAAm) just at about physiological conditions.
Collapse
Affiliation(s)
- Mar Fernández-Gutiérrez
- Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- CIBER-BBN, Monforte de Lemos 3-5, pabellón 11 planta 0, 28029, Madrid, Spain
| | - Sabato Fusco
- CRIB@IIT - Istituto Italiano Tecnologia, P.le Tecchio, 80, 80125, Naples, Italy
| | - Laura Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials - CRIB, Università di Napoli Federico II, P.le Tecchio, 80, Naples, Italy
| | - Julio San Román
- Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- CIBER-BBN, Monforte de Lemos 3-5, pabellón 11 planta 0, 28029, Madrid, Spain
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council, Mostra d'Oltremare Pad. 20, Viale J. F. Kennedy 54, 80125, Naples, Italy.
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council, Mostra d'Oltremare Pad. 20, Viale J. F. Kennedy 54, 80125, Naples, Italy
| |
Collapse
|
269
|
Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr. Sci Rep 2016; 6:19768. [PMID: 26813942 PMCID: PMC4728438 DOI: 10.1038/srep19768] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022] Open
Abstract
The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.
Collapse
|
270
|
Arranz E, Corredig M, Guri A. Designing food delivery systems: challenges related to the in vitro methods employed to determine the fate of bioactives in the gut. Food Funct 2016; 7:3319-36. [DOI: 10.1039/c6fo00230g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review discussesin vitroavailable approaches to study delivery and uptake of bioactive compounds and the associated challenges.
Collapse
Affiliation(s)
- Elena Arranz
- Food Science Department
- University of Guelph
- Guelph
- Canada
| | | | - Anilda Guri
- Food Science Department
- University of Guelph
- Guelph
- Canada
| |
Collapse
|
271
|
Nanofertilisers, Nanopesticides and Nanosensors in Agriculture. NANOSCIENCE IN FOOD AND AGRICULTURE 1 2016. [DOI: 10.1007/978-3-319-39303-2_9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
272
|
Álvarez SP, López NEL, Lozano JM, Negrete EAR, Cervantes MES. Plant Fungal Disease Management Using Nanobiotechnology as a Tool. ADVANCES AND APPLICATIONS THROUGH FUNGAL NANOBIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42990-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
273
|
Dibutyrylchitin nanoparticles as novel drug carrier. Int J Biol Macromol 2015; 82:1011-7. [PMID: 26592700 DOI: 10.1016/j.ijbiomac.2015.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Chitin is a ubiquitous renewable biopolymer that is significantly distributed in the natural world. Biopolymeric nanoparticles (Nps) have been developed for various biomedical applications by researchers. Here, chitin derivative, dibutyrylchitin Nps (DBC) was synthesized as a nanocarrier for drug delivery using butyric anhydride and perchloric acid as a catalyst under heterogeneous conditions. The structural characterization was analyzed by FT-IR and FE SEM study showed spherical particles in a size range of 80-90 nm. The physiochemical evaluation involves swelling behavior and in vitro biodegradation studies. The results of in vitro hemolytic assay validate the blood compatibility of the prepared system. Drug release profiles indicate that 5-flourouracil (Fu) loaded dibutyrylchitin Nps (DBC-Fu) gives the enhanced drug release in acidic pH when compared to neutral pH. The encapsulation efficiency of DBC-Fu was found to be 90%. The confocal analysis also confirmed the uptake of both DBC and DBC-Fu Nps by A549 cell lines. Hence, this study shows that the DBC have the potential to be used as a drug carrier and also for other biomedical applications.
Collapse
|
274
|
A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int J Biol Macromol 2015; 80:121-9. [DOI: 10.1016/j.ijbiomac.2015.06.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/18/2015] [Indexed: 01/24/2023]
|