251
|
Cavalcanti-de-Albuquerque JPA, Salvador IC, Martins EL, Jardim-Messeder D, Werneck-de-Castro JPS, Galina A, Carvalho DP. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol (1985) 2014; 116:779-89. [PMID: 24458744 DOI: 10.1152/japplphysiol.00121.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postmenopausal women are prone to develop obesity and insulin resistance, which might be related to skeletal muscle mitochondrial dysfunction. In a rat model of ovariectomy (OVX), skeletal muscle mitochondrial function was examined at short- and long-term periods after castration. Mitochondrial parameters in the soleus and white gastrocnemius muscle fibers were analyzed. Three weeks after surgery, there were no differences in coupled mitochondrial respiration (ATP synthesis) with pyruvate, malate, and succinate; proton leak respiration; or mitochondrial reactive oxygen species production. However, after 3 wk of OVX, the soleus and white gastrocnemius muscles of the OVX animals showed a lower use of palmitoyl-carnitine and glycerol-phosphate substrates, respectively, and decreased peroxisome proliferator-activated receptor-γ coactivator-1α expression. Estrogen replacement reverted all of these phenotypes. Eight weeks after OVX, ATP synthesis was lower in the soleus and white gastrocnemius muscles of the OVX animals than in the sham-operated and estrogen-treated animals; however, when normalized by citrate synthase activity, these differences disappeared, indicating a lower muscle mitochondria content. No differences were observed in the proton leak parameter. Mitochondrial alterations did not impair the treadmill exercise capacity of the OVX animals. However, blood lactate levels in the OVX animals were higher after the physical test, indicating a compensatory extramitochondrial ATP synthesis system, but this phenotype was reverted by estrogen replacement. These results suggest early mitochondrial dysfunction related to lipid substrate use, which could be associated with the development of the overweight phenotype of ovariectomized animals.
Collapse
Affiliation(s)
- J P A Cavalcanti-de-Albuquerque
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
252
|
McGlory C, White A, Treins C, Drust B, Close GL, Maclaren DPM, Campbell IT, Philp A, Schenk S, Morton JP, Hamilton DL. Application of the [γ-32P] ATP kinase assay to study anabolic signaling in human skeletal muscle. J Appl Physiol (1985) 2014; 116:504-13. [PMID: 24436296 DOI: 10.1152/japplphysiol.01072.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AMPK (AMP-dependant protein kinase)-mTORC1 (mechanistic target of rapamycin in complex 1)-p70S6K1 (ribosomal protein S6 kinase 1 of 70 kDa) signaling plays a crucial role in muscle protein synthesis (MPS). Understanding this pathway has been advanced by the application of the Western blot (WB) technique. However, because many components of the mTORC1 pathway undergo numerous, multisite posttranslational modifications, solely studying the phosphorylation changes of mTORC1 and its substrates may not adequately represent the true metabolic signaling processes. The aim of this study was to develop and apply a quantitative in vitro [γ-(32)P] ATP kinase assay (KA) for p70S6K1 to assess kinase activity in human skeletal muscle to resistance exercise (RE) and protein feeding. In an initial series of experiments the assay was validated in tissue culture and in p70S6K1-knockout tissues. Following these experiments, the methodology was applied to assess p70S6K1 signaling responses to a physiologically relevant stimulus. Six men performed unilateral RE followed by the consumption of 20 g of protein. Muscle biopsies were obtained at pre-RE, and 1 and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity as assessed by the KA was significantly increased from pre-RE at 1 and 3 h post-RE. However, phosphorylated p70S6K1(thr389) was not significantly elevated. AMPK activity was suppressed from pre-RE at 3 h post-RE, whereas phosphorylated ACC(ser79) was unchanged. Total protein kinase B activity also was unchanged after RE from pre-RE levels. Of the other markers we assessed by WB, 4EBP1(thr37/46) phosphorylation was the only significant responder, being elevated at 3 h post-RE from pre-RE. These data highlight the utility of the KA to study skeletal muscle plasticity.
Collapse
Affiliation(s)
- Chris McGlory
- Health & Exercise Sciences Research Group University of Stirling, Stirling, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Duckett SK, Volpi-Lagreca G, Alende M, Long NM. Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep. Diabetes Metab Syndr Obes 2014; 7:553-63. [PMID: 25429233 PMCID: PMC4243576 DOI: 10.2147/dmso.s72695] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obese sheep were used to assess the effects of palmitoleic (C16:1 cis-9) acid infusion on lipogenesis and circulating insulin levels. Infusion of 10 mg/kg body weight (BW)/day C16:1 intravenously in obese sheep reduced (P<0.01) weight gain by 77%. Serum palmitoleic levels increased (P<0.05) in a linear manner with increasing levels of C16:1 infusion. Cis-11 vaccenic (C18:1 cis-11) acid, a known elongation product of palmitoleic acid, was also elevated (P<0.05) in serum after 14 days and 21 days of infusion. Plasma insulin levels were lower (P<0.05) (10 mg/kg BW/day C16:1) than controls (0 mg/kg BW/day C16:1) at 14 days and 28 days of infusion. Infusion of C16:1 resulted in linear increases in tissue concentrations of palmitoleic, cis-11 vaccenic, eicosapentaenoic, and docosapentaenoic acids in a dose-dependent manner. Total lipid content of the semitendinosus (ST) muscle and mesenteric adipose tissue was reduced (P<0.01) in both 5 mg/kg and 10 mg/kg BW C16:1 dose levels. Total lipid content and mean adipocyte size in the longissimus muscle was reduced (P<0.05) in the 10 mg/kg BW C16:1 dose level only, whereas total lipid content and adipocyte size of the subcutaneous adipose tissue was not altered. Total lipid content of the liver was also unchanged with C16:1 infusion. Palmitoleic acid infusion upregulated (P<0.05) acetyl-CoA carboxylase (ACC), fatty acid elongase-6 (ELOVL6), and Protein kinase, AMP-activated, alpha 1 catalytic subunit, transcript variant 1 (AMPK) mRNA expressions in liver, subcutaneous adipose, and ST muscle compared to the controls. However, mRNA expression of glucose transporter type 4 (GLUT4) and carnitine palmitoyltransferase 1b (CPT1B) differed between tissues. In the subcutaneous adipose and liver, C16:1 infusion upregulated (P<0.05) GLUT4 and CPT1B, whereas these genes were downregulated (P<0.05) in ST muscle with C16:1 infusion. These results show that C16:1 infusion for 28 days reduced weight gain, intramuscular adipocyte size and total lipid content, and circulating insulin levels. These changes appear to be mediated through alterations in expression of genes regulating glucose uptake and fatty acid oxidation specifically in the muscles.
Collapse
Affiliation(s)
- Susan K Duckett
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, USA
- Correspondence: Susan K Duckett, Animal and Veterinary Sciences Department, Clemson University, 145 Poole Agricultural Center, Clemson, SC 29634, USA, Tel +1 864 656 5151, Email
| | | | - Mariano Alende
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, USA
| | - Nathan M Long
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, USA
| |
Collapse
|
254
|
Corradi F, Paolini L, De Caterina R. Ranolazine in the prevention of anthracycline cardiotoxicity. Pharmacol Res 2014; 79:88-102. [DOI: 10.1016/j.phrs.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
|
255
|
Lu J, Huang G, Hu S, Wang Z, Guan S. 1,3-Dichloro-2-propanol induced hyperlipidemia in C57BL/6J mice via AMPK signaling pathway. Food Chem Toxicol 2013; 64:403-9. [PMID: 24333398 DOI: 10.1016/j.fct.2013.11.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP) is a well-known contaminant that has been detected in a wide range of foods. Dietary intake represents the greatest source of exposure to 1,3-DCP. In the study, we first found 1,3-DCP could induce hyperlipidemia in C57BL/6J mice below 1 mg/kg/day. We investigated serum lipid profile, liver total cholesterol (TC) and triglyceride (TG), histopathology of Liver and adipose tissue. The results showed 1,3-DCP dose dependently increased serum TG, TC and low-density lipoprotein cholesterol (LDL-C), decreased serum high-density lipoprotein cholesterol (HDL-C), increased relative liver weight, liver TG and TC, relative adipose tissue weight and enlarged the size of adipose cells. Because AMPK signal pathway is important in the process of lipid metabolism, we further investigated the effects of 1,3-DCP on AMPK signaling pathway in murine models. The results showed that 1,3-DCP (0.1-1 mg/kg/day) decreased p-AMPK/tAMPK ratio, p-ACC/tACC ratio, PPARα expression, but increased FAT, SREBP1, HMGCR and FAS expression. These observations indicated that 1,3-DCP induced hyperlipidemia in C57BL/6J mice at least partially through regulating AMPK signaling pathway.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, Jilin University, Changchun, People's Republic of China
| | - Guoren Huang
- Department of Food Quality and Safety, Jilin University, Changchun, People's Republic of China
| | - Sizhuo Hu
- Department of Food Quality and Safety, Jilin University, Changchun, People's Republic of China
| | - Zhenning Wang
- Department of Food Quality and Safety, Jilin University, Changchun, People's Republic of China
| | - Shuang Guan
- Department of Food Quality and Safety, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
256
|
Turkseven S, Ertuna E. Prolonged AMP-activated protein kinase induction impairs vascular functions. Can J Physiol Pharmacol 2013; 91:1025-30. [DOI: 10.1139/cjpp-2013-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a regulator of cellular metabolism and is involved in the pathogenesis of several diseases, including type 2 diabetes and cardiovascular diseases. Data showing the effects of AMPK on vasculature are controversial. Therefore, the aim of this study was to determine the impact of prolonged AMPK activation on vascular functions. For this purpose we have examined the role of AMPK in endothelium-dependent and -independent relaxation and vascular contractions. For this, we incubated thoracic aortic rings, from rats, with AMPK activator 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR, 500 μmol/L or 2 mmol/L) in the presence or absence of AMPK inhibitor compound C (10 μmol/L). Next, cumulative dose–response curves to acetylcholine (ACh) (10−9−10−4 mol/L), nitroglycerine (NG) (10−9–3 × 10−5 mol/L), and noradrenaline (NA) (10−9−10−4 mol/L) were obtained. Endothelial nitric oxide synthase (eNOS) protein expression was determined. Our results show that endothelium-dependent relaxation was inhibited after AICAR treatment, and that this effect was reversed by AMPK inhibition. Moreover, AICAR enhanced the contractile response to NA and caused a decrease in eNOS protein expression. In conclusion, prolonged AMPK induction causes endothelial impairment, possibly via increased degradation and (or) reduced expression of eNOS.
Collapse
Affiliation(s)
- Saadet Turkseven
- Ege University, Faculty of Pharmacy, Department of Pharmacology, Bornova-Izmir 35100, Turkey
| | - Elif Ertuna
- Ege University, Faculty of Pharmacy, Department of Pharmacology, Bornova-Izmir 35100, Turkey
| |
Collapse
|
257
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
258
|
Declèves AE, Rychak JJ, Smith DJ, Sharma K. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging. Am J Physiol Renal Physiol 2013; 305:F1343-51. [PMID: 24049144 DOI: 10.1152/ajprenal.00326.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, 405 Stein Clinical Research Bldg., MC 0711, Univ. of California San Diego, La Jolla, CA, 92093.
| | | | | | | |
Collapse
|
259
|
Wright DC. Exercise- and resveratrol-mediated alterations in adipose tissue metabolism. Appl Physiol Nutr Metab 2013; 39:109-16. [PMID: 24476464 DOI: 10.1139/apnm-2013-0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its obligatory role in locomotion and the fact that it accounts for the vast majority of whole-body glucose and lipid oxidation, much work has focused on studying the biochemical adaptations that occur in skeletal muscle in response to exercise. However, over the past several years there has been a growing appreciation that adipose tissue is an important player in regulating systemic carbohydrate and lipid homeostasis. Despite this, the examination of how exercise alters adipose tissue function and metabolism is, when compared with skeletal muscle, in its infancy. The purpose of the current review is to highlight some of the recent findings from our laboratory and others that focus on the emerging area of adipose tissue exercise biochemistry. Specifically, the role of exercise on the induction of mitochondrial and glyceroneogenic enzymes will be examined and will be compared with the well-characterized effects of thiazolidinediones, which are insulin-sensitizing drugs. A particular emphasis will be placed on the role of interleukin-6 in mediating the effects of exercise. Finally, we will discuss recent data from our laboratory demonstrating beneficial effects of resveratrol supplementation on adipose tissue metabolism.
Collapse
Affiliation(s)
- David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON N1G 2W1, Canada
| |
Collapse
|
260
|
Mortensen B, Hingst JR, Frederiksen N, Hansen RWW, Christiansen CS, Iversen N, Friedrichsen M, Birk JB, Pilegaard H, Hellsten Y, Vaag A, Wojtaszewski JFP. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2013; 304:E1379-90. [PMID: 23612997 DOI: 10.1152/ajpendo.00295.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr(172) phosphorylation before training and higher exercise-induced ACC2 Ser(221) phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of Vo2peak), the acute exercise response on AMPK Thr(172), ACC2 Ser(221), AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser(221) phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.
Collapse
|
261
|
Yamashita Y, Wang L, Tinshun Z, Nakamura T, Ashida H. Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11366-11371. [PMID: 23106150 DOI: 10.1021/jf303597c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The antihyperglycemic effects of tea are well documented. However, the effects of fermented tea on the translocation of glucose transporter 4 (GLUT4), the major glucose transporter for glucose uptake in the postprandial period, in skeletal muscle and the underlying molecular mechanisms are not fully understood. This study investigated the translocation of GLUT4 and its related signaling pathways in skeletal muscle of male ICR mice given fermented tea. Intake of oolong, black, or pu-erh tea for 7 days enhanced GLUT4 translocation to the plasma membrane of skeletal muscle. Each type of fermented tea stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K), Akt/protein kinase B, and AMP-activated protein kinase (AMPK). Fermented tea also increased the protein expression of insulin receptor. These results strongly suggest that fermented tea activates both PI3K/Akt- and AMPK-dependent signaling pathways to induce GLUT4 translocation and increases the expression of insulin receptor to improve glucose intolerance.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
262
|
Yang Z, Hulver M, McMillan RP, Cai L, Kershaw EE, Yu L, Xue B, Shi H. Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3). PLoS One 2012; 7:e47493. [PMID: 23115649 PMCID: PMC3480378 DOI: 10.1371/journal.pone.0047493] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/17/2012] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA expression is increased in murine skeletal muscle in the setting of diet-induced and genetic obesity, inflammation, and hyperlipidemia. To further evaluate the contribution of muscle SOCS3 to leptin and insulin resistance in obesity, we generated transgenic mice with muscle-specific overexpression of SOCS3 (MCK/SOCS3 mice). Despite similar body weight, MCK/SOCS3 mice develop impaired systemic and muscle-specific glucose homeostasis and insulin action based on glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, and insulin signaling studies. With regards to leptin action, MCK/SOCS3 mice exhibit suppressed basal and leptin-stimulated activity and phosphorylation of alpha2 AMP-activated protein kinase (α2AMPK) and its downstream target, acetyl-CoA carboxylase (ACC). Muscle SOCS3 overexpression also suppresses leptin-regulated genes involved in fatty acid oxidation and mitochondrial function. These studies demonstrate that SOC3 within skeletal muscle is a critical regulator of leptin and insulin action and that increased SOCS may mediate insulin and leptin resistance in obesity.
Collapse
Affiliation(s)
- Zhenggang Yang
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital of Zhejiang University, Hang Zhou, China
| | - Matthew Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lingzhi Cai
- Division of Endocrinology, Diabetes, and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Erin E. Kershaw
- Division of Endocrinology, Diabetes, and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Bingzhong Xue
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Hang Shi
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|