251
|
Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 2015; 36:1329-32. [PMID: 26386652 DOI: 10.1016/j.placenta.2015.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023]
Abstract
Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications.
Collapse
|
252
|
Berridge MV, Dong L, Neuzil J. Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer. Cancer Res 2015. [PMID: 26224121 DOI: 10.1158/0008-5472.can-15-0859] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial DNA (mtDNA), encoding 13 out of more than 1,000 proteins of the mitochondrial proteome, is of paramount importance for the bioenergetic machinery of oxidative phosphorylation that is required for tumor initiation, propagation, and metastasis. In stark contrast to the widely held view that mitochondria and mtDNA are retained and propagated within somatic cells of higher organisms, recent in vitro and in vivo evidence demonstrates that mitochondria move between mammalian cells. This is particularly evident in cancer where defective mitochondrial respiration can be restored and tumor-forming ability regained by mitochondrial acquisition. This paradigm shift in cancer cell biology and mitochondrial genetics, concerning mitochondrial movement between cells to meet bioenergetic needs, not only adds another layer of plasticity to the armory of cancer cells to correct damaged mitochondria, but also points to potentially new therapeutic approaches.
Collapse
Affiliation(s)
- Michael V Berridge
- Cancer Cell and Molecular Biology Group, Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - Lanfeng Dong
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia. Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
253
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Transl Med 2015; 4:1011-20. [PMID: 26160961 DOI: 10.5966/sctm.2015-0010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. SIGNIFICANCE The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation.
Collapse
Affiliation(s)
- Valentina A Babenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Denis N Silachev
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Ljubava D Zorova
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Irina B Pevzner
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Anastasia A Khutornenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Dmitry B Zorov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| |
Collapse
|
254
|
Markel TA, Crafts TD, Jensen AR, Hunsberger EB, Yoder MC. Human mesenchymal stromal cells decrease mortality after intestinal ischemia and reperfusion injury. J Surg Res 2015. [PMID: 26219205 DOI: 10.1016/j.jss.2015.06.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow-derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. METHODS Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 10(6) hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. RESULTS hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. CONCLUSIONS Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia.
Collapse
Affiliation(s)
- Troy A Markel
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana.
| | - Trevor D Crafts
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda R Jensen
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Erin Bailey Hunsberger
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Section of Neonatology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
255
|
Zhang L, Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 2015; 31:371-8. [PMID: 25913038 DOI: 10.1007/s12264-014-1522-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
The tunneling nanotube (TNT) is a newly discovered, long and thin tubular structure between cells. In this study, we established a co-culture system for rat primary astrocytes and C6 glioma cells and found that TNTs formed between them. Most of the TNTs initiated from astrocytes towards C6 glioma cells. The formation of TNTs depended on p53. In addition, hydrogen peroxide increased the number of TNTs in the co-culture system. Established TNTs reduced the proliferation of C6 glioma cells. Our data suggest that TNTs between astrocytes and glioma cells facilitate substance transfer and therefore alter the properties, including the proliferation potential, of glioma cells.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | | |
Collapse
|
256
|
MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015; 5:9073. [PMID: 25766410 PMCID: PMC4358056 DOI: 10.1038/srep09073] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial activity is central to tissue homeostasis. Mitochondria dysfunction constitutes a hallmark of many genetic diseases and plays a key role in tumor progression. The essential role of mitochondria, added to their recently documented capacity to transfer from cell to cell, obviously contributes to their current interest. However, determining the proper role of mitochondria in defined biological contexts was hampered by the lack of suitable experimental tools. We designed a protocol (MitoCeption) to directly and quantitatively transfer mitochondria, isolated from cell type A, to recipient cell type B. We validated and quantified the effective mitochondria transfer by imaging, fluorescence-activated cell sorting (FACS) and mitochondrial DNA analysis. We show that the transfer of minute amounts of mesenchymal stem/stromal cell (MSC) mitochondria to cancer cells, a process otherwise occurring naturally in coculture, results in cancer cell enhanced oxidative phosphorylation (OXPHOS) activity and favors cancer cell proliferation and invasion. The MitoCeption technique, which can be applied to different cell systems, will therefore be a method of choice to analyze the metabolic modifications induced by exogenous mitochondria in host cells.
Collapse
|
257
|
Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 2015; 22:1181-91. [PMID: 25571977 PMCID: PMC4572865 DOI: 10.1038/cdd.2014.211] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin-based membrane tubes that form between cells in culture and in tissues. They mediate intercellular communication ranging from electrical signalling to the transfer of organelles. Here, we studied the role of TNTs in the interaction between apoptotic and healthy cells. We found that pheochromocytoma (PC) 12 cells treated with ultraviolet light (UV) were rescued when cocultured with untreated PC12 cells. UV-treated cells formed a different type of TNT with untreated PC12 cells, which was characterized by continuous microtubule localized inside these TNTs. The dynamic behaviour of mCherry-tagged end-binding protein 3 and the accumulation of detyrosinated tubulin in these TNTs indicate that they are regulated structures. In addition, these TNTs show different biophysical properties, for example, increased diameter allowing dye entry, prolonged lifetime and decreased membrane fluidity. Further studies demonstrated that microtubule-containing TNTs were formed by stressed cells, which had lost cytochrome c but did not enter into the execution phase of apoptosis characterized by caspase-3 activation. Moreover, mitochondria colocalized with microtubules in TNTs and transited along these structures from healthy to stressed cells. Importantly, impaired formation of TNTs and untreated cells carrying defective mitochondria were unable to rescue UV-treated cells in the coculture. We conclude that TNT-mediated transfer of functional mitochondria reverse stressed cells in the early stages of apoptosis. This provides new insights into the survival mechanisms of damaged cells in a multicellular context.
Collapse
Affiliation(s)
- X Wang
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - H-H Gerdes
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| |
Collapse
|