251
|
Juzumiene D, Shapkina T, Kirillov S, Wollenzien P. Short-range RNA-RNA crosslinking methods to determine rRNA structure and interactions. Methods 2001; 25:333-43. [PMID: 11860287 DOI: 10.1006/meth.2001.1245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe details of procedures to analyze RNA-RNA crosslinks made by far-UV irradiation (< 300 nm) or made by irradiation with near-UV light (320-365 nm) on RNA containing photosensitive nucleotides, in the present case containing 4-thiouridine. Zero-length crosslinks of these types must occur because of the close proximity of the participants through either specific interactions or transient contacts in the folded RNA structure, so they are valuable monitors of the conformation of the RNA. Procedures to produce crosslinks in the 16S ribosomal RNA and between the 16S rRNA and mRNA or tRNA are described. Gel electrophoresis conditions are described that separate the products according to their structure to allow the determination of the number and frequency of the crosslinking products. Gel electrophoresis together with an ultracentrifugation procedure for the efficient recovery of RNA from the polyacrylamide gels allows the purification of molecules containing different crosslinks. These separation techniques allow the analysis of the sites of crosslinking by primer extension and RNA sequencing techniques. The procedures are applicable to other types of RNA molecules with some differences to control levels of crosslinking and separation conditions.
Collapse
Affiliation(s)
- D Juzumiene
- Department of Molecular and Structural Biochemistry, North Carolina State University, 126 Polk Hall, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
252
|
Wilcox SK, Cavey GS, Pearson JD. Single ribosomal protein mutations in antibiotic-resistant bacteria analyzed by mass spectrometry. Antimicrob Agents Chemother 2001; 45:3046-55. [PMID: 11600354 PMCID: PMC90780 DOI: 10.1128/aac.45.11.3046-3055.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in several ribosomal proteins are known to be related to antibiotic resistance. For several strains of Escherichia coli, the mutated protein is known but the amino acid actually altered has not been documented. Characterization of these determinants for antibiotic resistance in proteins will further the understanding of the precise mechanism of the antibiotic action as well as provide markers for resistance. Mass spectrometry can be used as a valuable tool to rapidly locate and characterize mutant proteins by using a small amount of material. We have used electrospray and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry to map out all 56 ribosomal proteins in E. coli based on intact molecular masses. We used this fingerprinting approach to locate variants of ribosomal proteins displaying a change in mass. In particular we have studied proteins responsible for streptomycin, erythromycin, and spectinomycin resistance in three strains of E. coli, and then we characterized each mutation responsible for resistance by analyzing tryptic peptides of these proteins by using MALDI-TOF and nanoelectrospray tandem mass spectrometry. The results provided markers for antibiotic resistance and demonstrated that mass spectrometry can be used to rapidly investigate changes in individual proteins from a complex with picomole amounts of protein.
Collapse
Affiliation(s)
- S K Wilcox
- Department of Protein Science, Pharmacia Corporation, Kalamazoo, Michigan 49007, USA
| | | | | |
Collapse
|
253
|
Sengupta J, Agrawal RK, Frank J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci U S A 2001; 98:11991-6. [PMID: 11593008 PMCID: PMC59823 DOI: 10.1073/pnas.211266898] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Indexed: 11/18/2022] Open
Abstract
S1 is the largest ribosomal protein, present in the small subunit of the bacterial ribosome. It has a pivotal role in stabilizing the mRNA on the ribosome. Thus far, S1 has eluded structural determination. We have identified the S1 protein mass in the cryo-electron microscopic map of the Escherichia coli ribosome by comparing the map with a recent x-ray crystallographic structure of the 30S subunit, which lacks S1. According to our finding, S1 is located at the junction of head, platform, and main body of the 30S subunit, thus explaining all existing biochemical and crosslinking data. Protein S1 as identified in our map has a complex, elongated shape with two holes in its central portion. The N-terminal domain, forming one of the extensions, penetrates into the head of the 30S subunit. Evidence for direct interaction of S1 with 11 nucleotides of the mRNA, immediately upstream of the Shine-Dalgarno sequence, explains the protein's role in the recognition of the 5' region of mRNA.
Collapse
Affiliation(s)
- J Sengupta
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
254
|
Abstract
Two new methods, single-particle cryo-electron microscopy reconstruction and electron tomography, are increasingly used to visualize molecular machines in vitro and in the cellular context, respectively. Current efforts focus on the development of methods capable of visualizing molecular signatures in the cell, and first progress in this direction has now been made.
Collapse
|
255
|
Abstract
Three-dimensional structure determination of macromolecules and macromolecular complexes is an integral part of understanding biological functions. For large protein and macromolecular complexes structure determination is often performed using electron cryomicroscopy where projection images of individual macromolecular complexes are combined to produce a three-dimensional reconstruction. Single particle methods have been devised to perform this structure determination for macromolecular complexes with little or no underlying symmetry. These computational methods generally involve an iterative process of aligning unique views of the macromolecular images followed by determination of the angular components that define those views. In this review, this structure determination process is described with the aim of clarifying a seemingly complex structural method.
Collapse
|
256
|
Agrawal RK, Linde J, Sengupta J, Nierhaus KH, Frank J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 2001; 311:777-87. [PMID: 11518530 DOI: 10.1006/jmbi.2001.4907] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L11 protein is located at the base of the L7/L12 stalk of the 50 S subunit of the Escherichia coli ribosome. Because of the flexible nature of the region, recent X-ray crystallographic studies of the 50 S subunit failed to locate the N-terminal domain of the protein. We have determined the position of the complete L11 protein by comparing a three-dimensional cryo-EM reconstruction of the 70 S ribosome, isolated from a mutant lacking ribosomal protein L11, with the three-dimensional map of the wild-type ribosome. Fitting of the X-ray coordinates of L11-23 S RNA complex and EF-G into the cryo-EM maps combined with molecular modeling, reveals that, following EF-G-dependent GTP hydrolysis, domain V of EF-G intrudes into the cleft between the 23 S ribosomal RNA and the N-terminal domain of L11 (where the antibiotic thiostrepton binds), causing the N-terminal domain to move and thereby inducing the formation of the arc-like connection with the G' domain of EF-G. The results provide a new insight into the mechanism of EF-G-dependent translocation.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
257
|
Abstract
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
258
|
Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 2001; 8:181-8. [PMID: 11511371 DOI: 10.1016/s1097-2765(01)00293-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Variations in the inner ribosomal landscape determining the topology of nascent protein transport have been studied by three-dimensional cryo-electron microscopy of erythromycin-resistant Escherichia coli 70S ribosomes. Significant differences in the mouth of the 50S subunit tunnel system visualized in the present study support a simple steric-hindrance explanation for the action of the drug. Examination of ribosomes in different functional states suggests that opening and closing of the main tunnel are dynamic features of the large subunit, possibly accompanied by changes in the L7/L12 stalk region. The existence and dynamic behavior of side tunnels suggest that ribosomal proteins L4 and L22 might be involved in the regulation of a multiple exit system facilitating cotranslational processing (or folding or directing) of nascent proteins.
Collapse
Affiliation(s)
- I S Gabashvili
- Wadsworth Center, State University of New York at Albany, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Structural analyses of the large and small ribosomal subunits have allowed us to think about how they work in more detail than ever before. The mechanisms that underlie ribosomal synthesis, translocation and catalysis are now being unravelled, with practical implications for the design of antibiotics.
Collapse
Affiliation(s)
- D L Lafontaine
- FNRS, Université Libre de Bruxelles, Département de Biologie Moléculaire, IRMW - Campus CERIA, Avenue Emile Gryson 1, B-1070 Brussels, Belgium.
| | | |
Collapse
|
260
|
Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J Biol Chem 2001; 276:21724-36. [PMID: 11279069 DOI: 10.1074/jbc.m100432200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.
Collapse
Affiliation(s)
- T Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
261
|
McIntosh JR. Electron microscopy of cells: a new beginning for a new century. J Cell Biol 2001; 153:F25-32. [PMID: 11402057 PMCID: PMC2192021 DOI: 10.1083/jcb.153.6.f25] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Accepted: 05/07/2001] [Indexed: 12/31/2022] Open
Affiliation(s)
- J R McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
262
|
Abstract
tmRNA is a small, stable prokaryotic RNA. It rescues ribosomes that have become stalled during the translation of mRNA fragments lacking stop codons, or during periods of tRNA scarcity. It derives its name from the presence of two separate domains, one that functions as a tRNA, and another that serves as an mRNA. We have carried out modeling and transient electric birefringence studies to determine the angle between the acceptor stem and anticodon stem of the tRNA domain of Eschericia coli tmRNA. The results of the modeling studies yielded an interstem angle of 110 degrees, in agreement with the lower end of the range of angles (111 degrees -137 degrees ) determined experimentally for various solution conditions. The range of experimental angles is greater than the angles observed for any of the tRNA crystal structures, in line with the presence of a shortened D stem. The secondary structure of the tRNA domain is conserved for all known tmRNA sequences, so we propose that the angle is also conserved. These results also suggest that the region of tmRNA between P2a and P2b may interact with the decoding site of the ribosome.
Collapse
MESH Headings
- Anticodon/genetics
- Base Pairing
- Base Sequence
- Binding Sites
- Birefringence
- Escherichia coli/genetics
- Magnesium/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- S M Stagg
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
263
|
Miao J, Hodgson KO, Sayre D. An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc Natl Acad Sci U S A 2001; 98:6641-5. [PMID: 11390993 PMCID: PMC34406 DOI: 10.1073/pnas.111083998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-A resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.
Collapse
Affiliation(s)
- J Miao
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309-0210, USA.
| | | | | |
Collapse
|
264
|
Moll I, Huber M, Grill S, Sairafi P, Mueller F, Brimacombe R, Londei P, Bläsi U. Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation. J Bacteriol 2001; 183:3499-505. [PMID: 11344158 PMCID: PMC99648 DOI: 10.1128/jb.183.11.3499-3505.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on the complementarity of the initial coding region (downstream box [db]) of several bacterial and phage mRNAs to bases 1469 to 1483 in helix 44 of 16S rRNA (anti-downstream box [adb]), it has been proposed that db-adb base pairing enhances translation in a way that is similar to that of the Shine-Dalgarno (SD)/anti-Shine-Dalgarno (aSD) interaction. Computer modeling of helix 44 on the 30S subunit shows that the topography of the 30S ribosome does not allow a simultaneous db-adb interaction and placement of the initiation codon in the ribosomal P site. Thus, the db-adb interaction cannot substitute for the SD-aSD interaction in translation initiation. We have always argued that any contribution of the db-adb interaction should be most apparent on mRNAs devoid of an SD sequence. Here, we show that 30S ribosomes do not bind to leaderless mRNA in the absence of initiator tRNA, even when the initial coding region shows a 15-nucleotide complementarity (optimal fit) with the putative adb. In addition, an optimized db did not affect the translational efficiency of a leaderless lambda cI-lacZ reporter construct. Thus, the db-adb interaction can hardly serve as an initial recruitment signal for ribosomes. Moreover, we show that different leaderless mRNAs are translated in heterologous systems although the sequence of the putative adb's within helix 44 of the 30S subunits of the corresponding bacteria differ largely. Taken our data together with those of others (M. O'Connor, T. Asai, C. L. Squires, and A. E. Dahlberg, Proc. Natl. Acad. Sci. USA 96:8973-8978, 1999; A. La Teana, A. Brandi, M. O'Connor, S. Freddi, and C. L. Pon, RNA 6:1393-1402, 2000), we conclude that the db does not base pair with the adb.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Thermus thermophilus/genetics
- Thermus thermophilus/metabolism
Collapse
Affiliation(s)
- I Moll
- Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Jiang W, Baker ML, Ludtke SJ, Chiu W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J Mol Biol 2001; 308:1033-44. [PMID: 11352589 DOI: 10.1006/jmbi.2001.4633] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Due to large sizes and complex nature, few large macromolecular complexes have been solved to atomic resolution. This has lead to an under-representation of these structures, which are composed of novel and/or homologous folds, in the library of known structures and folds. While it is often difficult to achieve a high-resolution model for these structures, X-ray crystallography and electron cryomicroscopy are capable of determining structures of large assemblies at low to intermediate resolutions. To aid in the interpretation and analysis of such structures, we have developed two programs: helixhunter and foldhunter. Helixhunter is capable of reliably identifying helix position, orientation and length using a five-dimensional cross-correlation search of a three-dimensional density map followed by feature extraction. Helixhunter's results can in turn be used to probe a library of secondary structure elements derived from the structures in the Protein Data Bank (PDB). From this analysis, it is then possible to identify potential homologous folds or suggest novel folds based on the arrangement of alpha helix elements, resulting in a structure-based recognition of folds containing alpha helices. Foldhunter uses a six-dimensional cross-correlation search allowing a probe structure to be fitted within a region or component of a target structure. The structural fitting therefore provides a quantitative means to further examine the architecture and organization of large, complex assemblies. These two methods have been successfully tested with simulated structures modeled from the PDB at resolutions between 6 and 12 A. With the integration of helixhunter and foldhunter into sequence and structural informatics techniques, we have the potential to deduce or confirm known or novel folds in domains or components within large complexes.
Collapse
Affiliation(s)
- W Jiang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, TX 77030, USA
| | | | | | | |
Collapse
|
266
|
Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. Crystal structure of the ribosome at 5.5 A resolution. Science 2001; 292:883-96. [PMID: 11283358 DOI: 10.1126/science.1060089] [Citation(s) in RCA: 1448] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.
Collapse
MESH Headings
- Anticodon
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermus thermophilus/chemistry
- Thermus thermophilus/ultrastructure
Collapse
Affiliation(s)
- M M Yusupov
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
267
|
Spahn CM, Blaha G, Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell 2001; 7:1037-45. [PMID: 11389850 DOI: 10.1016/s1097-2765(01)00238-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tet(O) belongs to a class of ribosomal protection proteins that mediate tetracycline resistance. It is a G protein that shows significant sequence similarity to elongation factor EF-G. Here we present a cryo-electron microscopic reconstruction, at 16 A resolution, of its complex with the E. coli 70S ribosome. Tet(O) was bound in the presence of a noncleavable GTP analog to programmed ribosomal complexes carrying fMet-tRNA in the P site. Tet(O) is directly visible as a mass close to the A-site region, similar in shape and binding position to EF-G. However, there are important differences. One of them is the different location of the tip of domain IV, which in the Tet(O) case, does not overlap with the ribosomal A site but is directly adjacent to the primary tetracycline binding site. Our findings give insights into the mechanism of tetracycline resistance.
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc. at the Wadsworth Center, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Montesano-Roditis L, Glitz DG, Traut RR, Stewart PL. Cryo-electron microscopic localization of protein L7/L12 within the Escherichia coli 70 S ribosome by difference mapping and Nanogold labeling. J Biol Chem 2001; 276:14117-23. [PMID: 11278411 DOI: 10.1074/jbc.m008430200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli ribosomal protein L7/L12 is central to the translocation step of translation, and it is known to be flexible under some conditions. The assignment of electron density to L7/L12 was not possible in the recent 2.4 A resolution x-ray crystallographic structure (Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) Science 289, 905-920). We have localized the two dimers of L7/L12 within the structure of the 70 S ribosome using two reconstitution approaches together with cryo-electron microscopy and single particle reconstruction. First, the structures were determined for ribosomal cores from which protein L7/L12 had been removed by treatment with NH(4)Cl and ethanol and for reconstituted ribosomes in which purified L7/L12 had been restored to core particles. Difference mapping revealed that the reconstituted ribosomes had additional density within the L7/L12 shoulder next to protein L11. Second, ribosomes were reconstituted using an L7/L12 variant in which a single cysteine at position 89 in the C-terminal domain was modified with Nanogold (Nanoprobes, Inc.), a 14 A gold derivative. The reconstruction from cryo-electron microscopy images and difference mapping placed the gold at four interfacial positions. The finding of multiple sites for the C-terminal domain of L7/L12 suggests that the conformation of this protein may change during the steps of elongation and translocation.
Collapse
Affiliation(s)
- L Montesano-Roditis
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
269
|
Matadeen R, Sergiev P, Leonov A, Pape T, van der Sluis E, Mueller F, Osswald M, von Knoblauch K, Brimacombe R, Bogdanov A, van Heel M, Dontsova O. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui. J Mol Biol 2001; 307:1341-9. [PMID: 11292346 DOI: 10.1006/jmbi.2001.4547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insertions were introduced by a two-step mutagenesis procedure into each of five double-helical regions of Escherichia coli 23 S rRNA, so as to extend the helix concerned by 17 bp. The helices chosen were at sites within the 23 S molecule (h9, h25, h45, h63 and h98) where significant length variations between different species are known to occur. At each of these positions, with the exception of h45, there are also significant differences between the 23 S rRNAs of E. coli and Haloarcula marismortui. Plasmids carrying the insertions were introduced into an E. coli strain lacking all seven rrn operons. In four of the five cases the cells were viable and 50 S subunits could be isolated; only the insertion in h63 was lethal. The modified subunits were examined by cryo-electron microscopy (cryo-EM), with a view to locating extra electron density corresponding to the insertion elements. The results were compared both with the recently determined atomic structure of H. marismortui 23 S rRNA in the 50 S subunit, and with previous 23 S rRNA modelling studies based on cryo-EM reconstructions of E. coli ribosomes. The insertion element in h45 was located by cryo-EM at a position corresponding precisely to that of the equivalent helix in H. marismortui. The insertion in h98 (which is entirely absent in H. marismortui) was similarly located at a position corresponding precisely to that predicted from the E. coli modelling studies. In the region of h9, the difference between the E. coli and H. marismortui secondary structures is ambiguous, and the extra electron density corresponding to the insertion was seen at a location intermediate between the position of the nearest helix in the atomic structure and that in the modelled structure. In the case of h25 (which is about 50 nucleotides longer in H. marismortui), no clear extra cryo-EM density corresponding to the insertion could be observed.
Collapse
MESH Headings
- Base Sequence
- Cell Division
- Computer Graphics
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Genes, Lethal/genetics
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/genetics
- Haloarcula marismortui/growth & development
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis/genetics
- Nucleic Acid Conformation
- Operon/genetics
- Protein Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- R Matadeen
- Medicine and Technology Department of Biochemistry, Imperial College of Science, London, SW7 2AY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
Last year, atomic structures of the 50S ribosomal subunit from Haloarcula marismortui and of the 30S ribosomal subunit from Thermus thermophilus were published. A year before that, a 7.8 A resolution electron density map of the 70S ribosome from T. thermophilus appeared. This information is revolutionizing our understanding of protein synthesis.
Collapse
Affiliation(s)
- V Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | |
Collapse
|
271
|
Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA, Frank J. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 2001; 291:1959-62. [PMID: 11239155 DOI: 10.1126/science.1058409] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Initiation of protein synthesis in eukaryotes requires recruitment of the 40S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5' end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5' untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40S ribosomal subunit at about 20 A resolution. IRES binding induces a pronounced conformational change in the 40S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc. at the, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
Advances in cryoEM and single-particle reconstruction have led to results at increasingly high resolutions. However, to sustain continuing improvements in resolution it will be necessary to increase the number of particles included in performing the reconstructions. Manual selection of particles, even when assisted by computer preselection, is a bottleneck that will become significant as single-particle reconstructions are scaled up to achieve near-atomic resolutions. This review describes various approaches that have been developed to address the problem of automatic particle selection. The principal conclusions that have been drawn from the results so far are: (1) cross-correlation with a reference image ("matched filtering") is an effective way to identify candidate particles, but it is inherently unable to avoid also selecting false particles; (2) false positives can be eliminated efficiently on the basis of estimates of particle size, density, and texture; (3) successful application of edge detection (or contouring) to particle identification may require improvements over currently available methods; and (4) neural network techniques, while computationally expensive, must also be investigated as a technology for eliminating false particles.
Collapse
Affiliation(s)
- W V Nicholson
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | | |
Collapse
|
273
|
Abstract
To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment.
Collapse
Affiliation(s)
- G J Jensen
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-0001, USA.
| |
Collapse
|
274
|
Rodnina MV, Wintermeyer W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem Sci 2001; 26:124-30. [PMID: 11166571 DOI: 10.1016/s0968-0004(00)01737-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ribosome selects aminoacyl-tRNAs with high fidelity. Kinetic studies reveal that codon-anticodon recognition both stabilizes aminoacyl-tRNA binding on the ribosome and accelerates reactions of the productive pathway, indicating an important contribution of induced fit to substrate selection. Similar mechanisms are used by other template-programmed enzymes, such as DNA and RNA polymerases.
Collapse
Affiliation(s)
- M V Rodnina
- Institutes of Physical Biochemistry and Molecular Biology, University of Witten/Herdecke, 58448, Witten, Germany.
| | | |
Collapse
|
275
|
Rouiller I, Pulokas J, Butel VM, Milligan RA, Wilson-Kubalek EM, Potter CS, Carragher BO. Automated image acquisition for single-particle reconstruction using p97 as the biological sample. J Struct Biol 2001; 133:102-7. [PMID: 11472082 DOI: 10.1006/jsbi.2001.4367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used Leginon, a fully automatic system capable of acquiring cryo-electron micrographs, to collect data of single particles, specifically of the AAA ATPase p97. The images were acquired under low-dose conditions and required no operator intervention other than the initial setup and periodic refilling of the cold-stage dewar. Each image was acquired at two different defocus values. Two-dimensional projection maps of p97 were calculated from these data and compared to results previously obtained using the conventional manual data collection methods to film. The results demonstrate that Leginon performs as well as an experienced microscopist for the acquisition of single-particle data. The general advantages of automation are discussed.
Collapse
Affiliation(s)
- I Rouiller
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
276
|
Mouche F, Boisset N, Penczek PA. Lumbricus terrestris hemoglobin--the architecture of linker chains and structural variation of the central toroid. J Struct Biol 2001; 133:176-92. [PMID: 11472089 DOI: 10.1006/jsbi.2001.4362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular giant hemoglobin from the earthworm Lumbricus terrestris was reconstructed at 14.9-A resolution from cryo-electron microscope images, using a new procedure for estimating parameters of the contrast transfer (CTF) function. In this approach, two important CTF parameters, defocus and amplitude contrast ratio, can be refined iteratively within the framework of 3D projection alignment procedure, using minimization of sign disagreement between theoretical CTF and cross-resolution curves. The 3D cryo-EM map is in overall good agreement with the recent X-ray crystallography map of Royer et al. (2000, Proc. Natl. Acad. Sci. USA 97, 7107-7111), and it reveals the local threefold arrangement of the three linker chains present within each 1/12 of the complex. The 144 globin chains and 36 linker chains within the complex are clearly visible, and the interdigitation of the 12 coiled-coil helical spokes forming the central toroidal piece is confirmed. Based on these findings, two mechanisms of the dodecameric unit assembly are proposed and termed "zigzag" and "pairwise" polymerizations. However, the detection by cryo-EM of 12 additional rod-like bodies within the toroid raises the possibility that the architecture of the toroid is more complex than previously thought or that yet unknown ligands or allosteric effectors for this oxygen carrier are present.
Collapse
Affiliation(s)
- F Mouche
- Laboratoire de Minéralogie Cristallographie Paris, CNRS UMR 7590, Case courrier 115, Tour 16, 2ème Etage, 4 Place Jussieu, Paris Cedex 05, France
| | | | | |
Collapse
|
277
|
Verschoor A, Tivol WF, Mannella CA. Single-particle approaches in the analysis of small 2D crystals of the mitochondrial channel VDAC. J Struct Biol 2001; 133:254-65. [PMID: 11472096 DOI: 10.1006/jsbi.2001.4355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been difficult to obtain better than moderate resolution in analysis of electron microscopic images of small, 2D crystals with variable lattice parameters, e.g., crystals of the channel VDAC generated by phospholipase treatment of outer mitochondrial membranes. We demonstrate that applying single-particle analysis methods to correlation-averaged images can lead to significant improvements in the attainable resolution. Application of a soft-edged fitted mask passing only the central unit cell, and excluding the positionally variable adjacent unit cells, allows improved alignment and more sensitive multivariate statistical analysis, needed to guide intelligent merging of data from different crystals.
Collapse
Affiliation(s)
- A Verschoor
- Division of Molecular Medicine, New York State Department of Health, Albany, New York 12201-0509, USA.
| | | | | |
Collapse
|
278
|
Jiang QX, Chester DW, Sigworth FJ. Spherical reconstruction: a method for structure determination of membrane proteins from cryo-EM images. J Struct Biol 2001; 133:119-31. [PMID: 11472084 DOI: 10.1006/jsbi.2001.4376] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We propose a new method for single-particle reconstruction, which should be generally applicable to structure determination for membrane proteins. After reconstitution into a small spherical vesicle, a membrane protein takes a particular orientation relative to the membrane normal, and its position in the projected image of the vesicle directly defines two of its three Euler angles of orientation. The spherical constraint imposed by the vesicle effectively reduces the dimensionality of the alignment search from 5 to 3 and simplifies the detection of the particle. Projection images of particles in vesicles collectively take all possible orientations and therefore cover the whole Fourier space. Analysis of images of vesicles in ice showed that the vesicle density is well described by a simple model for membrane electron scattering density. In fitting this model we found that osmotically swollen vesicles remain nearly spherical through the freezing process. These results satisfy the basic experimental requirements for spherical reconstruction. A computer simulation of particles in vesicles showed that this method provides good estimates of the two Euler angles and thus may improve single-particle reconstruction and extend it to smaller membrane proteins.
Collapse
Affiliation(s)
- Q X Jiang
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
279
|
Kozielski F, Svergun D, Zaccai G, Wade RH, Koch MH. The overall conformation of conventional kinesins studied by small angle X-ray and neutron scattering. J Biol Chem 2001; 276:1267-75. [PMID: 11020387 DOI: 10.1074/jbc.m007169200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of several monomeric and dimeric kinesin constructs from Homo sapiens and Drosophila melanogaster were analyzed using small angle x-ray and neutron scattering. The experimental scattering curves of these proteins were compared with simulated scattering curves calculated from available crystallographic coordinates. These comparisons indicate that the overall conformations of the solution structures of D. melanogaster and H. sapiens kinesin heavy chain dimers are compatible with the crystal structure of dimeric kinesin from Rattus norvegicus. This suggests that the unusual asymmetric conformation of dimeric kinesin in the microtubule-independent ADP state is likely to be a general feature of the kinesin heavy chain subfamily. An intermediate length Drosophila construct (365 residues) is mostly monomeric at low protein concentration whereas at higher concentrations it is dimeric with a tendency to form higher oligomers.
Collapse
Affiliation(s)
- F Kozielski
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale (CEA 47 CNRS), 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France.
| | | | | | | | | |
Collapse
|
280
|
Affiliation(s)
- E Nogales
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California Berkeley, 94720-3200, USA.
| | | |
Collapse
|
281
|
Willumeit R, Forthmann S, Beckmann J, Diedrich G, Ratering R, Stuhrmann HB, Nierhaus KH. Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. J Mol Biol 2001; 305:167-77. [PMID: 11114255 DOI: 10.1006/jmbi.2000.4289] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein L2 is found in all ribosomes and is one of the best conserved proteins of this mega-dalton complex. The protein was localized within both the isolated 50 S subunit and the 70 S ribosome of the Escherichia coli bacteria with the neutron-scattering technique of spin-contrast variation. L2 is elongated, exposing one end of the protein to the surface of the intersubunit interface of the 50 S subunit. The protein changes its conformation slightly when the 50 S subunit reassociates with the 30 S subunit to form a 70 S ribosome, becoming more elongated and moving approximately 30 A into the 50 S matrix. The results support a recent observation that L2 is essential for the association of the ribosomal subunits and might participate in the binding and translocation of the tRNAs.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstofforschung WFS, Max-Planck-Strasse, Geesthacht, D-21502, Germany.
| | | | | | | | | | | | | |
Collapse
|
282
|
Ruprecht J, Nield J. Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:121-64. [PMID: 11376797 DOI: 10.1016/s0079-6107(01)00004-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single particle analysis and 3D reconstruction of molecules imaged by transmission electron microscopy have provided a wealth of medium to low resolution structures of biological molecules and macromolecular complexes, such as the ribosome, viruses, molecular chaperones and photosystem II. In this review, the principles of these techniques are introduced in a non-mathematical way, and single particle analysis is compared to other methods used for structural studies. In particular, the recent X-ray structures of the ribosome and of ribosomal subunits allow a critical comparison of single particle analysis and X-ray crystallography. This has emphasised the rapidity with which single particle analysis can produce medium resolution structures of complexes that are difficult to crystallise. Once crystals are available, X-ray crystallography can produce structures at a much higher resolution. The great similarities now seen between the structures obtained by the two techniques reinforce confidence in the use of single particle analysis and 3D reconstruction, and show that for electron cryo-microscopy structure distortion during sample preparation and imaging has not been a significant problem. The ability to analyse conformational flexibility and the ease with which time-resolved studies can be performed are significant advantages for single particle analysis. Future improvements in single particle analysis and electron microscopy should increase the attainable resolution. Combining single particle analysis of macromolecular complexes and electron tomography of subcellular structures with high-resolution X-ray structures may enable us to realise the ultimate dream of structural biology-a complete description of the macromolecular complexes of the cell in their different functional states.
Collapse
Affiliation(s)
- J Ruprecht
- University of Cambridge, Department of Biochemistry, Hopkins Building, CB2 1QW, Cambridge, UK.
| | | |
Collapse
|
283
|
VanLoock MS, Agrawal RK, Gabashvili IS, Qi L, Frank J, Harvey SC. Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocation. J Mol Biol 2000; 304:507-15. [PMID: 11099376 DOI: 10.1006/jmbi.2000.4213] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome undergoes pronounced periodic conformational changes during protein synthesis. Of particular importance are those occurring around the decoding site, the region of the 16 S rRNA interacting with the mRNA-(tRNA)(2) complex. We have incorporated structural information from X-ray crystallography and nuclear magnetic resonance into cryo-electron microscopic maps of ribosomal complexes designed to capture structural changes at the translocation step of the polypeptide elongation cycle. The A-site region of the decoding site actively participates in the translocation of the tRNA from the A to the P-site upon GTP hydrolysis by elongation factor G, shifting approximately 8 A toward the P-site. This implies that elongation factor G actively pushes both the decoding site and the mRNA/tRNA complex during translocation.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/analogs & derivatives
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/metabolism
- Protein Conformation
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- M S VanLoock
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
284
|
Affiliation(s)
- M W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
285
|
Abstract
X-ray crystallographic structures have just been published for the 30S ribosomal subunit of Thermus thermophilus at 3.4 A resolution and for the 50S subunit of Haloarcula marismortui at 2.4 A. These eagerly awaited structures will provide an enormous boost to research into the mechanisms involved in protein biosynthesis.
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik Ihnestrasse 73 14195, Berlin, Germany.
| |
Collapse
|
286
|
Tao Y, Zhang W. Recent developments in cryo-electron microscopy reconstruction of single particles. Curr Opin Struct Biol 2000; 10:616-22. [PMID: 11042462 DOI: 10.1016/s0959-440x(00)00139-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cryo-electron microscopy and single-particle 3D image reconstruction techniques have been used to examine a broad spectrum of samples ranging from 500 kDa protein complexes to large subcellular organelles. The attainable resolution has improved rapidly over the past few years. Structures of both symmetric and asymmetric assemblies at approximately 7.5 A have been reported. Together with X-ray crystallography, three-dimensional cryo-electron microscopy reconstruction has provided important insights into the function of many biological systems in their native biochemical contexts.
Collapse
Affiliation(s)
- Y Tao
- Department of Molecular and Cellular Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
287
|
Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature 2000; 407:327-39. [PMID: 11014182 DOI: 10.1038/35030006] [Citation(s) in RCA: 1451] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 A resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein-RNA interactions and ribosome assembly. It is also a structural basis for analysis of the functions of the 30S subunit, such as decoding, and for understanding the action of antibiotics. The structure will facilitate the interpretation in molecular terms of lower resolution structural data on several functional states of the ribosome from electron microscopy and crystallography.
Collapse
Affiliation(s)
- B T Wimberly
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Spahn CM, Penczek PA, Leith A, Frank J. A method for differentiating proteins from nucleic acids in intermediate-resolution density maps: cryo-electron microscopy defines the quaternary structure of the Escherichia coli 70S ribosome. Structure 2000; 8:937-48. [PMID: 10986461 DOI: 10.1016/s0969-2126(00)00185-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study addresses the general problem of dividing a density map of a nucleic-acid-protein complex obtained by cryo-electron microscopy (cryo-EM) or X-ray crystallography into its two components. When the resolution of the density map approaches approximately 3 A it is generally possible to interpret its shape (i. e., the envelope obtained for a standard choice of threshold) in terms of molecular structure, and assign protein and nucleic acid elements on the basis of their known sequences. The interpretation of low-resolution maps in terms of proteins and nucleic acid elements of known structure is of increasing importance in the study of large macromolecular complexes, but such analyses are difficult. RESULTS Here we show that it is possible to separate proteins from nucleic acids in a cryo-EM density map, even at 11.5 A resolution. This is achieved by analysing the (continuous-valued) densities using the difference in scattering density between protein and nucleic acids, the contiguity constraints that the image of any nucleic acid molecule must obey, and the knowledge of the molecular volumes of all proteins. CONCLUSIONS The new method, when applied to an 11.5 A cryo-EM map of the Escherichia coli 70S ribosome, reproduces boundary assignments between rRNA and proteins made from higher-resolution X-ray maps of the ribosomal subunits with a high degree of accuracy. Plausible predictions for the positions of as yet unassigned proteins and RNA components are also possible. One of the conclusions derived from this separation is that 23S rRNA is solely responsible for the catalysis of peptide bond formation. Application of the separation method to any nucleoprotein complex appears feasible.
Collapse
MESH Headings
- Bacterial Proteins/ultrastructure
- Binding Sites
- Cryoelectron Microscopy/methods
- Escherichia coli/ultrastructure
- Models, Molecular
- Protein Conformation
- Protein Structure, Quaternary
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
289
|
Poole E, Tate W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:1-11. [PMID: 10978500 DOI: 10.1016/s0167-4781(00)00162-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The decoding of stop signals in mRNA requires protein release factors. Two classes of factor are found in both prokaryotes and eukaryotes, a decoding factor and a stimulatory recycling factor. These factors form complexes at the active centre of the ribosome and mimic in overall shape the complexes found at other stages of protein synthesis. The decoding release factor is shaped like a tRNA and has a domain for codon recognition at the decoding site of the ribosome, and a domain for peptidyl-tRNA hydrolysis that is inferred to be near the peptidyltransferase centre. Initial interaction of the decoding factor with the ribosome is a low fidelity event involving multiple contacts with the ribosomal components. A subsequent discrimination step, at present poorly defined, ensures high fidelity of codon recognition.
Collapse
Affiliation(s)
- E Poole
- Department of Biochemistry and the Centre for Gene Research, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
290
|
Wriggers W, Agrawal RK, Drew DL, McCammon A, Frank J. Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. Biophys J 2000; 79:1670-8. [PMID: 10969026 PMCID: PMC1301058 DOI: 10.1016/s0006-3495(00)76416-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular modeling and information processing techniques were combined to refine the structure of translocase (EF-G) in the ribosome-bound form against data from cryoelectron microscopy (cryo-EM). We devised a novel multi-scale refinement method based on vector quantization and force-field methods that gives excellent agreement between the flexibly docked structure of GDP. EF-G and the cryo-EM density map at 17 A resolution. The refinement reveals a dramatic "induced fit" conformational change on the 70S ribosome, mainly involving EF-G's domains III, IV, and V. The rearrangement of EF-G's structurally preserved regions, mediated and guided by flexible linkers, defines the site of interaction with the GTPase-associated center of the ribosome.
Collapse
Affiliation(s)
- W Wriggers
- Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0365, USA.
| | | | | | | | | |
Collapse
|
291
|
Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 2000; 102:615-23. [PMID: 11007480 DOI: 10.1016/s0092-8674(00)00084-2] [Citation(s) in RCA: 686] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The small ribosomal subunit performs the decoding of genetic information during translation. The structure of that from Thermus thermophilus shows that the decoding center, which positions mRNA and three tRNAs, is constructed entirely of RNA. The entrance to the mRNA channel will encircle the message when a latch-like contact closes and contributes to processivity and fidelity. Extended RNA helical elements that run longitudinally through the body transmit structural changes, correlating events at the particle's far end with the cycle of mRNA translocation at the decoding region. 96% of the nucleotides were traced and the main fold of all proteins was determined. The latter are either peripheral or appear to serve as linkers. Some may assist the directionality of translocation.
Collapse
MESH Headings
- Base Pairing
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
- Thermus thermophilus/chemistry
- Thermus thermophilus/cytology
- Thermus thermophilus/genetics
Collapse
Affiliation(s)
- F Schluenzen
- Max-Planck-Research Unit for Ribosomal Structure, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Morgan DG, Ménétret JF, Radermacher M, Neuhof A, Akey IV, Rapoport TA, Akey CW. A comparison of the yeast and rabbit 80 S ribosome reveals the topology of the nascent chain exit tunnel, inter-subunit bridges and mammalian rRNA expansion segments. J Mol Biol 2000; 301:301-21. [PMID: 10926511 DOI: 10.1006/jmbi.2000.3947] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data. Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.
Collapse
Affiliation(s)
- D G Morgan
- Department of Physiology and Structural Biology, Boston University School of Medicine, 700 Albany St., Boston, MA 02218-2526, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 2000; 150:447-60. [PMID: 10931859 PMCID: PMC2175196 DOI: 10.1083/jcb.150.3.447] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 06/16/2000] [Indexed: 11/22/2022] Open
Abstract
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.
Collapse
Affiliation(s)
- Rajendra K. Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Christian M.T. Spahn
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Pawel Penczek
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Robert A. Grassucci
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Joachim Frank
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| |
Collapse
|
294
|
Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 2000; 406:318-22. [PMID: 10917535 DOI: 10.1038/35018597] [Citation(s) in RCA: 621] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research Incorporated at the Wadsworth Center, and Department of Biomedical Sciences, State University of New York at Albany, 12201-0509, USA
| | | |
Collapse
|
295
|
Abstract
The ribosome is the site in the cell where proteins are synthesized. Cryo-electron microscopy and X-ray crystallography have revealed the ribosome as a particle made of two subunits, each formed as an intricate mesh of RNAs and many proteins. Ligand-binding experiments followed by cryo-electron microscopy have helped to determine some of the key stages of interaction between the ribosome and the main ligand molecules.
Collapse
Affiliation(s)
- J Frank
- Department of Biomedical Science, Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, State University of New York at Albany, Albany, 12201-0509 ,USA.
| |
Collapse
|
296
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Abstract
In all cells, protein synthesis is coordinated by the ribosome, and a number of pivotal structural studies on this complex have been completed during 1999. The combined results of the X-ray crystallography and electron microscopy studies have shed new light on the mechanism of this molecular machine.
Collapse
Affiliation(s)
- C Davies
- School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, United Kingdom
| | | |
Collapse
|