251
|
Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C, Chiocchetti A, Schupp I, Wellenreuther R, Schmötzer G, Poustka F, Breitenbach-Koller L, Poustka A. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 2006; 11:1073-84. [PMID: 16940977 DOI: 10.1038/sj.mp.4001883] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism has a strong genetic background with a higher frequency of affected males suggesting involvement of X-linked genes and possibly also other factors causing the unbalanced sex ratio in the etiology of the disorder. We have identified two missense mutations in the ribosomal protein gene RPL10 located in Xq28 in two independent families with autism. We have obtained evidence that the amino-acid substitutions L206M and H213Q at the C-terminal end of RPL10 confer hypomorphism with respect to the regulation of the translation process while keeping the basic translation functions intact. This suggests the contribution of a novel, possibly modulating aberrant cellular function operative in autism. Previously, we detected high expression of RPL10 by RNA in situ hybridization in mouse hippocampus, a constituent of the brain limbic system known to be afflicted in autism. Based on these findings, we present a model for autistic disorder where a change in translational function is suggested to impact on those cognitive functions that are mediated through the limbic system.
Collapse
Affiliation(s)
- S M Klauck
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 2006; 5:29-38. [PMID: 17128284 DOI: 10.1038/nrmicro1558] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
253
|
Schüler M, Connell SR, Lescoute A, Giesebrecht J, Dabrowski M, Schroeer B, Mielke T, Penczek PA, Westhof E, Spahn CMT. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 2006; 13:1092-6. [PMID: 17115051 DOI: 10.1038/nsmb1177] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/31/2006] [Indexed: 02/05/2023]
Abstract
Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation.
Collapse
Affiliation(s)
- Martin Schüler
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
255
|
Kiparisov SV, Sergiev PV, Bogdanov AA, Dontsova OA. Structural changes in the ribosome during the elongation cycle. Mol Biol 2006. [DOI: 10.1134/s0026893306050013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
256
|
Seiser RM, Sundberg AE, Wollam BJ, Zobel-Thropp P, Baldwin K, Spector MD, Lycan DE. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 2006; 174:679-91. [PMID: 16888326 PMCID: PMC1602086 DOI: 10.1534/genetics.106.062117] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/31/2006] [Indexed: 01/28/2023] Open
Abstract
In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.
Collapse
Affiliation(s)
- Robert M Seiser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
McCrate NE, Varner ME, Kim KI, Nagan MC. Molecular dynamics simulations of human tRNA Lys,3 UUU: the role of modified bases in mRNA recognition. Nucleic Acids Res 2006; 34:5361-8. [PMID: 17012271 PMCID: PMC1636460 DOI: 10.1093/nar/gkl580] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accuracy in translation of the genetic code into proteins depends upon correct tRNA–mRNA recognition in the context of the ribosome. In human tRNAUUULys,3 three modified bases are present in the anticodon stem–loop—2-methylthio-N6-threonylcarbamoyladenosine at position 37 (ms2t6A37), 5-methoxycarbonylmethyl-2-thiouridine at position 34 (mcm5s2U34) and pseudouridine (ψ) at position 39—two of which, ms2t6A37 and mcm5s2U34, are required to achieve wild-type binding activity of wild-type human tRNAUUULys,3 [C. Yarian, M. Marszalek, E. Sochacka, A. Malkiewicz, R. Guenther, A. Miskiewicz and P. F. Agris (2000) Biochemistry, 39, 13390–13395]. Molecular dynamics simulations of nine tRNA anticodon stem–loops with different combinations of nonstandard bases were performed. The wild-type simulation exhibited a canonical anticodon stair-stepped conformation. The ms2t6 modification at position 37 is required for maintenance of this structure and reduces solvent accessibility of U36. Ms2t6A37 generally hydrogen bonds across the loop and may prevent U36 from rotating into solution. A water molecule does coordinate to ψ39 most of the simulation time but weakly, as most of the residence lifetimes are <40 ps.
Collapse
Affiliation(s)
| | | | | | - Maria C. Nagan
- To whom correspondence should be addressed. Tel: +1 660 785 4084; Fax: +1 660 785 4045;
| |
Collapse
|
258
|
Komoda T, Sato NS, Phelps SS, Namba N, Joseph S, Suzuki T. The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J Biol Chem 2006; 281:32303-9. [PMID: 16950778 DOI: 10.1074/jbc.m607058200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 38 (H38) in 23 S rRNA, which is known as the "A-site finger (ASF)," is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.
Collapse
MESH Headings
- Base Sequence
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Frameshifting, Ribosomal/genetics
- GTP Phosphohydrolases/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Elongation Factor G/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Translocation, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Taeko Komoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
259
|
Hofmann KP, Spahn CMT, Heinrich R, Heinemann U. Building functional modules from molecular interactions. Trends Biochem Sci 2006; 31:497-508. [PMID: 16890441 DOI: 10.1016/j.tibs.2006.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/01/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The main reaction pathways in the living cell are carried out by functional modules--namely, macromolecular machines with compact structure or ensembles that change their composition and/or organization during function. Modules define themselves by spatial sequestration, chemical specificity and a characteristic time domain within which their function proceeds. On receiving a specific input, modules go through functional cycles, with phases of increasing and decreasing complexity of molecular interactions. Here, we discuss how such modules are formed and the experimental and theoretical approaches that can be used to investigate them, using examples from polynucleotide-protein interactions, vesicle transport and signal transduction to illustrate the underlying principles. Further progress in this field, where systems biology and biochemistry meet, will depend on iterative validation of the experimental and theoretical approaches.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
260
|
Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CMT, Kinzy TG, Andersen GR, Beckmann R. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 2006; 443:663-8. [PMID: 16929303 DOI: 10.1038/nature05126] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 08/03/2006] [Indexed: 11/08/2022]
Abstract
Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.
Collapse
Affiliation(s)
- Christian B F Andersen
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 2006; 31:553-62. [PMID: 16920360 DOI: 10.1016/j.tibs.2006.08.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/17/2006] [Accepted: 08/03/2006] [Indexed: 12/26/2022]
Abstract
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
262
|
Laletina ES, Graĭfer DM, Malygin AA, Shatskiĭ IN, Karpova GG. [Molecular environment of the subdomain IIIe loop of the RNA IRES element of hepatitis C virus on the human 40S ribosomal subunit]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 32:311-9. [PMID: 16808174 DOI: 10.1134/s1068162006030101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular environment of the internal ribosome entry site (IRES) element of hepatitis C viral (HCV) RNA in the binary complex with the human 40S ribosomal subunit was studied. To this end, RNA derivatives bearing mild UV-reactive perfluorophenylazide groups at nucleotide G87 in IRES domain II and at nucleotide A296 in the subdomain IIIe loop were used, which were prepared by the RNA complementarily-addressed modification with alkylating oligonucleotide derivatives. None of the RNA derivatives were shown to be crosslinked to the 18S rRNA of the 40S subunit. It was found that the photoreactive group of IRES nucleotide A296 was crosslinked to the 40S subunit S2/S3a, S5, and p40 (SOA) proteins. No protein crosslinking was observed for the RNA derivative containing the same photoreactive group in nucleotide G87. It was concluded that the subdomain IIIe loop of the HCV RNA IRES element in the complex with the 40S subunit is located on the outer subunit surface between the head and the body next to the "beak" near the entrance into the mRNA-binding channel. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2006, vol. 32, no. 3; see also http://www.maik.ru.
Collapse
|
263
|
Abstract
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Tartu University, Tartu 51010, Estonia
| | | |
Collapse
|
264
|
Rai BK, Fiser A. Multiple mapping method: a novel approach to the sequence-to-structure alignment problem in comparative protein structure modeling. Proteins 2006; 63:644-61. [PMID: 16437570 DOI: 10.1002/prot.20835] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.
Collapse
Affiliation(s)
- Brajesh K Rai
- Department of Biochemistry and Seaver Center for Bioinformatics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
265
|
Schäfer T, Maco B, Petfalski E, Tollervey D, Böttcher B, Aebi U, Hurt E. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 2006; 441:651-5. [PMID: 16738661 DOI: 10.1038/nature04840] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/25/2006] [Indexed: 11/09/2022]
Abstract
The formation of eukaryotic ribosomes is a multistep process that takes place successively in the nucleolar, nucleoplasmic and cytoplasmic compartments. Along this pathway, multiple pre-ribosomal particles are generated, which transiently associate with numerous non-ribosomal factors before mature 60S and 40S subunits are formed. However, most mechanistic details of ribosome biogenesis are still unknown. Here we identify a maturation step of the yeast pre-40S subunit that is regulated by the protein kinase Hrr25 and involves ribosomal protein Rps3. A high salt concentration releases Rps3 from isolated pre-40S particles but not from mature 40S subunits. Electron microscopy indicates that pre-40S particles lack a structural landmark present in mature 40S subunits, the 'beak'. The beak is formed by the protrusion of 18S ribosomal RNA helix 33, which is in close vicinity to Rps3. Two protein kinases Hrr25 and Rio2 are associated with pre-40S particles. Hrr25 phosphorylates Rps3 and the 40S synthesis factor Enp1. Phosphorylated Rsp3 and Enp1 readily dissociate from the pre-ribosome, whereas subsequent dephosphorylation induces formation of the beak structure and salt-resistant integration of Rps3 into the 40S subunit. In vivo depletion of Hrr25 inhibits growth and leads to the accumulation of immature 40S subunits that contain unstably bound Rps3. We conclude that the kinase activity of Hrr25 regulates the maturation of 40S ribosomal subunits.
Collapse
Affiliation(s)
- Thorsten Schäfer
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
266
|
Bravo J, Aloy P. Target selection for complex structural genomics. Curr Opin Struct Biol 2006; 16:385-92. [PMID: 16713251 DOI: 10.1016/j.sbi.2006.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/25/2006] [Accepted: 05/04/2006] [Indexed: 01/05/2023]
Abstract
Most cellular processes are carried out by macromolecular assemblies and regulated through a complex network of transient protein-protein interactions. Genome-wide interaction discovery experiments are already delivering the first drafts of whole organism interactomes and, thus, depicting the limits of the interaction space. However, a complete understanding of molecular interactions can only come from high-resolution three-dimensional structures, as they provide key atomic details about the binding interfaces. The launch of structural genomics initiatives focused on protein interactions and complexes could quickly fill up the interaction space with structural details, offering a new perspective on how cell networks operate at atomic level. Clear target selection strategies that rationally identify the key interactions and complexes that should be first tackled are fundamental to maximize the return, minimize the costs and prevent experimental difficulties.
Collapse
Affiliation(s)
- Jerónimo Bravo
- Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | |
Collapse
|
267
|
Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, Beckmann R. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol 2006; 12:1015-6. [PMID: 16244660 DOI: 10.1038/nsmb998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/08/2005] [Indexed: 11/08/2022]
Abstract
Ribosomes translating secretory and membrane proteins are targeted to the endoplasmic reticulum membrane and attach to the protein-conducting channel and ribosome-associated membrane proteins (RAMPs). Recently, a new RAMP, ERj1p, has been identified that recruits BiP to ribosomes and regulates translational activity. Here we present the cryo-EM structure of a ribosome-ERj1p complex, revealing how ERj1p coordinates the ribosome at the membrane and how allosteric effects may mediate ERj1p's regulatory activity.
Collapse
Affiliation(s)
- Michael Blau
- Institut für Biochemie der Charité, University Medical School Berlin, Monbijoustr. 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
268
|
Dudek J, Greiner M, Müller A, Hendershot LM, Kopsch K, Nastainczyk W, Zimmermann R. ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 2006; 12:1008-14. [PMID: 16244664 DOI: 10.1038/nsmb1007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/22/2005] [Indexed: 11/08/2022]
Abstract
ERj1p is a membrane protein of the endoplasmic reticulum (ER) that can recruit the ER lumenal chaperone BiP to translating ribosomes. ERj1p can also modulate protein synthesis at initiation and is predicted to be a membrane-tethered transcription factor. Here we attribute the various functions of ERj1p to distinct regions within its cytosolic domain. A highly positively charged nonapeptide within this domain is necessary and sufficient for binding to ribosomes. Binding of ERj1p to ribosomes involves the 28S ribosomal RNA and occurs at the tunnel exit. Additionally, ERj1p has a dual regulatory role in gene expression: ERj1p inhibits translation in the absence of BiP, and another charged oligopeptide within the cytosolic domain of ERj1p mediates binding of the nuclear import factor importin beta and import into the nucleus, thereby paving the way for subsequent action on genomic DNA.
Collapse
Affiliation(s)
- Johanna Dudek
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
269
|
Buchhaupt M, Meyer B, Kötter P, Entian KD. Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 2006; 276:273-84. [PMID: 16721597 DOI: 10.1007/s00438-006-0132-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Deltasnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Deltanep1 growth defect. SnR57 mediates 2'-O-ribose-methylation of G(1570) in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553-1577 of the 18S rRNA, which includes G(1570), the site of snR57-dependent 18S rRNA methylation. From protein-protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell Nucleolus/metabolism
- DNA Methylation
- DNA Transposable Elements/genetics
- Genome, Fungal/genetics
- Mutagenesis, Insertional
- Mutation/genetics
- Nucleic Acid Conformation
- Protein Binding
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- Ribosomal Proteins/metabolism
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Suppression, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Markus Buchhaupt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University, Marie-Curie-Str. 9, 60439 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
270
|
Strittmatter AW, Fischer C, Kleinschmidt M, Braus GH. FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Mol Genet Genomics 2006; 276:113-25. [PMID: 16721598 DOI: 10.1007/s00438-006-0127-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
The RPS26A and RPS26B isogenes of Saccharomyces cerevisiae encode two almost identical proteins of the small 40S ribosomal subunit, which differ by only two amino acid residues. Growth of an rps26BDelta mutant strain is normal, whereas an rps26ADelta strain displays a reduced growth rate and increased sensitivity towards the specific translational inhibitor paromomycin. An rps26ADelta rps26BDelta double mutant strain is inviable. RPS26A but not RPS26B is required for haploid adhesive and diploid pseudohyphal growth mediated by FLO11, which encodes an adhesion. The RPS26A and RPS26B transcripts make up about 70 and 30% of the cellular RPS26 mRNA, respectively. Overexpression of RPS26B, as well as an RPS26B open reading frame driven by the RPS26A promoter, complements the rps26ADelta deletion and restores haploid invasive growth as well as diploid pseudohyphal growth. These results suggest that the two proteins are functionally interchangeable. FLO11-lacZ activity is not present in haploid rps26ADelta yeast mutant strains, even though FLO11 mRNA levels are not reduced. This suggests that the amount of Rps26p is critical for accurate translation of the FLO11 mRNA, and therefore for the dimorphic switch of the bakera9s yeast from a single cell yeast to an adhesive filamentous growth form.
Collapse
Affiliation(s)
- Axel W Strittmatter
- Institute of Microbiology and Genetics, Georg-August-Universität, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
271
|
|
272
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
273
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
274
|
Namy O, Moran SJ, Stuart DI, Gilbert RJC, Brierley I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 2006; 441:244-7. [PMID: 16688178 PMCID: PMC7094908 DOI: 10.1038/nature04735] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/20/2006] [Indexed: 11/09/2022]
Abstract
The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis. However, in programmed -1 ribosomal frameshifting, a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome, and is also exploited in the expression of several cellular genes. Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide 'slippery' sequence and an adjacent mRNA secondary structure, most often an mRNA pseudoknot. How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome-mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
Collapse
Affiliation(s)
- Olivier Namy
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
- Present Address: Institut de Génétique et Microbiologie, UMR8621, Université Paris-Sud, 91405 Orsay, France
| | - Stephen J. Moran
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
| | - David I. Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QH Oxford, UK
| | - Robert J. C. Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QH Oxford, UK
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| |
Collapse
|
275
|
Andreev DE, Terenin IM, Dunaevsky YE, Dmitriev SE, Shatsky IN. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. Mol Cell Biol 2006; 26:3164-9. [PMID: 16581790 PMCID: PMC1446950 DOI: 10.1128/mcb.26.8.3164-3169.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation in eukaryotic cells is known to be a complex multistep process which involves numerous protein factors. Here we demonstrate that leaderless mRNAs with initiator Met-tRNA can bind directly to 80S mammalian ribosomes in the absence of initiation factors and that the complexes thus formed are fully competent for the subsequent steps of polypeptide synthesis. We show that the canonical 48S pathway of eukaryotic translation initiation has no obvious advantage over the 80S pathway of translation initiation on leaderless mRNAs and suggest that, in the presence of competing mRNAs containing a leader, the latter mechanism will be preferred. The direct binding of the leaderless mRNA to the 80S ribosome was precluded when such an mRNA was supplied with a 5' leader, irrespective of whether it was in a totally single-stranded conformation or was prone to base pairing. The striking similarity between the mechanisms of binding of leaderless mRNAs with mammalian 80S or bacterial 70S ribosomes gives support to the idea that the alternative mode of translation initiation used by leaderless mRNAs represents a relic from early steps in the evolution of the translation apparatus.
Collapse
Affiliation(s)
- Dmitri E Andreev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Bldg. "A," Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
276
|
Yanshina DD, Malygin AA, Karpova GG. Binding of human ribosomal protein S5 with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2006. [DOI: 10.1134/s0026893306030071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
277
|
Pulk A, Maiväli U, Remme J. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association. RNA (NEW YORK, N.Y.) 2006; 12:790-6. [PMID: 16556933 PMCID: PMC1440916 DOI: 10.1261/rna.2275906] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.
Collapse
MESH Headings
- Centrifugation, Density Gradient
- Dimethyl Sulfoxide/pharmacology
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Nucleotides/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Solvents/pharmacology
Collapse
Affiliation(s)
- Arto Pulk
- Institute of Molecular and Cell Biology, Tartu University, Riia, Estonia
| | | | | |
Collapse
|
278
|
Kapp LD, Kolitz SE, Lorsch JR. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA (NEW YORK, N.Y.) 2006; 12:751-64. [PMID: 16565414 PMCID: PMC1440903 DOI: 10.1261/rna.2263906] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Eukaryotic Initiation Factor-1/isolation & purification
- Eukaryotic Initiation Factor-1/metabolism
- Eukaryotic Initiation Factor-2/isolation & purification
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-5/isolation & purification
- Eukaryotic Initiation Factor-5/metabolism
- Eukaryotic Initiation Factors/isolation & purification
- Eukaryotic Initiation Factors/metabolism
- Guanosine Triphosphate/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Protein Biosynthesis
- Protein Structure, Tertiary
- Puromycin/analogs & derivatives
- Puromycin/analysis
- Puromycin/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
279
|
Penczek PA, Yang C, Frank J, Spahn CMT. Estimation of variance in single-particle reconstruction using the bootstrap technique. J Struct Biol 2006; 154:168-83. [PMID: 16510296 DOI: 10.1016/j.jsb.2006.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
280
|
Hung NJ, Johnson AW. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3718-27. [PMID: 16648468 PMCID: PMC1489010 DOI: 10.1128/mcb.26.10.3718-3727.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 02/23/2006] [Indexed: 11/20/2022] Open
Abstract
Arx1 and Rei1 are found on late pre-60S ribosomal particles containing the export adaptor Nmd3. Arx1 is related to methionine aminopeptidases (MetAPs), and Rei1 is a C2H2 zinc finger protein whose function in ribosome biogenesis has not been previously characterized. Arx1 and Rei1 localized predominately to the nucleus and cytoplasm, respectively, but could be coimmunoprecipitated, suggesting that they are transiently in the same 60S complex. arx1delta mutants showed a modest accumulation of 60S subunits in the nucleus, suggesting that Arx1 enhances 60S export. Deletion of REI1 led to cold sensitivity and redistribution of Arx1 to the cytoplasm, where it remained bound to free 60S subunits. However, deletion of ARX1 or the fusion of enhanced GFP (eGFP) to Rpl25 suppressed the cold sensitivity of an rei1delta mutant. The presence of eGFP on Rpl25 or its neighboring protein Rpl35 reduced the binding of Arx1 to 60S subunits, suggesting that Arx1 binds to 60S subunits in the vicinity of the exit tunnel. Mutations in Arx1 that disrupted its binding to 60S also suppressed an rei1delta mutant and restored the normal nuclear localization of Arx1. These results indicate that the cold sensitivity of rei1delta cells is due to the persistence of Arx1 on 60S subunits in the cytoplasm. Furthermore, these results suggest that Rei1 is needed for release of Arx1 from nascent 60S subunits after export to the cytoplasm but not for the subsequent nuclear import of Arx1.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, 1 University Station, A5000, The University of Texas at Austin, Austin, Texas 78712-0162, USA
| | | |
Collapse
|
281
|
Laletina E, Graifer D, Malygin A, Ivanov A, Shatsky I, Karpova G. Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit. Nucleic Acids Res 2006; 34:2027-36. [PMID: 16614452 PMCID: PMC1435985 DOI: 10.1093/nar/gkl155] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 02/14/2006] [Accepted: 03/20/2006] [Indexed: 02/05/2023] Open
Abstract
Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253-302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with the human 40S ribosomal subunit. For this purpose, two RNA derivatives were used that bore a photoactivatable perfluorophenyl azide cross-linker. In one derivative the cross-linker was at the nucleotide A296 in hairpin IIIe, and in the other at G87 in domain II. Site-specific introduction of the cross-linker was performed using alkylating derivatives of oligodeoxyribonucleotides complementary to the target RNA sequences. No cross-links with the rRNA were detected with either RNA derivative. The RNA with the photoactivatable group at A296 cross-linked to proteins identified as S5 and S16 (major) and p40 and S3a (minor), while no cross-links with proteins were detected with RNA modified at G87. The results obtained indicate that hairpin IIIe is located on the solvent side of the 40S subunit head on a site opposite the beak.
Collapse
Affiliation(s)
- Elena Laletina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk, 630090, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, 119899, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk, 630090, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, 119899, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk, 630090, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, 119899, Russia
| | - Anton Ivanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk, 630090, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, 119899, Russia
| | - Ivan Shatsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, 119899, Russia
| | - Galina Karpova
- To whom correspondence should be addressed at Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentieva, 8, Novosibirsk, 630090, Russia. Tel: +7 383 335 62 29; Fax: +7 383 333 36 77;
| |
Collapse
|
282
|
McIntosh KB, Bonham-Smith PC. Ribosomal protein gene regulation: what about plants? ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome is an intricate ribonucleoprotein complex with a multitude of protein constituents present in equimolar amounts. Coordination of the synthesis of these ribosomal proteins (r-proteins) presents a major challenge to the cell. Although most r-proteins are highly conserved, the mechanisms by which r-protein gene expression is regulated often differ widely among species. While the primary regulatory mechanisms coordinating r-protein synthesis in bacteria, yeast, and animals have been identified, the mechanisms governing the coordination of plant r-protein expression remain largely unexplored. In addition, plants are unique among eukaryotes in carrying multiple (often more than two) functional genes encoding each r-protein, which substantially complicates coordinate expression. A survey of the current knowledge regarding coordinated systems of r-protein gene expression in different model organisms suggests that vertebrate r-protein gene regulation provides a valuable comparison for plants.
Collapse
Affiliation(s)
- Kerri B. McIntosh
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Peta C. Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
283
|
Nygård O, Alkemar G, Larsson SL. Analysis of the secondary structure of expansion segment 39 in ribosomes from fungi, plants and mammals. J Mol Biol 2006; 357:904-16. [PMID: 16473366 DOI: 10.1016/j.jmb.2006.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/02/2006] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
The structure of expansion segment 39, ES39, in eukaryotic 23 S-like ribosomal RNA was analysed using a combination of chemical and enzymic reagents. Ribosomes were isolated from yeast, wheat, mouse, rat and rabbit, five organisms representing three different eukaryotic kingdoms. The isolated ribosomes were treated with structure-sensitive chemical and enzymic reagents and the modification patterns analysed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The expansion segment was relatively accessible to modification by both enzymic and chemical probes, suggesting that ES39 was exposed on the surface of the ribosomes. The collected modification data were used in secondary structure modelling of the expansion segment. Despite considerable variation in both sequence and length between organisms from different kingdoms, the structure analysis of the expansion segment gave rise to structural fingerprints that allowed identification of homologous structures in ES39 from fungi, plants and mammals. The homologous structures formed an initial helix and an invariant hairpin connected to the initial helix via a long single-stranded loop. The remaining part of the ES39 sequences accounted for most of the length variation seen between the analysed species. This part could form additional, albeit less similar, hairpins. A comparison of ES39 sequences from other fungi, plants and mammals showed that identical structures could be formed in these organisms.
Collapse
Affiliation(s)
- Odd Nygård
- School of Life Sciences, Södertörns högskola, Box 4101, S-141 04 Huddinge, Sweden.
| | | | | |
Collapse
|
284
|
Meskauskas A, Petrov AN, Dinman JD. Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 2006; 25:10863-74. [PMID: 16314511 PMCID: PMC1316954 DOI: 10.1128/mcb.25.24.10863-10874.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is accumulating evidence that many ribosomal proteins are involved in shaping rRNA into their functionally correct conformations through RNA-protein interactions. Moreover, although rRNA seems to play the central role in all aspects of ribosome function, ribosomal proteins may be involved in facilitating communication between different functional regions in ribosome, as well as between the ribosome and cellular factors. In an effort to more fully understand how ribosomal proteins may influence ribosome function, we undertook large-scale mutational analysis of ribosomal protein L3, a core protein of the large subunit that has been implicated in numerous ribosome-associated functions in the past. A total of 98 different rpl3 alleles were genetically characterized with regard to their effects on killer virus maintenance, programmed -1 ribosomal frameshifting, resistance/hypersensitivity to the translational inhibitor anisomycin and, in specific cases, the ability to enhance translation of a reporter mRNA lacking the 5' (7)mGppp cap structure and 3' poly(A) tail. Biochemical studies reveal a correlation between an increased affinity for aminoacyl-tRNA and the extent of anisomycin resistance and a decreased peptidyltransferase activity and increased frameshifting efficiency. Immunoblot analyses reveal that the superkiller phenotype is not due to a defect in the ability of ribosomes to recruit the Ski-complex, suggesting that the defect lies in a reduced ability of mutant ribosomes to distinguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs. The results of these analyses are discussed with regard to how protein-rRNA interactions may affect ribosome function.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, 20742, USA
| | | | | |
Collapse
|
285
|
Granneman S, Nandineni MR, Baserga SJ. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol 2005; 25:10352-64. [PMID: 16287850 PMCID: PMC1291222 DOI: 10.1128/mcb.25.23.10352-10364.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the proteins identified as being involved in ribosome biogenesis by high-throughput studies, a putative P-loop-type kinase termed Fap7 (YDL166c), was shown to be required for the conversion of 20S pre-rRNA to 18S rRNA. However, the mechanism underlying this function has remained unclear. Here we demonstrate that Fap7 is strictly required for cleavage of the 20S pre-rRNA at site D in the cytoplasm. Genetic depletion of Fap7 causes accumulation of only the 20S pre-rRNA, which could be detected not only in 43S preribosomes but also in 80S-sized complexes. Fap7 is not a structural component of 43S preribosomes but likely transiently interacts with them by directly binding to Rps14, a ribosomal protein that is found near the 3' end of the 18S rRNA. Consistent with an NTPase activity, conserved residues predicted to be required for nucleoside triphosphate (NTP) hydrolysis are essential for Fap7 function in vivo. We propose that Fap7 mediates cleavage of the 20S pre-rRNA at site D by directly interacting with Rps14 and speculate that it is an enzyme that functions as an NTP-dependent molecular switch in 18S rRNA maturation.
Collapse
Affiliation(s)
- Sander Granneman
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, 333 Cedar Street, SHM C-114, New Haven, CT 06520-8024, USA
| | | | | |
Collapse
|
286
|
Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 2005; 310:1513-5. [PMID: 16322461 DOI: 10.1126/science.1118977] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein synthesis in mammalian cells requires initiation factor eIF3, a approximately 750-kilodalton complex that controls assembly of 40S ribosomal subunits on messenger RNAs (mRNAs) bearing either a 5'-cap or an internal ribosome entry site (IRES). Cryo-electron microscopy reconstructions show that eIF3, a five-lobed particle, interacts with the hepatitis C virus (HCV) IRES RNA and the 5'-cap binding complex eIF4F via the same domain. Detailed modeling of eIF3 and eIF4F onto the 40S ribosomal subunit reveals that eIF3 uses eIF4F or the HCV IRES in structurally similar ways to position the mRNA strand near the exit site of 40S, promoting initiation complex assembly.
Collapse
Affiliation(s)
- Bunpote Siridechadilok
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
287
|
Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CUT, Pestova TV. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 2005; 25:196-210. [PMID: 16362046 PMCID: PMC1356347 DOI: 10.1038/sj.emboj.7600904] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 11/15/2005] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic initiation factor eIF1 and the functional C-terminal domain of prokaryotic initiation factor IF3 maintain the fidelity of initiation codon selection in eukaryotes and prokaryotes, respectively, and bind to the same regions of small ribosomal subunits, between the platform and initiator tRNA. Here we report that these nonhomologous factors can bind to the same regions of heterologous subunits and perform their functions in heterologous systems in a reciprocal manner, discriminating against the formation of initiation complexes containing codon-anticodon mismatches. We also show that like IF3, eIF1 can influence initiator tRNA selection, which occurs at the stage of ribosomal subunit joining after eIF5-induced hydrolysis of eIF2-bound GTP. The mechanisms of initiation codon and initiator tRNA selection in prokaryotes and eukaryotes are therefore unexpectedly conserved and likely involve related conformational changes induced in the small ribosomal subunit by factor binding. YciH, a prokaryotic eIF1 homologue, could perform some of IF3's functions, which justifies the possibility that YciH and eIF1 might have a common evolutionary origin as initiation factors, and that IF3 functionally replaced YciH in prokaryotes.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, NY, USA
| | - Nikolay E Shirokikh
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, NY, USA
| | - Marat M Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Tatyana V Pestova
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, NY, USA
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 44, Brooklyn, NY 11203, USA. Tel.: 1+ 718 221 6121; Fax: +1 718 270 2656; E-mail:
| |
Collapse
|
288
|
Dresios J, Chappell SA, Zhou W, Mauro VP. An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat Struct Mol Biol 2005; 13:30-4. [PMID: 16341227 DOI: 10.1038/nsmb1031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/01/2005] [Indexed: 11/08/2022]
Abstract
Base-pairing of messenger RNA to ribosomal RNA is a mechanism of translation initiation in prokaryotes. Although analogous base-pairing has been suggested to affect the translation of various eukaryotic mRNAs, direct evidence has been lacking. To test such base-pairing, we developed a yeast system that uses ribosomes containing a mouse-yeast hybrid 18S rRNA. Using this system, we demonstrate that a 9-nucleotide element found in the mouse Gtx homeodomain mRNA facilitates translation initiation by base-pairing to 18S rRNA. Various point mutations in the Gtx element and in either the hybrid or wild-type yeast 18S rRNAs confirmed the requirement for an intact complementary match. The presence of the Gtx element in various mRNAs suggests that this element affects the translation of groups of mRNAs. We discuss the possibility that other mRNA elements affect translation by base-pairing to different sites in the 18S rRNA.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
289
|
Gillespie JJ, McKenna CH, Yoder MJ, Gutell RR, Johnston JS, Kathirithamby J, Cognato AI. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera). INSECT MOLECULAR BIOLOGY 2005; 14:625-43. [PMID: 16313563 DOI: 10.1111/j.1365-2583.2005.00591.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and function and the impact large insertions pose on genome size. We also provide a novel alignment template that will improve the phylogenetic placement of the Strepsiptera among other insect taxa.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
290
|
Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JHD. Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics. RNA (NEW YORK, N.Y.) 2005; 11:1898-908. [PMID: 16314459 PMCID: PMC1370877 DOI: 10.1261/rna.2192805] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
Protein biosynthesis requires numerous conformational rearrangements within the ribosome. The structural core of the ribosome is composed of RNA and is therefore dependent on counterions such as magnesium ions for function. Many steps of translation can be compromised or inhibited if the concentration of Mg(2+) is too low or too high. Conditions previously used to probe the conformation of the mammalian ribosome in vitro used high Mg(2+) concentrations that we find completely inhibit translation in vitro. We have therefore probed the conformation of the small ribosomal subunit in low concentrations of Mg(2+) that support translation in vitro and compared it with the conformation of the 40S subunit at high Mg(2+) concentrations. In low Mg(2+) concentrations, we find significantly more changes in chemical probe accessibility in the 40S subunit due to subunit association or binding of the hepatitis C internal ribosomal entry site (HCV IRES) than had been observed before. These results suggest that the ribosome is more dynamic in its functional state than previously appreciated.
Collapse
Affiliation(s)
- Christina L Shenvi
- Department of Chemistry, University of California, 202 Melvin Calvin Lab, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
291
|
Jan E. Divergent IRES elements in invertebrates. Virus Res 2005; 119:16-28. [PMID: 16307820 DOI: 10.1016/j.virusres.2005.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 09/05/2005] [Accepted: 10/20/2005] [Indexed: 02/05/2023]
Abstract
Viruses have evolved unique strategies and mechanisms to recruit ribosomes to ensure continued translation of their viral RNA during infection. The Dicistroviridae family of invertebrate viruses contains an unusual internal ribosome entry site (IRES), which can directly recruit ribosomes in the absence of initiation factors. Moreover, this IRES initiates translation at a non-AUG codon independent of an initiator Met-tRNA. Recent studies have shown that the IRES mimicks a tRNA to interact with and manipulate the ribosome. The presence of this divergent IRES likely allows translation of the dicistroviral RNA during infection when host translation is compromised. This review will explore the unique properties of this unprecedented mechanism of gene expression. Specific topics will examine structural components of the IRES, the mechanism of initiating translation at non-AUG codons and the regulation of this IRES in vivo. The existence of this mechanism suggests that the repertoire of open reading frames in our genome may be greater than anticipated.
Collapse
Affiliation(s)
- Eric Jan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
292
|
Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci U S A 2005; 102:16164-9. [PMID: 16254050 PMCID: PMC1283452 DOI: 10.1073/pnas.0507960102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic translation initiation factor (eIF) 5 is crucial for the assembly of the eukaryotic preinitiation complex. This activity is mediated by the ability of its C-terminal HEAT domain to interact with eIF1, eIF2, and eIF3 in the multifactor complex and with eIF4G in the 48S complex. However, the binding sites for these factors on eIF5-C-terminal domain (CTD) have not been known. Here we present a homology model for eIF5-CTD based on the HEAT domain of eIF2Bepsilon. We show that the binding site for eIF2beta is located in a surface area containing aromatic and acidic residues (aromatic/acidic boxes), that the binding sites for eIF1 and eIF3c are located in a conserved surface region of basic residues, and that eIF4G binds eIF5-CTD at an interface overlapping with the acidic area. Mutations in these distinct eIF5 surface areas impair GCN4 translational control by disrupting preinitiation complex interactions. These results indicate that the eIF5 HEAT domain is a critical nucleation core for preinitiation complex assembly and function.
Collapse
Affiliation(s)
- Yasufumi Yamamoto
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Cate JHD. The ins and outs of protein synthesis. Structure 2005; 13:1584-5. [PMID: 16271881 DOI: 10.1016/j.str.2005.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
294
|
Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H. Structure of the Hepatitis C Virus IRES Bound to the Human 80S Ribosome: Remodeling of the HCV IRES. Structure 2005; 13:1695-706. [PMID: 16271893 DOI: 10.1016/j.str.2005.08.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/29/2005] [Accepted: 08/09/2005] [Indexed: 02/05/2023]
Abstract
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.
Collapse
Affiliation(s)
- Daniel Boehringer
- Max Planck Institute for Biophysical Chemistry, 3D Electron Cryomicroscopy, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
295
|
|
296
|
Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:235-47. [PMID: 16047201 PMCID: PMC1276653 DOI: 10.1007/s00438-005-0020-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semi-dominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression.
Collapse
|
297
|
Perina D, Cetkovic H, Harcet M, Premzl M, Lukic-Bilela L, Müller WEG, Gamulin V. The complete set of ribosomal proteins from the marine sponge Suberites domuncula. Gene 2005; 366:275-84. [PMID: 16229974 DOI: 10.1016/j.gene.2005.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
The siliceous marine sponge Suberites domuncula is a member of the most ancient and simplest extant phylum of multicellular animals-Porifera, which have branched off first from the common ancestor of all Metazoa. We have determined primary structures of 79 ribosomal proteins (r-proteins) from S. domuncula: 32 proteins from the small ribosomal subunit and 47 proteins from the large ribosomal subunit. Only L39 and L41 polypeptides (51 and 25 residues long in rat, respectively) are missing. The sponge S. domuncula is, after nematode Caenorhabditis elegans and insect Drosophila melanogaster the third representative of invertebrates with known amino acid sequences of all r-proteins. The comparison of S. domuncula r-proteins with r-proteins from D. melanogaster, C. elegans, rat, Arabidopsis thaliana and Saccharomyces cerevisiae revealed very interesting findings. The majority of the sponge r-proteins are more similar to their homologues from rat, than to those either from invertebrates C. elegans and D. melanogaster, or yeast and plant. With few exceptions, the overall sequence conservation between sponge and rat r-proteins is 80% or higher. The phylogenetic tree of concatenated r-proteins from 6 eukaryotic species (rooted with archaeal r-proteins) has the shortest branches connecting sponge and rat. Both model invertebrate organisms experienced recently accelerated evolution and therefore sponge r-proteins very probably better reflect structures of proteins in the ancestral metazoan ribosome, which changed only little during metazoan evolution. Furthermore, r-proteins from the plant A. thaliana are significantly closer to metazoan r-proteins than are those from the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Drago Perina
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka cesta 54, Box 170, 10002 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
298
|
Mikamo E, Tanaka C, Kanno T, Akiyama H, Jung G, Tanaka H, Kawai T. Native polysomes of Saccharomyces cerevisiae in liquid solution observed by atomic force microscopy. J Struct Biol 2005; 151:106-10. [PMID: 15964206 DOI: 10.1016/j.jsb.2005.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/29/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
The native polysomes of Saccharomyces cerevisiae were visualized in liquid solution by atomic force microscopy without external contrasting, such as shadowing and negative staining. This study showed native polysomes as lined particle with a height of ca. 27 nm, which is agreement with the height of 80S ribosomes in previous study. We found a small subparticle, located in a ring-shape or at the end of a linear structure, and visualized mRNA chains between adjacent ribosomes. Although the structures of polysomes have been studied for decades, it has remained difficult to visualize the native three-dimensional form. By the observation in liquid solution, we temporarily stopped the translation using an antibiotic to presenting the native three-dimensional structure and function of the polysomes. Our results provide not only new findings on native eukaryotic polysomes, but also great potential to visualize the influence of various environmental conditions on polysomes.
Collapse
Affiliation(s)
- Eriko Mikamo
- Toray Industries, Inc., New Frontiers Research Laboratories, 1111 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
299
|
Sergiev PV, Kiparisov SV, Burakovsky DE, Lesnyak DV, Leonov AA, Bogdanov AA, Dontsova OA. The Conserved A-site Finger of the 23S rRNA: Just One of the Intersubunit Bridges or a Part of the Allosteric Communication Pathway? J Mol Biol 2005; 353:116-23. [PMID: 16165153 DOI: 10.1016/j.jmb.2005.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/12/2005] [Accepted: 08/01/2005] [Indexed: 11/17/2022]
Abstract
During the translocation of tRNAs and mRNA relative to the ribosome, the B1a, B1b and B1c bridges undergo the most extensive conformational changes among the bridges between the large and the small ribosomal subunits. The B1a bridge, also called the "A-site finger" (ASF), is formed by the 23S rRNA helix 38, which is located right above the ribosomal A-site. Here, we deleted part of the ASF so that the B1a intersubunit bridge could not be formed (DeltaB1a). The mutation led to a less efficient subunit association. A number of functional activities of the DeltaB1a ribosomes, such as tRNA binding to the P and A-sites, translocation and EF-G-related GTPase reaction were preserved. A moderate decrease in EF-G-related GTPase stimulation by the P-site occupation by deacylated tRNA was observed. This suggests that the B1a bridge is not involved in the most basic steps of the elongation cycle, but rather in the fine-tuning of the ribosomal activity. Chemical probing of ribosomes carrying the ASF truncation revealed structural differences in the 5S rRNA and in the 23S rRNA helices located between the peptidyltransferase center and the binding site of the elongation factors. Interestingly, reactivity changes were found in the P-loop, an important functional region of the 23S rRNA. It is likely that the A-site finger, in addition to its role in subunit association, forms part of the system of allosteric signal exchanges between the small subunit decoding center and the functional centers on the large subunit.
Collapse
Affiliation(s)
- Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
300
|
Takahashi Y, Hirayama S, Odani S. Ribosomal proteins cross-linked to the initiator AUG codon of a mRNA in the translation initiation complex by UV-irradiation. J Biochem 2005; 138:41-6. [PMID: 16046447 DOI: 10.1093/jb/mvi096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic ribosomal proteins constituting the binding site for the initiator codon AUG on the ribosome at the translation initiation step were investigated by UV-induced cross-linking between protein and mRNA. The 80S-initiation complex was formed in a rabbit reticulocyte cell-free system in the presence of sparsomycin with radiolabeled Omega-fragment as a template, which was a 73-base 5'-leader sequence of tobacco mosaic virus RNA having AUG at the extreme 3'-terminal end and extended with 32pCp. Two radioactive peaks were sedimented by sucrose gradient centrifugation, one being the 80S initiation complex formed at the 3'-terminal AUG codon, and the other presumably a "disome" with an additional 80S ribosome bound at an upstream AUU codon, formed when Omega-fragment was incubated with sparsomycin [Filipowicz and Henni (1979) Proc. Natl. Acad. Sci. USA 76, 3111-3115]. Cross-links between ribosomal proteins and the radiolabeled Omega-fragment were induced in situ by UV-irradiation at 254 nm. After extensive nuclease digestion of the complexes, ribosomal proteins were separated by two-dimensional gel electrophoresis. Autoradiography identified the proteins S7, S10, S25, S29, and L5 of the 80S initiation complex and S7, S25, S29 and L5 of that in the disome as 32P-labeled proteins. Together with the results of cross-linking experiments of other investigators and recently solved crystal structures of prokaryotic ribosomes, the spatial arrangement of eukaryotic ribosomal proteins at the AUG-binding domain is discussed.
Collapse
Affiliation(s)
- Yoshiaki Takahashi
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Asahimachi-Dori 2-746, Niigata 951-8518.
| | | | | |
Collapse
|