251
|
Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 2010; 17:555-60. [PMID: 20400952 DOI: 10.1038/nsmb.1790] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/22/2010] [Indexed: 11/09/2022]
Abstract
One key question in protein biosynthesis is how the ribosome couples mRNA and tRNA movements to prevent disruption of weak codon-anticodon interactions and loss of the translational reading frame during translocation. Here we report the complete path of mRNA on the 70S ribosome at the atomic level (3.1-A resolution), and we show that one of the conformational rearrangements that occurs upon transition from initiation to elongation is a narrowing of the downstream mRNA tunnel. This rearrangement triggers formation of a network of interactions between the mRNA downstream of the A-site codon and the elongating ribosome. Our data elucidate the mechanism by which hypermodified nucleoside 2-methylthio-N6 isopentenyl adenosine at position 37 (ms(2)i(6)A37) in tRNA(Phe)(GAA) stabilizes mRNA-tRNA interactions in all three tRNA binding sites. Another network of contacts is formed between this tRNA modification and ribosomal elements surrounding the mRNA E/P kink, resulting in the anchoring of P-site tRNA. These data allow rationalization of how modification deficiencies of ms(2)i(6)A37 in tRNAs may lead to shifts of the translational reading frame.
Collapse
|
252
|
Demeshkina N, Jenner L, Yusupova G, Yusupov M. Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol 2010; 20:325-32. [PMID: 20392630 DOI: 10.1016/j.sbi.2010.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/15/2010] [Indexed: 11/16/2022]
Abstract
Recent collection of high-resolution crystal structures of the 70S ribosome with mRNA and tRNA substrates enhances our knowledge of protein synthesis principles. A novel network of interactions between the ribosome in the elongation state and mRNA downstream from the A codon suggests that mRNA is stabilized and aligned at the entrance to the decoding center. The X-ray studies clarify how natural modifications of tRNA are involved in the stabilization of the codon-anticodon interactions, prevention of frame-shifting and also expansion of the decoding capacity of tRNAs. In addition, the crystal structures provide the view that tRNA in the A and P sites communicate through a protein rich environment and suggest how these tRNAs are controlled through the intersubunit bridge formed by protein L31.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
| | | | | | | |
Collapse
|
253
|
Agirrezabala X, Frank J. From DNA to proteins via the ribosome: structural insights into the workings of the translation machinery. Hum Genomics 2010; 4:226-37. [PMID: 20511136 PMCID: PMC2976604 DOI: 10.1186/1479-7364-4-4-226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 01/16/2023] Open
Abstract
Understanding protein synthesis in bacteria and humans is important for understanding the origin of many human diseases and devising treatments for them. Over the past decade, the field of structural biology has made significant advances in the visualisation of the molecular machinery involved in protein synthesis. It is now possible to discern, at least in outline, the way that interlocking ribosomal components and factors adapt their conformations throughout this process. The determination of structures in various functional contexts, along with the application of kinetic and fluorescent resonance energy transfer approaches to the problem, has given researchers the frame of reference for what remains as the greatest challenge: the complete dynamic portrait of protein synthesis in the cell.
Collapse
|
254
|
Matsumoto A, Ishida H. Global conformational changes of ribosome observed by normal mode fitting for 3D Cryo-EM structures. Structure 2010; 17:1605-1613. [PMID: 20004164 DOI: 10.1016/j.str.2009.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/25/2009] [Accepted: 09/27/2009] [Indexed: 11/30/2022]
Abstract
Many three-dimensional density maps of 70S ribosome at various functional states are available now in the Electron Microscopy DataBank at EBI. We used our new flexible-fitting approach to systematically analyze these maps to reveal the global conformational differences between the EM structures. Large-scale ratchet-like deformations were observed in an EM structure of the initiation complex and in some EM structures bound with EFG, RF3, and RRF. In most of them, the L1 stalk, which interacts with the tRNA molecule at the E site of ribosome and is considered to be involved in the release of the tRNA, was in "the blocking state" for the E-tRNA. Furthermore, we found that the EM structures bound with EFG or RRF were aligned in the conformational space, suggesting that the large-scale conformational changes of the 70S ribosome bound with these factors occur along a specific pathway in a concerted manner.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Center for Computational Science and Engineering, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan; Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | - Hisashi Ishida
- Center for Computational Science and Engineering, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan; Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
255
|
García-Ortega L, Alvarez-García E, Gavilanes JG, Martínez-del-Pozo A, Joseph S. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Res 2010; 38:4108-19. [PMID: 20215430 PMCID: PMC2896532 DOI: 10.1093/nar/gkq151] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.
Collapse
Affiliation(s)
- Lucía García-Ortega
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
256
|
Feldman MB, Terry DS, Altman RB, Blanchard SC. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 2010; 6:244. [PMID: 20154669 DOI: 10.1038/nchembio0310-244c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
257
|
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 2010; 42:159-200. [PMID: 20025795 DOI: 10.1017/s0033583509990060] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.
Collapse
|
258
|
Intramolecular movements in EF-G, trapped at different stages in its GTP hydrolytic cycle, probed by FRET. J Mol Biol 2010; 397:1245-60. [PMID: 20219471 DOI: 10.1016/j.jmb.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/24/2022]
Abstract
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5'-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors.
Collapse
|
259
|
Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC. A fast dynamic mode of the EF-G-bound ribosome. EMBO J 2010; 29:770-81. [PMID: 20033061 PMCID: PMC2829159 DOI: 10.1038/emboj.2009.384] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/23/2009] [Indexed: 11/09/2022] Open
Abstract
A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kevin Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
260
|
Mazauric MH, Seol Y, Yoshizawa S, Visscher K, Fourmy D. Interaction of the HIV-1 frameshift signal with the ribosome. Nucleic Acids Res 2010; 37:7654-64. [PMID: 19812214 PMCID: PMC2794165 DOI: 10.1093/nar/gkp779] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ribosomal frameshifting on viral RNAs relies on the mechanical properties of structural elements, often pseudoknots and more rarely stem-loops, that are unfolded by the ribosome during translation. In human immunodeficiency virus (HIV)-1 type B a long hairpin containing a three-nucleotide bulge is responsible for efficient frameshifting. This three-nucleotide bulge separates the hairpin in two domains: an unstable lower stem followed by a GC-rich upper stem. Toeprinting and chemical probing assays suggest that a hairpin-like structure is retained when ribosomes, initially bound at the slippery sequence, were allowed multiple EF-G catalyzed translocation cycles. However, while the upper stem remains intact the lower stem readily melts. After the first, and single step of translocation of deacylated tRNA to the 30 S P site, movement of the mRNA stem-loop in the 5′ direction is halted, which is consistent with the notion that the downstream secondary structure resists unfolding. Mechanical stretching of the hairpin using optical tweezers only allows clear identification of unfolding of the upper stem at a force of 12.8 ± 1.0 pN. This suggests that the lower stem is unstable and may indeed readily unfold in the presence of a translocating ribosome.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC 3115 ICSN-CNRS 1 ave de la terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
261
|
Abstract
As the resolution of cryo-EM reconstructions has improved to the subnanometer range, conformational and compositional heterogeneity have become increasing problems in cryo-EM, limiting the resolution of reconstructions. Since further purification is not feasible, the presence of several conformational states of ribosomal complexes in thermodynamic equilibrium requires methods for separating these states in silico. We describe a procedure for generating subnanometer resolution cryo-EM structures from large sets of projection images of ribosomal complexes. The incremental K-means-like method of unsupervised 3D sorting discussed here allows separation of classes in the dataset by exploiting intrinsic divisions in the data. The classification procedure is described in detail and its effectiveness is illustrated using current examples from our work. Through a good separation of conformational modes, higher resolution reconstructions can be calculated. This increases information gained from single states, while exploiting the coexistence of multiple states to gather comprehensive mechanistic insight into biological processes like ribosomal translocation.
Collapse
Affiliation(s)
- Justus Loerke
- Institut für medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
262
|
Abstract
There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York City, New York 10027
| |
Collapse
|
263
|
Translational Bypassing – Peptidyl-tRNA Re-pairing at Non-overlapping Sites. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
264
|
Yamamoto T, Shimizu Y, Ueda T, Shiro Y. Mg2+ dependence of 70 S ribosomal protein flexibility revealed by hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2009; 285:5646-52. [PMID: 20022945 DOI: 10.1074/jbc.m109.081836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosome from Escherichia coli requires a specific concentration of Mg(2+) to maintain the 70 S complex formation and allow protein synthesis, and then the structure must be stable and flexible. How does the ribosome acquire these conflicting factors at the same time? Here, we investigated the hydrogen/deuterium exchange of 52 proteins in the 70 S ribosome, which controlled stability and flexibility under various Mg(2+) concentrations, using mass spectrometry. Many proteins exhibited a sigmoidal curve for Mg(2+) concentration dependence, incorporating more deuterium at lower Mg(2+) concentration. By comparing deuterium incorporation with assembly, we have discovered a typical mechanism of complexes for acquiring both stability and flexibility at the same time. In addition, we got information of the localization of flexibility in ribosomal function by the analysis of related proteins with stalk protein, tRNA, mRNA, and nascent peptide, and demonstrate the relationship between structure, assembly, flexibility, and function of the ribosome.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hongo 679-5148, Japan.
| | | | | | | |
Collapse
|
265
|
Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc Natl Acad Sci U S A 2009; 107:709-14. [PMID: 20018653 DOI: 10.1073/pnas.0908597107] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mechanism of substrate translocation through the ribosome is central to the rapid and faithful translation of mRNA into proteins. The rate-limiting step in translocation is an unlocking process that includes the formation of an "unlocked" intermediate state, which requires the convergence of large-scale conformational events within the ribosome including tRNA hybrid states formation, closure of the ribosomal L1 stalk domain, and subunit ratcheting. Here, by imaging of the pretranslocation ribosome complex from multiple structural perspectives using two- and three-color single-molecule fluorescence resonance energy transfer, we observe that tRNA hybrid states formation and L1 stalk closure, events central to the unlocking mechanism, are not tightly coupled. These findings reveal that the unlocked state is achieved through a stochastic-multistep process, where the extent of conformational coupling depends on the nature of tRNA substrates. These data suggest that cellular mechanisms affecting the coupling of conformational processes on the ribosome may regulate the process of translation elongation.
Collapse
|
266
|
Taylor DJ, Devkota B, Huang AD, Topf M, Narayanan E, Sali A, Harvey SC, Frank J. Comprehensive molecular structure of the eukaryotic ribosome. Structure 2009; 17:1591-1604. [PMID: 20004163 PMCID: PMC2814252 DOI: 10.1016/j.str.2009.09.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 01/02/2023]
Abstract
Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than do bacterial ribosomes, which are implicated in extraribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2.
Collapse
Affiliation(s)
- Derek J Taylor
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | - Batsal Devkota
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Andrew D Huang
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Maya Topf
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Eswar Narayanan
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Stephen C Harvey
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
267
|
Bugaeva EY, Surkov S, Golovin AV, Ofverstedt LG, Skoglund U, Isaksson LA, Bogdanov AA, Shpanchenko OV, Dontsova OA. Structural features of the tmRNA-ribosome interaction. RNA (NEW YORK, N.Y.) 2009; 15:2312-2320. [PMID: 19861420 PMCID: PMC2779675 DOI: 10.1261/rna.1584209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Elizaveta Y Bugaeva
- Belozersky Institute, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Réblová K, Rázga F, Li W, Gao H, Frank J, Sponer J. Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Nucleic Acids Res 2009; 38:1325-40. [PMID: 19952067 PMCID: PMC2831300 DOI: 10.1093/nar/gkp1057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Helix 38 (H38) of the large ribosomal subunit, with a length of 110 A, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 A from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolská 135, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
269
|
Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 2009; 6:54-62. [PMID: 19946275 DOI: 10.1038/nchembio.274] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/06/2009] [Indexed: 11/08/2022]
Abstract
Aminoglycoside-class antibiotics bind directly to ribosomal RNA, imparting pleiotropic effects on ribosome function. Despite in-depth structural investigations of aminoglycoside-RNA oligonucleotide and aminoglycoside-ribosome interactions, mechanisms explaining the unique ribosome inhibition profiles of chemically similar aminoglycosides remain elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) methods, we show that high-affinity aminoglycoside binding to the conserved decoding site region of the functional pre-translocation ribosome complex specifically remodels the nature of intrinsic dynamic processes within the particle. The extents of these effects, which are distinct for each member of the aminoglycoside class, strongly correlate with their inhibition of EF-G-catalyzed translocation. Neomycin, a 4,5-linked aminoglycoside, binds with lower affinity to one or more secondary binding sites, mediating distinct structural and dynamic perturbations that further enhance translocation inhibition. These new insights help explain why closely related aminoglycosides elicit pleiotropic translation activities and demonstrate the potential utility of smFRET as a tool for dissecting the mechanisms of antibiotic action.
Collapse
|
270
|
rRNA mutations that inhibit transfer-messenger RNA activity on stalled ribosomes. J Bacteriol 2009; 192:553-9. [PMID: 19897649 DOI: 10.1128/jb.01178-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eubacteria, stalled ribosomes are rescued by a conserved quality-control mechanism involving transfer-messenger RNA (tmRNA) and its protein partner, SmpB. Mimicking a tRNA, tmRNA enters stalled ribosomes, adds Ala to the nascent polypeptide, and serves as a template to encode a short peptide that tags the nascent protein for destruction. To further characterize the tagging process, we developed two genetic selections that link tmRNA activity to cell death. These negative selections can be used to identify inhibitors of tagging or to identify mutations in key residues essential for ribosome rescue. Little is known about which ribosomal elements are specifically required for tmRNA activity. Using these selections, we isolated rRNA mutations that block the rescue of ribosomes stalled at rare Arg codons or at the inefficient termination signal Pro-opal. We found that deletion of A1150 in the 16S rRNA blocked tagging regardless of the stalling sequence, suggesting that it inhibits tmRNA activity directly. The C889U mutation in 23S rRNA, however, lowered tagging levels at Pro-opal and rare Arg codons, but not at the 3' end of an mRNA lacking a stop codon. We concluded that the C889U mutation does not inhibit tmRNA activity per se but interferes with an upstream step intermediate between stalling and tagging. C889 is found in the A-site finger, where it interacts with the S13 protein in the small subunit (forming intersubunit bridge B1a).
Collapse
|
271
|
Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 2009; 326:694-9. [PMID: 19833919 PMCID: PMC3763468 DOI: 10.1126/science.1179709] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.
Collapse
Affiliation(s)
- Yong-Gui Gao
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
272
|
Kurkcuoglu O, Turgut OT, Cansu S, Jernigan RL, Doruker P. Focused functional dynamics of supramolecules by use of a mixed-resolution elastic network model. Biophys J 2009; 97:1178-87. [PMID: 19686666 DOI: 10.1016/j.bpj.2009.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/12/2009] [Accepted: 06/01/2009] [Indexed: 01/03/2023] Open
Abstract
The mixed-resolution elastic network model was introduced previously for computing the motions of a structure, which is described at different levels of detail in different parts, for example, with atomistic and residue-level regions. This method has proved to be an efficient tool to explore the collective dynamics of proteins with some atomistic details, which would be difficult to obtain with either conventional full-atom approaches or fully coarse-grained models. Understanding function often requires atomic detail, but not necessarily for the entire structure. In this study, the calculation of the interaction forces between different resolution regions for the hierarchical levels of coarse-graining is further elaborated on in the new approach by considering explicitly the atomic contacts in the crystal structure. The collective dynamics of the enzyme triosephosphate isomerase and its active site together with loop 6 motions are considered in detail. The supramolecular assemblage ribosome and local atomic motions in its "interesting" functional part-the decoding center-are investigated for the low frequency range of the spectrum with high computational efficiency. This new atom-based mixed coarse-graining approach can be effectively used to generate realistic high-resolution conformations of extremely large protein-DNA or RNA complexes by performing energy minimization on structures deformed along the normal modes of the elastic network model. The new model permits focusing on specific functional parts that move in coordination and response to the remainder of the entire structure.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
273
|
Hauryliuk V, Mitkevich VA, Draycheva A, Tankov S, Shyp V, Ermakov A, Kulikova AA, Makarov AA, Ehrenberg M. Thermodynamics of GTP and GDP binding to bacterial initiation factor 2 suggests two types of structural transitions. J Mol Biol 2009; 394:621-6. [PMID: 19837086 DOI: 10.1016/j.jmb.2009.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 degrees C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 degrees C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (-868+/-25 and -577+/-23 cal mol(-1) K(-1), respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the gamma-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed.
Collapse
Affiliation(s)
- Vasili Hauryliuk
- Institute of Technology, University of Tartu, Nooruse Street 1, Room 425, 50411 Tartu, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
275
|
Miller JL, Cimen H, Koc H, Koc EC. Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis. J Proteome Res 2009; 8:4789-98. [PMID: 19702336 PMCID: PMC2775136 DOI: 10.1021/pr9004844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria, the powerhouse of eukaryotic cells, have their own translation machinery that is solely responsible for synthesis of 13 mitochondrially encoded protein subunits of oxidative phosphorylation complexes. Phosphorylation is a well-known post-translational modification in regulation of many processes in mammalian mitochondria including oxidative phosphorylation. However, there is still very limited knowledge on phosphorylation of mitochondrial ribosomal proteins and their role(s) in ribosome function. In this study, we have identified the mitochondrial ribosomal proteins that are phosphorylated at serine, threonine or tyrosine residues. Twenty-four phosphorylated proteins were visualized by phosphorylation-specific techniques including in vitro radiolabeling, residue specific antibodies for phosphorylated residues, or ProQ phospho dye and identified by tandem mass spectrometry. Translation assays with isolated ribosomes that were phosphorylated in vitro by kinases PKA, PKCdelta, or Abl Tyr showed up to 30% inhibition due to phosphorylation. Findings from this study should serve as the framework for future studies addressing the regulation mechanisms of mitochondrial translation machinery by phosphorylation and other post-translational modifications.
Collapse
Affiliation(s)
- Jennifer L Miller
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
276
|
GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol Cell 2009; 35:37-47. [PMID: 19595714 DOI: 10.1016/j.molcel.2009.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/08/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022]
Abstract
Recent structural data have revealed two distinct conformations of the ribosome during initiation. We employed single-molecule fluorescence methods to probe the dynamic relation of these ribosomal conformations in real time. In the absence of initiation factors, the ribosome assembles in two distinct conformations. The initiation factors guide progression of the ribosome to the conformation that can enter the elongation cycle. In particular, IF2 both accelerates the rate of subunit joining and actively promotes the transition to the elongation-competent conformation. Blocking GTP hydrolysis by IF2 results in 70S complexes formed in the conformation unable to enter elongation. We observe that rapid GTP hydrolysis by IF2 drives the transition to the elongation-competent conformation, thus committing the ribosome to enter the elongation cycle.
Collapse
|
277
|
Aukema KG, Chohan KK, Plourde GL, Reimer KB, Rader SD. Small molecule inhibitors of yeast pre-mRNA splicing. ACS Chem Biol 2009; 4:759-68. [PMID: 19634919 DOI: 10.1021/cb900090z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spliceosome catalyzes pre-messenger RNA (pre-mRNA) splicing, an essential process in eukaryotic gene expression in which non-protein-coding sequences are removed from pre-mRNA. The spliceosome is a large, molecular complex composed of five small nuclear RNAs (snRNAs) and over 100 proteins. Large-scale rearrangements of the snRNAs and their associated proteins, including changes in base-pairing partners, are required to properly identify the intron-containing pre-mRNA, position it within the spliceosome, and complete the cleavage and ligation reactions of splicing. Despite detailed knowledge of the composition of the spliceosome at various stages of assembly, the critical signals and conformational changes that drive the dynamic rearrangements required for pre-mRNA splicing remain largely unknown. Just as ribosome-binding antibiotics facilitated mechanistic studies of the ribosome, study of the catalytic mechanisms of the spliceosome could be enhanced by the availability of small molecule inhibitors that block spliceosome assembly and splicing at defined stages. We sought to identify inhibitors of Saccharomyces cerevisiae splicing by screening for small molecules that block yeast splicing in vitro. We identified 10 small molecule inhibitors of yeast splicing, including four antibiotics, one kinase inhibitor, and five oxaspiro compounds. We also report that a subset of the oxaspiro derivatives permitted assembly of spliceosomal complexes onto pre-mRNA but blocked splicing prior to the first cleavage reaction.
Collapse
Affiliation(s)
- Kelly G. Aukema
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Kamalprit K. Chohan
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Guy L. Plourde
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Kerry B. Reimer
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| |
Collapse
|
278
|
Mazauric MH, Leroy JL, Visscher K, Yoshizawa S, Fourmy D. Footprinting analysis of BWYV pseudoknot-ribosome complexes. RNA (NEW YORK, N.Y.) 2009; 15:1775-1786. [PMID: 19625386 PMCID: PMC2743054 DOI: 10.1261/rna.1385409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA-tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first "hit" by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC3115, ICSN-CNRS, Gif-sur-Yvette 91190, France
| | | | | | | | | |
Collapse
|
279
|
Simonović M, Steitz TA. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:612-23. [PMID: 19595805 PMCID: PMC2783306 DOI: 10.1016/j.bbagrm.2009.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.
Collapse
Affiliation(s)
- Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Thomas A. Steitz
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute at Yale University, New Haven, CT 06520
| |
Collapse
|
280
|
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc Natl Acad Sci U S A 2009; 106:15702-7. [PMID: 19717422 DOI: 10.1073/pnas.0908077106] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the mechanism by which tRNAs rapidly and precisely transit through the ribosomal A, P, and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pretranslocation ribosomal complexes, the L1 stalk exists in a dynamic equilibrium between open and closed conformations. Binding of elongation factor G (EF-G) shifts this equilibrium toward the closed conformation through one of at least two distinct kinetic mechanisms, where the identity of the P-site tRNA dictates the kinetic route that is taken. Within posttranslocation complexes, L1 stalk dynamics are dependent on the presence and identity of the E-site tRNA. Collectively, our data demonstrate that EF-G and the L1 stalk allosterically collaborate to direct tRNA translocation from the P to the E sites, and suggest a model for the release of E-site tRNA.
Collapse
|
281
|
Abstract
Protein biosynthesis on the ribosome requires repeated cycles of ratcheting, which couples rotation of the two ribosomal subunits with respect to each other, and swiveling of the head domain of the small subunit. However, the molecular basis for how the two ribosomal subunits rearrange contacts with each other during ratcheting while remaining stably associated is not known. Here, we describe x-ray crystal structures of the intact Escherichia coli ribosome, either in the apo-form (3.5 angstrom resolution) or with one (4.0 angstrom resolution) or two (4.0 angstrom resolution) anticodon stem-loop tRNA mimics bound, that reveal intermediate states of intersubunit rotation. In the structures, the interface between the small and large ribosomal subunits rearranges in discrete steps along the ratcheting pathway. Positioning of the head domain of the small subunit is controlled by interactions with the large subunit and with the tRNA bound in the peptidyl-tRNA site. The intermediates observed here provide insight into how tRNAs move into the hybrid state of binding that precedes the final steps of mRNA and tRNA translocation.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Nucleic Acid Conformation
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Wen Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
282
|
Blaha G, Stanley RE, Steitz TA. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 2009; 325:966-70. [PMID: 19696344 PMCID: PMC3296453 DOI: 10.1126/science.1175800] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elongation factor P (EF-P) is an essential protein that stimulates the formation of the first peptide bond in protein synthesis. Here we report the crystal structure of EF-P bound to the Thermus thermophilus 70S ribosome along with the initiator transfer RNA N-formyl-methionyl-tRNA(i) (fMet-tRNA(i)(fMet)) and a short piece of messenger RNA (mRNA) at a resolution of 3.5 angstroms. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. Domain II of EF-P interacts with the ribosomal protein L1, which results in the largest movement of the L1 stalk that has been observed in the absence of ratcheting of the ribosomal subunits. EF-P facilitates the proper positioning of the fMet-tRNA(i)(fMet) for the formation of the first peptide bond during translation initiation.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Peptide Chain Initiation, Translational
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosomes/metabolism
- Thermus thermophilus/chemistry
- Thermus thermophilus/metabolism
Collapse
Affiliation(s)
- Gregor Blaha
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Robin E. Stanley
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A. Steitz
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520–8114, USA
| |
Collapse
|
283
|
Affiliation(s)
- Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
284
|
Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC. Navigating the ribosome's metastable energy landscape. Trends Biochem Sci 2009; 34:390-400. [PMID: 19647434 PMCID: PMC2914510 DOI: 10.1016/j.tibs.2009.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
285
|
Shi X, Chiu K, Ghosh S, Joseph S. Bases in 16S rRNA important for subunit association, tRNA binding, and translocation. Biochemistry 2009; 48:6772-82. [PMID: 19545171 PMCID: PMC2782751 DOI: 10.1021/bi900472a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated so their role in translation could be studied. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding, and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association, and tRNA binding. In contrast, the A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far as 100 A from the tRNA binding sites can be important for translation.
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Katie Chiu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Srikanta Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| |
Collapse
|
286
|
Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat Struct Mol Biol 2009; 16:861-8. [PMID: 19597483 DOI: 10.1038/nsmb.1622] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/21/2009] [Indexed: 11/09/2022]
Abstract
Characterizing the structural dynamics of the translating ribosome remains a major goal in the study of protein synthesis. Deacylation of peptidyl-tRNA during translation elongation triggers fluctuations of the pretranslocation ribosomal complex between two global conformational states. Elongation factor G-mediated control of the resulting dynamic conformational equilibrium helps to coordinate ribosome and tRNA movements during elongation and is thus a crucial mechanistic feature of translation. Beyond elongation, deacylation of peptidyl-tRNA also occurs during translation termination, and this deacylated tRNA persists during ribosome recycling. Here we report that specific regulation of the analogous conformational equilibrium by translation release and ribosome recycling factors has a critical role in the termination and recycling mechanisms. Our results support the view that specific regulation of the global state of the ribosome is a fundamental characteristic of all translation factors and a unifying theme throughout protein synthesis.
Collapse
|
287
|
Soung GY, Miller JL, Koc H, Koc EC. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 2009; 8:3390-402. [PMID: 19469554 PMCID: PMC2760691 DOI: 10.1021/pr900042e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins.
Collapse
Affiliation(s)
- George Y Soung
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
288
|
Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 2009; 28:2053-65. [PMID: 19536129 DOI: 10.1038/emboj.2009.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G*GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
289
|
Hamburg DM, Suh MJ, Limbach PA. Limited proteolysis analysis of the ribosome is affected by subunit association. Biopolymers 2009; 91:410-22. [PMID: 19213046 PMCID: PMC2936250 DOI: 10.1002/bip.21161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our understanding of the structural organization of ribosome assembly intermediates, in particular those intermediates that result from misfolding leading to their eventual degradation within the cell, is limited because of the lack of methods available to characterize assembly intermediate structures. Because conventional structural approaches, such as NMR, X-ray crystallography, and cryo-EM, are not ideally suited to characterize the structural organization of these flexible and sometimes heterogeneous assembly intermediates, we have set out to develop an approach combining limited proteolysis with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) that might be applicable to ribonucleoprotein complexes as large as the ribosome. This study focuses on the limited proteolysis behavior of appropriately assembled ribosome subunits. Isolated subunits were analyzed using limited proteolysis and MALDI-MS and the results were compared with previous data obtained from 70S ribosomes. Generally, ribosomal proteins were found to be more stable in 70S ribosomes than in their isolated subunits, consistent with a reduction in conformational flexibility on subunit assembly. This approach demonstrates that limited proteolysis combined with MALDI-MS can reveal structural changes to ribosomes on subunit assembly or disassembly, and provides the appropriate benchmark data from 30S, 50S, and 70S proteins to enable studies of ribosome assembly intermediates. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 410-422, 2009.
Collapse
Affiliation(s)
- Daisy-Malloy Hamburg
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221
| | | | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
290
|
Shoji S, Abdi NM, Bundschuh R, Fredrick K. Contribution of ribosomal residues to P-site tRNA binding. Nucleic Acids Res 2009; 37:4033-42. [PMID: 19417061 PMCID: PMC2709574 DOI: 10.1093/nar/gkp296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (k(off)) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNA(fMet) dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNA(fMet) interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (k(on)) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Department of Microbiology, The Ohio State University, 484 W., 12th Ave, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
291
|
Baxter WT, Grassucci RA, Gao H, Frank J. Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. J Struct Biol 2009; 166:126-32. [PMID: 19269332 PMCID: PMC2700974 DOI: 10.1016/j.jsb.2009.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 11/18/2022]
Abstract
Attempts to develop efficient classification approaches to the problem of heterogeneity in single-particle reconstruction of macromolecules require phantom data with realistic noise models. We have estimated the signal-to-noise ratios and spectral signal-to-noise ratios for three steps in the electron microscopic image formation from data obtained experimentally. An important result is that structural noise, i.e., the irreproducible component of the object prior to image formation, is substantial, and of the same order of magnitude as the reproducible signal. Based on this result, the noise modeling for testing new classification techniques can be improved.
Collapse
Affiliation(s)
- William T Baxter
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
292
|
Prestele M, Vogel F, Reichert AS, Herrmann JM, Ott M. Mrpl36 is important for generation of assembly competent proteins during mitochondrial translation. Mol Biol Cell 2009; 20:2615-25. [PMID: 19339279 DOI: 10.1091/mbc.e08-12-1162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The complexes of the respiratory chain represent mosaics of nuclear and mitochondrially encoded components. The processes by which synthesis and assembly of the various subunits are coordinated remain largely elusive. During evolution, many proteins of the mitochondrial ribosome acquired additional domains pointing at specific properties or functions of the translation machinery in mitochondria. Here, we analyzed the function of Mrpl36, a protein associated with the large subunit of the mitochondrial ribosome. This protein, homologous to the ribosomal protein L31 from bacteria, contains a mitochondria-specific C-terminal domain that is not required for protein synthesis per se; however, its absence decreases stability of Mrpl36. Cells lacking this C-terminal domain can still synthesize proteins, but these translation products fail to be properly assembled into respiratory chain complexes and are rapidly degraded. Surprisingly, overexpression of Mrpl36 seems to even increase the efficiency of mitochondrial translation. Our data suggest that Mrpl36 plays a critical role during translation that determines the rate of respiratory chain assembly. This important function seems to be carried out by a stabilizing activity of Mrpl36 on the interaction between large and small ribosomal subunits, which could influence accuracy of protein synthesis.
Collapse
Affiliation(s)
- Martin Prestele
- Zellbiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
293
|
A thermal ratchet model of tRNA–mRNA translocation by the ribosome. Biosystems 2009; 96:19-28. [DOI: 10.1016/j.biosystems.2008.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/23/2022]
|
294
|
Abstract
Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA-mRNA movement.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Sarah E. Walker
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
295
|
Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH, Spahn CMT. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 2009; 15:910-5. [PMID: 19172743 DOI: 10.1038/nsmb.1469] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
EF4 (LepA) is an almost universally conserved translational GTPase in eubacteria. It seems to be essential under environmental stress conditions and has previously been shown to back-translocate the tRNAs on the ribosome, thereby reverting the canonical translocation reaction. In the current work, EF4 was directly visualized in the process of back-translocating tRNAs by single-particle cryo-EM. Using flexible fitting methods, we built a model of ribosome-bound EF4 based on the cryo-EM map and a recently published unbound EF4 X-ray structure. The cryo-EM map establishes EF4 as a noncanonical elongation factor that interacts not only with the elongating ribosome, but also with the back-translocated tRNA in the A-site region, which is present in a previously unseen, intermediate state and deviates markedly from the position of a canonical A-tRNA. Our results, therefore, provide insight into the underlying structural principles governing back-translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W. The native 3D organization of bacterial polysomes. Cell 2009; 136:261-71. [PMID: 19167328 DOI: 10.1016/j.cell.2008.11.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
Recent advances have led to insights into the structure of the bacterial ribosome, but little is known about the 3D organization of ribosomes in the context of translating polysomes. We employed cryoelectron tomography and a template-matching approach to map 70S ribosomes in vitrified bacterial translation extracts and in lysates of active E. coli spheroplasts. In these preparations, polysomal arrangements were observed in which neighboring ribosomes are densely packed and exhibit preferred orientations. Analysis of characteristic examples of polysomes reveals a staggered or pseudohelical organization of ribosomes along the mRNA trace, with the transcript being sequestered on the inside, the tRNA entrance sites being accessible, and the polypeptide exit sites facing the cytosol. Modeling of elongating nascent polypeptide chains suggests that this arrangement maximizes the distance between nascent chains on adjacent ribosomes, thereby reducing the probability of intermolecular interactions that would give rise to aggregation and limit productive folding.
Collapse
Affiliation(s)
- Florian Brandt
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | | | | | | | | | | |
Collapse
|
297
|
Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci U S A 2009; 106:2571-6. [PMID: 19190181 DOI: 10.1073/pnas.0813180106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L1 stalk is a mobile domain of the large ribosomal subunit E site that interacts with the elbow of deacylated tRNA during protein synthesis. Here, by using single-molecule FRET, we follow the real-time dynamics of the L1 stalk and observe its movement relative to the body of the large subunit between at least 3 distinct conformational states: open, half-closed, and fully closed. Pretranslocation ribosomes undergo spontaneous fluctuations between the open and fully closed states. In contrast, posttranslocation ribosomes containing peptidyl-tRNA and deacylated tRNA in the classical P/P and E/E states, respectively, are fixed in the half-closed conformation. In ribosomes with a vacant E site, the L1 stalk is observed either in the fully closed or fully open conformation. Several lines of evidence show that the L1 stalk can move independently of intersubunit rotation. Our findings support a model in which the mobility of the L1 stalk facilitates binding, movement, and release of deacylated tRNA by remodeling the structure of the 50S subunit E site between 3 distinct conformations, corresponding to the E/E vacant, P/E hybrid, and classical states.
Collapse
|
298
|
Devaraj A, Shoji S, Holbrook ED, Fredrick K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA (NEW YORK, N.Y.) 2009; 15:255-65. [PMID: 19095617 PMCID: PMC2648707 DOI: 10.1261/rna.1320109] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The exit (E) site has been implicated in several ribosomal activities, including translocation, decoding, and maintenance of the translational reading frame. Here, we target the 30S subunit E site by introducing a deletion in rpsG that truncates the beta-hairpin of ribosomal protein S7. This mutation (S7DeltaR77-Y84) increases both -1 and +1 frameshifting but does not increase miscoding, providing evidence that the 30S E site plays a specific role in frame maintenance. Mutation S7DeltaR77-Y84 also stimulates +1 programmed frameshifting during prfB'-lacZ translation in many synthetic contexts. However, no effect is seen when the E codon of the frameshift site corresponds to those found in nature, suggesting that E-tRNA release does not normally limit the rate of prfB frameshifting. Ribosomes containing S7DeltaR77-Y84 exhibit an elevated rate of spontaneous reverse translocation and an increased K (1/2) for E-tRNA. These effects are of similar magnitude, suggesting that both result from destabilization of E-tRNA. Finally, this mutation of the 30S E site does not inhibit EF-G-dependent translocation, consistent with a primary role for the 50S E site in the mechanism.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Ohio State Biochemistry Program, The Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
299
|
Blanchard SC. Single-molecule observations of ribosome function. Curr Opin Struct Biol 2009; 19:103-9. [PMID: 19223173 PMCID: PMC2673810 DOI: 10.1016/j.sbi.2009.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors and potentially many other cellular ligands that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, United States.
| |
Collapse
|
300
|
Abstract
Programmed ribosomal frameshifting (PRF) is one of the multiple translational recoding processes that fundamentally alters triplet decoding of the messenger RNA by the elongating ribosome. The ability of the ribosome to change translational reading frames in the -1 direction (-1 PRF) is employed by many positive strand RNA viruses, including economically important plant viruses and many human pathogens, such as retroviruses, e.g., HIV-1, and coronaviruses, e.g., the causative agent of severe acute respiratory syndrome (SARS), in order to properly express their genomes. -1 PRF is programmed by a bipartite signal embedded in the mRNA and includes a heptanucleotide "slip site" over which the paused ribosome "backs up" by one nucleotide, and a downstream stimulatory element, either an RNA pseudoknot or a very stable RNA stem-loop. These two elements are separated by six to eight nucleotides, a distance that places the 5' edge of the downstream stimulatory element in direct contact with the mRNA entry channel of the 30S ribosomal subunit. The precise mechanism by which the downstream RNA stimulates -1 PRF by the translocating ribosome remains unclear. This review summarizes the recent structural and biophysical studies of RNA pseudoknots and places this work in the context of our evolving mechanistic understanding of translation elongation. Support for the hypothesis that the downstream stimulatory element provides a kinetic barrier to the ribosome-mediated unfolding is discussed.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA.
| | | |
Collapse
|