251
|
Abstract
Craniopharyngiomas are benign but locally invasive tumours of the sellar region that occur as two subtypes. The adamantinomatous type (aCP) occurs mainly during childhood while the papillary type (pCP) is found almost exclusively in adults. It is thought that aCPs arise from ectopic embryonic remnants of Rathke's pouch and these tumours share features with odontogenic tumours suggesting a common origin. The pathogenesis of pCPs is less understood but these tumours may arise from metaplastic transformation of anterior pituitary epithelial cells. Mutations in CTNNB1 that encodes β-catenin are found in around 70 % of aCPs. These mutations stabilise β-catenin, which evades destruction and accumulates in the nucleus and cytosol leading to constitutive activation of the Wnt signaling pathway. Expression of mutant β-catenin early in mouse pituitary development promotes the formation of tumours similar to aCPs. However, accumulation of β-catenin occurs only in small clusters of tumour cells even though the mutation is ubiquitous. These cell clusters are slow-growing and share some characteristics with pituitary stem cells. They are often present at the invading edge and express growth factors that may participate in paracrine signaling to surrounding cells. β-Catenin nuclear translocation may also occur in the absence of CTNNB1 mutations, suggesting that other genetic or epigenetic events can activate Wnt signaling in aCP. These mechanisms, as well as those underlying the molecular pathogenesis of pCPs remain to be identified.
Collapse
Affiliation(s)
- Sarah J Larkin
- Nuffield Department of Clinical Neurosciences, Headley Way, Oxford, OX3 9DU, UK
| | | |
Collapse
|
252
|
Cheng Y, Kawamura K, Takae S, Deguchi M, Yang Q, Kuo C, Hsueh AJW. Oocyte-derived R-spondin2 promotes ovarian follicle development. FASEB J 2013; 27:2175-84. [PMID: 23407710 DOI: 10.1096/fj.12-223412] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
R-spondin proteins are adult stem cell growth factors capable of stimulating gut development by activating LGR4, 5, and 6 receptors to promote Wnt signaling. Although multiple Wnt ligands and cognate Frizzled receptors are expressed in the ovary, their physiological roles are unclear. Based on bioinformatic and in situ hybridization analyses, we demonstrated the exclusive expression of R-spondin2 in oocytes of ovarian follicles. In cultured somatic cells from preantral follicles, R-spondin2 treatment (ED50: 3 ng/ml) synergized with Wnt3a to stimulate Wnt signaling. In cultured ovarian explants from prepubertal mice containing preantral follicles, treatment with R-spondin2, similar to follicle stimulating hormone, promoted the development of primary follicles to the secondary stage. In vivo administration of an R-spondin agonist stimulated the development of primary follicles to the antral stage in both immature mice and gonadotropin releasing hormone antagonist-treated adult mice. Subsequent treatment with gonadotropins allowed the generation of mature oocytes capable of undergoing early embryonic development and successful pregnancy. Furthermore, R-spondin agonist treatment of immune-deficient mice grafted with human cortical fragments stimulated the development of primary follicles to the secondary stage. Thus, oocyte-derived R-spondin2 is a paracrine factor essential for primary follicle development, and R-spondin agonists could provide a new treatment regimen for infertile women with low responses to the traditional gonadotropin therapy.
Collapse
Affiliation(s)
- Yuan Cheng
- Program of Reproductive and Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | | | | | | | | | | | | |
Collapse
|
253
|
Kim I, Pan W, Jones SA, Zhang Y, Zhuang X, Wu D. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. ACTA ACUST UNITED AC 2013; 200:419-28. [PMID: 23400998 PMCID: PMC3575536 DOI: 10.1083/jcb.201206096] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes at the cell surface via the recruitment of AP2 and clathrin. Canonical Wnt signaling is initiated by the binding of Wnt proteins to their receptors, low-density lipoprotein-related protein 5 and 6 (LRP5/6) and frizzled proteins, leading to phosphatidylinositol (4,5)bisphosphate (PtdIns(4,5)P2) production, signalosome formation, and LRP phosphorylation. However, the mechanism by which PtdIns(4,5)P2 regulates the signalosome formation remains unclear. Here we show that clathrin and adaptor protein 2 (AP2) were part of the LRP6 signalosomes. The presence of clathrin and AP2 in the LRP6 signalosomes depended on PtdIns(4,5)P2, and both clathrin and AP2 were required for the formation of LRP6 signalosomes. In addition, WNT3A-induced LRP6 signalosomes were primarily localized at cell surfaces, and WNT3A did not induce marked LRP6 internalization. However, rapid PtdIns(4,5)P2 hydrolysis induced artificially after WNT3A stimulation could lead to marked LRP6 internalization. Moreover, we observed WNT3A-induced LRP6 and clathrin clustering at cell surfaces using super-resolution fluorescence microscopy. Therefore, we conclude that PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes via the recruitment of AP2 and clathrin and that LRP6 internalization may not be a prerequisite for Wnt signaling to β-catenin stabilization.
Collapse
Affiliation(s)
- Ingyu Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
254
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Smolders LA, Meij BP, Onis D, Riemers FM, Bergknut N, Wubbolts R, Grinwis GCM, Houweling M, Groot Koerkamp MJA, van Leenen D, Holstege FCP, Hazewinkel HAW, Creemers LB, Penning LC, Tryfonidou MA. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies. Arthritis Res Ther 2013; 15:R23. [PMID: 23360510 PMCID: PMC3672710 DOI: 10.1186/ar4157] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/10/2013] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.
Collapse
|
256
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
257
|
Wang M, Tang D, Shu B, Wang B, Jin H, Hao S, Dresser KA, Shen J, Im HJ, Sampson ER, Rubery PT, Zuscik MJ, Schwarz EM, O'Keefe RJ, Wang Y, Chen D. Conditional activation of β-catenin signaling in mice leads to severe defects in intervertebral disc tissue. ACTA ACUST UNITED AC 2012; 64:2611-23. [PMID: 22422036 DOI: 10.1002/art.34469] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The incidence of low back pain is extremely high and is often linked to intervertebral disc (IVD) degeneration. The mechanism of this disease is currently unknown. This study was undertaken to investigate the role of β-catenin signaling in IVD tissue function. METHODS β-catenin protein levels were measured by immunohistochemical analysis of disc samples obtained from patients with disc degeneration and from normal subjects. To generate β-catenin conditional activation (cAct) mice, Col2a1-CreER(T2) -transgenic mice were bred with β-catenin(fx(Ex3)/fx(Ex3)) mice. Changes in disc tissue morphology and function were examined by micro-computed tomography, histologic analysis, and real-time polymerase chain reaction assays. RESULTS β-catenin protein was up-regulated in disc tissue samples from patients with disc degeneration. To assess the effects of increased β-catenin levels on disc tissue, we generated β-catenin cAct mice. Overexpression of β-catenin in disc cells led to extensive osteophyte formation in 3- and 6-month-old β-catenin cAct mice, which were associated with significant changes in the cells and extracellular matrix of disc tissue and growth plate. Gene expression analysis demonstrated that activation of β-catenin enhanced runt-related transcription factor 2-dependent Mmp13 and Adamts5 expression. Moreover, genetic ablation of Mmp13 or Adamts5 on the β-catenin cAct background, or treatment of β-catenin cAct mice with a specific matrix metalloproteinase 13 inhibitor, ameliorated the mutant phenotype. CONCLUSION Our findings indicate that the β-catenin signaling pathway plays a critical role in disc tissue function.
Collapse
Affiliation(s)
- Meina Wang
- University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4:4/12/a007880. [PMID: 23209147 DOI: 10.1101/cshperspect.a007880] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibition of β-catenin phosphorylation and ensuing β-catenin stabilization.
Collapse
Affiliation(s)
- Bryan T MacDonald
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
259
|
Centelles JJ. General aspects of colorectal cancer. ISRN ONCOLOGY 2012; 2012:139268. [PMID: 23209942 PMCID: PMC3504424 DOI: 10.5402/2012/139268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of death. Cancer is initiated by several DNA damages, affecting proto-oncogenes, tumour suppressor genes, and DNA repairing genes. The molecular origins of CRC are chromosome instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). A brief description of types of CRC cancer is presented, including sporadic CRC, hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndromes, familiar adenomatous polyposis (FAP), MYH-associated polyposis (MAP), Peutz-Jeghers syndrome (PJS), and juvenile polyposis syndrome (JPS). Some signalling systems for CRC are also described, including Wnt-β-catenin pathway, tyrosine kinase receptors pathway, TGF-β pathway, and Hedgehog pathway. Finally, this paper describes also some CRC treatments.
Collapse
Affiliation(s)
- Josep J. Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 643, Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
260
|
Lee K, Hu Y, Ding L, Chen Y, Takahashi Y, Mott R, Ma JX. Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy. Diabetes 2012; 61:2948-57. [PMID: 22891217 PMCID: PMC3478529 DOI: 10.2337/db11-0300] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dysregulation of Wnt/β-catenin signaling contributes to the development of diabetic retinopathy by inducing retinal inflammation, vascular leakage, and neovascularization. Here, we evaluated the inhibitory effect of a monoclonal antibody (Mab) specific for the E1E2 domain of Wnt coreceptor low-density lipoprotein receptor-related protein 6, Mab2F1, on canonical Wnt signaling and its therapeutic potential for diabetic retinopathy. Mab2F1 displayed robust inhibition on Wnt signaling with a half-maximal inhibitory concentration (IC₅₀) of 20 μg/mL in retinal pigment epithelial cells. In addition, Mab2F1 also attenuated the accumulation of β-catenin and overexpression of vascular endothelial growth factor, intercellular adhesion molecule-1, and tumor necrosis factor-α induced by high-glucose medium in retinal endothelial cells. In vivo, an intravitreal injection of Mab2F1 significantly reduced retinal vascular leakage and decreased preretinal vascular cells in oxygen-induced retinopathy (OIR) rats, demonstrating its inhibitory effects on ischemia-induced retinal neovascularization. Moreover, Mab2F1 blocked the overexpression of the inflammatory/angiogenic factors, attenuated leukostasis, and reduced retinal vascular leakage in both early and late stages of streptozotocin-induced diabetes. In conclusion, Mab2F1 inhibits canonical Wnt signaling, vascular leakage, and inflammation in the retina of diabetic retinopathy models, suggesting its potential to be used as a therapeutic agent in combination with other antiangiogenic compounds.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Capillary Permeability/drug effects
- Cattle
- Cells, Cultured
- Diabetic Retinopathy/drug therapy
- Diabetic Retinopathy/immunology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Genes, Reporter/drug effects
- HEK293 Cells
- Humans
- Hyperglycemia/metabolism
- Intravitreal Injections
- Leukostasis/prevention & control
- Low Density Lipoprotein Receptor-Related Protein-6/antagonists & inhibitors
- Low Density Lipoprotein Receptor-Related Protein-6/genetics
- Low Density Lipoprotein Receptor-Related Protein-6/metabolism
- Molecular Targeted Therapy
- Rats
- Rats, Inbred BN
- Receptors, Wnt/antagonists & inhibitors
- Receptors, Wnt/genetics
- Receptors, Wnt/metabolism
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Retinal Pigment Epithelium/drug effects
- Retinal Pigment Epithelium/immunology
- Retinal Pigment Epithelium/metabolism
- Retinal Pigment Epithelium/pathology
- Wnt Signaling Pathway/drug effects
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Kyungwon Lee
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yang Hu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ying Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusuke Takahashi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert Mott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jian-xing Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Jian-xing Ma,
| |
Collapse
|
261
|
Puca A, Russo G, Giordano A. Properties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR's. Oncotarget 2012; 3:426-34. [PMID: 22566481 PMCID: PMC3380577 DOI: 10.18632/oncotarget.472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study emphasizes the dynamical properties of mechanical loading via simulated microgravity, its effect on acute myeloid leukemia proliferation and hematopoietic stem cell (HSPC) growth and its implications in the area of tissue regeneration. Data presented illustrates that mechanical transduction changes the expression of humoral factors by facilitating paracrine/autocrine signalling, therefore modulating intracellular trafficking of tyrosine kinase receptors. Understanding mechano-transduction in the context of cell and tissue morphogenesis is the major focus of this study. The effects of external physiological stresses, such as blood flow, on several cellular subtypes seem to produce very intricate cellular responses. It is well accepted that mechanical loading plays an intrinsic and extrinsic influence on cell survival. This study shows how microgravity effects hematopoietic stem cells, and human leukemic cell proliferation and expression of its receptors that control cell survival, such as the tyrosine kinase vascular endothelial growth factor receptor-1, receptor-2 and receptor-3.
Collapse
Affiliation(s)
- Andrew Puca
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University Philadelphia, PA, USA
| | | | | |
Collapse
|
262
|
Geetha-Loganathan P, Nimmagadda S, Scaal M. Wnt signaling in limb organogenesis. Organogenesis 2012; 4:109-15. [PMID: 19279722 DOI: 10.4161/org.4.2.5857] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022] Open
Abstract
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are beta-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Institute of Anatomy and Cell Biology; Department of Molecular Embryology; University of Freiburg; Freiburg, Germany
| | | | | |
Collapse
|
263
|
Zhang J, Zhang X, Zhang L, Zhou F, van Dinther M, Ten Dijke P. LRP8 mediates Wnt/β-catenin signaling and controls osteoblast differentiation. J Bone Miner Res 2012; 27:2065-74. [PMID: 22589174 DOI: 10.1002/jbmr.1661] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in regulating osteoblast differentiation and bone formation. Here, we identify low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) as a positive regulator of Wnt/β-catenin signaling. In a small interfering RNA (siRNA) screen, LRP8 was shown to be required for Wnt/β-catenin-induced transcriptional reporter activity. We found that ectopic expression of LRP8 increased Wnt-induced transcriptional responses, and promoted Wnt-induced β-catenin accumulation. Moreover, knockdown of LRP8 resulted in a decrease in β-catenin levels and suppression of Wnt/β-catenin-induced Axin2 transcription. Functional studies in KS483 osteoprogenitor cells showed that LRP8 depletion resulted in impaired activation of endogenous Wnt-induced genes and decreased osteoblast differentiation and mineralization, whereas LRP8 ectopic expression had the opposite effect. These results identify LRP8 as a novel positive factor of canonical Wnt signaling pathway and show its involvement in Wnt-induced osteoblast differentiation.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Molecular Cell Biology and Center for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
264
|
Abstract
Gut flora generally contributes to a healthy environment while both commensal and pathogenic bacteria that influence the innate and adaptive immune responses, can cause acute and/or chronic mucosal inflammation. Citrobacter rodentium (C. rodentium) is a member of the family of enteropathogens that provide an excellent in vivo model to investigate the host-pathogen interactions in real-time. It is the etiologic agent for transmissible murine colonic hyperplasia (TMCH) while inflammation following C. rodentium infection is dependent upon the genetic background. Ongoing and completed studies in this model have so far established that Wnt/β-catenin, Notch and PI3K pathways regulate colonic crypt hyperplasia while epithelial-stromal cross-talk, mediated by MEK/ERK/NF-κB signaling, regulates inflammation and/or colitis in susceptible strains. The C. rodentium-induced hyperplastic state also increases the susceptibility to either mutagenic insult or in mice heterozygous for Apc gene. The ability to modulate the host response to C. rodentium infection therefore provides an opportunity to delineate the mechanisms that determine mucosal hyperplasia, intestinal inflammation, and/or neoplasia as disease outcomes.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
265
|
Schneider PN, Slusarski DC, Houston DW. Differential role of Axin RGS domain function in Wnt signaling during anteroposterior patterning and maternal axis formation. PLoS One 2012; 7:e44096. [PMID: 22957046 PMCID: PMC3434218 DOI: 10.1371/journal.pone.0044096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/30/2012] [Indexed: 01/18/2023] Open
Abstract
Axin is a critical component of the β-catenin destruction complex and is also necessary for Wnt signaling initiation at the level of co-receptor activation. Axin contains an RGS domain, which is similar to that of proteins that accelerate the GTPase activity of heterotrimeric Gα/Gna proteins and thereby limit the duration of active G-protein signaling. Although G-proteins are increasingly recognized as essential components of Wnt signaling, it has been unclear whether this domain of Axin might function in G-protein regulation. This study was performed to test the hypothesis that Axin RGS-Gna interactions would be required to attenuate Wnt signaling. We tested these ideas using an axin1 genetic mutant (masterblind) and antisense oligo knockdowns in developing zebrafish and Xenopus embryos. We generated a point mutation that is predicted to reduce Axin-Gna interaction and tested for the ability of the mutant forms to rescue Axin loss-of-function function. This Axin point mutation was deficient in binding to Gna proteins in vitro, and was unable to relocalize to the plasma membrane upon Gna overexpression. We found that the Axin point mutant construct failed to rescue normal anteroposterior neural patterning in masterblind mutant zebrafish, suggesting a requirement for G-protein interactions in this context. We also found that the same mutant was able to rescue deficiencies in maternal axin1 loss-of-function in Xenopus. These data suggest that maternal and zygotic Wnt signaling may differ in the extent of Axin regulation of G-protein signaling. We further report that expression of a membrane-localized Axin construct is sufficient to inhibit Wnt/β-catenin signaling and to promote Axin protein turnover.
Collapse
Affiliation(s)
| | | | - Douglas W. Houston
- Interdisciplinary Graduate Program in Genetics, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
266
|
Haÿ E, Buczkowski T, Marty C, Da Nascimento S, Sonnet P, Marie PJ. Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J Bone Miner Res 2012; 27:1852-63. [PMID: 22576936 DOI: 10.1002/jbmr.1656] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Wnt signaling plays an important role in skeletal biology and diseases. In osteoblasts, we recently showed that the cell-cell adhesion molecule N-cadherin interacts with the Wnt coreceptors LRP5/6 to regulate osteogenesis. In this study we investigated whether targeting the intracellular domain of N-cadherin that interacts with LRP5/6 may promote Wnt signaling and bone formation. By investigating the molecular interactions between the Wnt coreceptors LRP5/6 and N-cadherin, we identified specific LRP5/6- and N-cadherin-interacting intracellular domains that impact Wnt/β-catenin signaling in murine osteoblasts. We showed that truncated N-cadherin constructs that impair N-cadherin-LRP5/6 interactions promote Wnt/β-catenin signaling and osteoblast differentiation. Based on this finding, we developed a peptide-based approach targeting N-cadherin-LRP5 interaction for promoting Wnt signaling and osteoblast function. We found that a competitor peptide containing the 28 last amino acids of LRP5 disrupts LRP5/6-N-cadherin interaction and thereby enhances Wnt/β-catenin signaling in osteoblasts. We also show that the peptide-mediated disruption of N-cadherin-LRP5/6 interaction increases Wnt/β-catenin signaling and osteoblast function in vitro and promotes calvaria bone formation in vivo. The targeted competitor peptide-based strategy reported here may provide a novel approach to stimulate Wnt/β-catenin signaling that can be used for promoting osteoblast function and bone formation.
Collapse
Affiliation(s)
- Eric Haÿ
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR-606, Paris, France
| | | | | | | | | | | |
Collapse
|
267
|
Abstract
Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Laura A G Armas
- Osteoporosis Research Center, Endocrine Division, Department of Internal Medicine, Creighton University Medical Center, 601 North 30th Street, Suite 4820, Omaha, NE 68131, USA.
| | | |
Collapse
|
268
|
Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays 2012; 34:953-62. [PMID: 22930599 DOI: 10.1002/bies.201200061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad-dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad-dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone-specific cell types during development.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Faculty of Biological Science, Department of Cell Biology, University of Concepcion, Concepcion, Chile.
| | | | | |
Collapse
|
269
|
Abstract
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
270
|
Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 2012; 149:1245-56. [PMID: 22682247 DOI: 10.1016/j.cell.2012.05.002] [Citation(s) in RCA: 706] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 11/18/2011] [Accepted: 03/27/2012] [Indexed: 12/11/2022]
Abstract
Degradation of cytosolic β-catenin by the APC/Axin1 destruction complex represents the key regulated step of the Wnt pathway. It is incompletely understood how the Axin1 complex exerts its Wnt-regulated function. Here, we examine the mechanism of Wnt signaling under endogenous levels of the Axin1 complex. Our results demonstrate that β-catenin is not only phosphorylated inside the Axin1 complex, but also ubiquinated and degraded via the proteasome, all within an intact Axin1 complex. In disagreement with current views, we find neither a disassembly of the complex nor an inhibition of phosphorylation of Axin1-bound β-catenin upon Wnt signaling. Similar observations are made in primary intestinal epithelium and in colorectal cancer cell lines carrying activating Wnt pathway mutations. Wnt signaling suppresses β-catenin ubiquitination normally occurring within the complex, leading to complex saturation by accumulated phospho-β-catenin. Subsequently, newly synthesized β-catenin can accumulate in a free cytosolic form and engage nuclear TCF transcription factors.
Collapse
|
271
|
The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012; 32:3903-12. [PMID: 22826439 DOI: 10.1128/mcb.00251-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dishevelled (Dvl) is a key component in the canonical Wnt signaling pathway and becomes hyperphosphorylated upon Wnt stimulation. Dvl is required for LRP6 phosphorylation, which is essential for subsequent steps of signal transduction, such as Axin recruitment and cytosolic β-catenin stabilization. Here, we identify the HECT-containing Nedd4-like ubiquitin E3 ligase ITCH as a new Dvl-binding protein. ITCH ubiquitinates the phosphorylated form of Dvl and promotes its degradation via the proteasome pathway, thereby inhibiting canonical Wnt signaling. Knockdown of ITCH by RNA interference increased the stability of phosphorylated Dvl and upregulated Wnt reporter gene activity as well as endogenous Wnt target gene expression induced by Wnt stimulation. In addition, we found that both the PPXY motif and the DEP domain of Dvl are critical for its interaction with ITCH, as mutation in the PPXY motif (Dvl2-Y568F) or deletion of the DEP domain led to reduced affinity for ITCH. Consistently, overexpression of ITCH inhibited wild-type Dvl2-induced, but not Dvl2-Y568F mutant-induced, Wnt reporter activity. Moreover, the Y568F mutant, but not wild-type Dvl2, can reverse the ITCH-mediated inhibition of Wnt-induced reporter activity. Collectively, these results indicate that ITCH plays a negative regulatory role in modulating canonical Wnt signaling by targeting the phosphorylated form of Dvl.
Collapse
|
272
|
Bialkowska AB, Yang VW. High-throughput screening strategies for targeted identification of therapeutic compounds in colorectal cancer. Future Oncol 2012; 8:259-72. [PMID: 22409463 DOI: 10.2217/fon.12.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advancements in understanding the role of both genetics and molecular pathways in the formation and progression of colorectal cancer have allowed the identification of factors that may be targeted for drug discovery. During the past decade, various approaches have been developed to target specific steps or components of these pathways in order to prevent the development and progression of colorectal cancer and to treat this disease. The innovation and optimization of high-throughput screening methods, as well as the recent emphasis from the NIH on translational sciences, have enabled rapid progress in drug discovery in many fields, including colorectal cancer. Here we present a summary of the recent efforts of targeted high-throughput drug discovery directed at pathways affected in colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, HSC-T17 Room 090, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
273
|
Lu Y, Chen SR, Liu WB, Hou ZC, Xu GY, Yang N. Polymorphisms in Wnt signaling pathway genes are significantly associated with chicken carcass traits. Poult Sci 2012; 91:1299-307. [PMID: 22582286 DOI: 10.3382/ps.2012-02157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Wnt signaling pathway plays a crucial role during embryogenesis in vertebrates. In this study, 124 SNP in 31 Wnt signaling pathway genes were selected to genotype 764 individuals in an F(2) resource population by reciprocally crossing Silkie fowls and Cornish broilers, and 102 SNP were polymorphic. Pairwise linkage disequilibrium among the SNP within each gene was calculated. Haplotypes were reconstructed from the SNP in strong linkage disequilibrium. The associations of SNP and haplotypes with carcass traits were analyzed respectively, and the SNP contributions to phenotypic variance were estimated. The present study showed that 58 SNP in 24 genes and 8 haplotype blocks within 7 genes were significantly (P < 0.05) associated with at least one carcass trait. Fourteen SNP (among the 58 SNP) explained >2% phenotypic variance, 12 of which had significantly (P < 0.01) additive or dominant effects. Furthermore, both rs15865526 (Wnt9A) and rs14066777 (MAPK9) as well as their corresponding haplotype blocks were significantly associated with shank circumference and wing weight, respectively. In addition, 5 muscle-weight-related SNP explained >7% phenotypic variance, which was much higher than those of others. It was found that the Wnt signaling pathway was strongly associated with chicken carcass traits, and 7 genes were particularly important, namely RHOA and CHP for breast muscle weight, Wnt3A for breast muscle weight percentage over carcass weight, RAC1 for thigh weight percentage and thigh muscle weight percentage over carcass weight, Wnt11 for thigh weight percentage over carcass weight, Wnt9A for shank length, and MAPK9 for shank circumference. It is evident that Wnt signaling plays a major role in regulating carcass characteristics important for production traits in chickens.
Collapse
Affiliation(s)
- Y Lu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
274
|
Castañon BI, Stapp AD, Gifford CA, Spicer LJ, Hallford DM, Hernandez Gifford JA. Follicle-stimulating hormone regulation of estradiol production: possible involvement of WNT2 and β-catenin in bovine granulosa cells. J Anim Sci 2012; 90:3789-97. [PMID: 22696613 DOI: 10.2527/jas.2011-4696] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Follicle-stimulating hormone regulation of estrogen biosynthesis in the adult rodent ovary requires β-catenin (CTNNB1), but whether CTNNB1 is involved in FSH-induced estrogen production in cattle is unknown. To elucidate the effect of FSH in regulating specific wingless-type mouse mammary tumor virus integration site (WNT)/CTNNB1 pathway components in bovine folliculogenesis and steroidogenesis, granulosa cells and follicular fluid were collected from large antral follicles (8 to 22 mm) from ovaries containing stage-III corpora lutea (d 11 to 17 of an estrous cycle). Follicles were categorized as high estradiol (n = 3; ≥ 25 ng/mL) or low estradiol (n = 3; ≤ 14 ng/mL) based on intra-follicular estradiol concentrations. Protein fractions were collected from granulosa cells and CTNNB1 abundance was analyzed by Western blot. Follicles with increased estradiol concentrations had 6-fold greater (P < 0.001) abundances of CTNNB1 compared with those classified as low-estradiol follicles, indicating that the hormonal milieu responsible for increased estradiol content could result in CTNNB1 accumulation. To ascertain specific contributions of FSH to increases in CTNNB1 protein abundances, granulosa cells were isolated from small ovarian follicles (1 to 5 mm) and cultured in the presence or absence of 100 ng/mL FSH for 24 or 48 h. Real-time PCR quantification of aromatase (CYP19A1) and select WNT family members were evaluated in response to FSH treatment. Successful stimulation of granulosa cells with FSH was confirmed by induction of CYP19A1 mRNA and parallel temporal increases of medium estradiol concentrations. Additionally, protein kinase b (AKT), a known FSH target, increased 1.7-fold (P = 0.07). Of the WNT family members analyzed, only WNT2 mRNA was induced after 24 h of FSH treatment compared with controls (0.12-fold and 3.7-fold for control and FSH-treated, respectively; P < 0.05), and WNT2 expression tended (P = 0.11) to remain increased at 48 h in FSH-treated cells compared with controls (1.0- and 3.14-fold, respectively). Furthermore, FSH-treated granulosa cells had greater abundances of total CTNNB1 (P = 0.04) protein. These data demonstrate for the first time that FSH regulates CTNNB1 protein and WNT2 mRNA expressions in bovine granulosa cells, suggesting a potential role of canonical WNT signaling in ovarian steroidogenesis and follicular growth of cattle. Future studies are necessary to determine if FSH directly regulates CTNNB1 through modulation of AKT or indirectly by up regulating WNT2, which subsequently activates the canonical WNT pathway.
Collapse
Affiliation(s)
- B I Castañon
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
275
|
Cobourne MT, Sharpe PT. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:183-212. [DOI: 10.1002/wdev.66] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
276
|
Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 2012; 31:2670-84. [PMID: 22617420 DOI: 10.1038/emboj.2012.146] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022] Open
Abstract
Wnt genes and components of Wnt signalling pathways have been implicated in a wide spectrum of important biological phenomena, ranging from early organismal development to cell behaviours to several diseases, especially cancers. Emergence of the field of Wnt signalling can be largely traced back to the discovery of the first mammalian Wnt gene in 1982. In this essay, we mark the thirtieth anniversary of that discovery by describing some of the critical scientific developments that led to the flowering of this field of research.
Collapse
|
277
|
A new validated mathematical model of the Wnt signalling pathway predicts effective combinational therapy by sFRP and Dkk. Biochem J 2012; 444:115-25. [DOI: 10.1042/bj20111887] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signalling pathway controls cell proliferation and differentiation, and its deregulation is implicated in different diseases including cancer. Learning how to manipulate this pathway could substantially contribute to the development of therapies. We developed a mathematical model describing the initial sequence of events in the Wnt pathway, from ligand binding to β-catenin accumulation, and the effects of inhibitors, such as sFRPs (secreted Frizzled-related proteins) and Dkk (Dickkopf). Model parameters were retrieved from experimental data reported previously. The model was retrospectively validated by accurately predicting the effects of Wnt3a and sFRP1 on β-catenin levels in two independent published experiments (R2 between 0.63 and 0.91). Prospective validation was obtained by testing the model's accuracy in predicting the effect of Dkk1 on Wnt-induced β-catenin accumulation (R2≈0.94). Model simulations under different combinations of sFRP1 and Dkk1 predicted a clear synergistic effect of these two inhibitors on β-catenin accumulation, which may point towards a new treatment avenue. Our model allows precise calculation of the effect of inhibitors applied alone or in combination, and provides a flexible framework for identifying potential targets for intervention in the Wnt signalling pathway.
Collapse
|
278
|
Zhang YG, Wu S, Xia Y, Chen D, Petrof EO, Claud EC, Hsu W, Sun J. Axin1 prevents Salmonella invasiveness and inflammatory response in intestinal epithelial cells. PLoS One 2012; 7:e34942. [PMID: 22509369 PMCID: PMC3324539 DOI: 10.1371/journal.pone.0034942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Axin1 and its homolog Axin2 are scaffold proteins essential for regulating Wnt signaling. Axin-dependent regulation of Wnt is important for various developmental processes and human diseases. However, the involvement of Axin1 and Axin2 in host defense and inflammation remains to be determined. Methods/Principal Findings Here, we report that Axin1, but not Axin2, plays an essential role in host-pathogen interaction mediated by the Wnt pathway. Pathogenic Salmonella colonization greatly reduces the level of Axin1 in intestinal epithelial cells. This reduction is regulated at the posttranslational level in early onset of the bacterial infection. Further analysis reveals that the DIX domain and Ser614 of Axin1 are necessary for the Salmonella-mediated modulation through ubiquitination and SUMOylation. Conclusion/Significance Axin1 apparently has a preventive effect on bacterial invasiveness and inflammatory response during the early stages of infection. The results suggest a distinct biological function of Axin1 and Axin2 in infectious disease and intestinal inflammation while they are functionally equivalent in developmental settings.
Collapse
Affiliation(s)
- Yong-guo Zhang
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Shaoping Wu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Elaine O. Petrof
- GI Diseases Research Unit and Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Erika C. Claud
- Department of Pediatrics and Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, and James P Wilmot Cancer Center, University of Rochester, Rochester, New York, United States of America
| | - Jun Sun
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
279
|
Metcalfe C, Bienz M. Inhibition of GSK3 by Wnt signalling--two contrasting models. J Cell Sci 2012; 124:3537-44. [PMID: 22083140 DOI: 10.1242/jcs.091991] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The key read-out of Wnt signalling is a change in the transcriptional profile of the cell, which is driven by β-catenin. β-catenin levels are normally kept low by a phosphorylation event that is mediated by glycogen synthase kinase 3 (GSK3, α- and β-isoforms), which targets β-catenin for ubiquitylation and proteasomal degradation. Wnt blocks this phosphorylation event, thereby allowing β-catenin to accumulate and to co-activate transcription in the nucleus. Exactly how Wnt inhibits GSK3 activity towards β-catenin is unclear and has been the focus of intensive research. Recent studies on the role of conserved PPPSPxS motifs in the cytoplasmic tail of low-density lipoprotein receptor-related protein (LRP, isoforms 5 and 6) culminated in a biochemical model: Wnt induces the phosphorylation of LRP6 PPPSPxS motifs, which consequently access the catalytic pocket of GSK3 as pseudo-substrates, thus directly blocking its activity against β-catenin. A distinct cell-biological model was proposed more recently: Wnt proteins induce the uptake of GSK3 into multivesicular bodies (MVBs), an event that sequesters the enzyme away from newly synthesised β-catenin substrate in the cytoplasm, thus blocking its phosphorylation. This new model is based on intriguing observations but also challenges a body of existing evidence, so will require further experimental consolidation. We shall consider whether the two models apply to different modes of Wnt signaling: acute versus chronic.
Collapse
Affiliation(s)
- Ciara Metcalfe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
280
|
Abstract
Pluripotency is a "blank" cellular state characteristic of specific cells within the early embryo (e.g., epiblast cells) and of certain cells propagated in vitro (e.g., embryonic stem cells, ESCs). The terms pluripotent cell and stem cell are often used interchangeably to describe cells capable of differentiating into multiple cell types. In this review, we discuss the prevailing molecular and functional definitions of pluripotency and the working parameters employed to describe this state, both in the context of cells residing within the early embryo and cells propagated in vitro.
Collapse
Affiliation(s)
- Marion Dejosez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
281
|
Goel S, Chin EN, Fakhraldeen SA, Berry SM, Beebe DJ, Alexander CM. Both LRP5 and LRP6 receptors are required to respond to physiological Wnt ligands in mammary epithelial cells and fibroblasts. J Biol Chem 2012; 287:16454-66. [PMID: 22433869 DOI: 10.1074/jbc.m112.362137] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A canonical Wnt signal maintains adult mammary ductal stem cell activity, and this signal requires the Wnt signaling reception, LRP5. However, previous data from our laboratory have shown that LRP5 and LRP6 are co-expressed in mammary basal cells and that LRP6 is active, leading us to question why LRP6 is insufficient to mediate canonical signaling in the absence of LRP5. Here, we show that at endogenous levels of LRP5 and LRP6 both receptors are required to signal in response to some Wnt ligands both in vitro (in mouse embryonic fibroblasts and mammary epithelial cells) and in vivo (in mammary outgrowths). This subgroup of canonical ligands includes Wnt1, Wnt9b, and Wnt10b; the latter two are expressed in mammary gland. In contrast, the ligand commonly used experimentally, Wnt3a, prefers LRP6 and requires just one receptor regardless of cellular context. When either LRP5 or LRP6 is overexpressed, signaling remains ligand-dependent, but the requirement for both receptors is abrogated (regardless of ligand type). We have documented an LRP5-6 heteromer using immiscible filtration assisted by surface tension (IFAST) immunoprecipitation. Together, our data imply that under physiological conditions some Wnt ligands require both receptors to be present to generate a canonical signal. We have designed a model to explain our results based on the resistance of LRP5-6 heteromers to a selective inhibitor of E1/2-binding Wnt-LRP6 interaction. These data have implications for stem cell biology and for the analysis of the oncogenicity of LRP receptors that are often overexpressed in breast tumors.
Collapse
Affiliation(s)
- Shruti Goel
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
282
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
283
|
Wnt/β-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev Rep 2012; 7:836-46. [PMID: 21603945 DOI: 10.1007/s12015-011-9275-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Embryonic stem cells and induced pluripotent stem (iPS) cells are characterized by their ability to self-renew and to generate differentiated cells of all three germ layers. This potential makes them an attractive source to address question of developmental and also for use in clinical regenerative medicine. Although the culture conditions to maintain pluripotency and reprogramming technologies have been established, the underlying molecular mechanisms are incompletely understood. Accumulating evidence indicates that the Wnt/β-catenin signaling pathway plays a pivotal role in the maintenance of pluripotency as well as in the process of somatic cell reprogramming. Reciprocally, Wnt/β-catenin signaling also plays a critical role in the lineage decision/commitment process. These dramatically different outcomes upon activation of the Wnt signaling cascade has fueled enormous controversy concerning the role of Wnt signaling in the maintenance of potency and induction of differentiation in stem cells. Here, we discuss and explore the divergent roles of the Wnt signaling pathways based on findings from our lab. Accumulated results from our lab indicate the usage of a critical switching mechanism that regulates the divergent Wnt/catenin transcriptional programs associated with either maintenance of potency or initiation of differentiation.
Collapse
|
284
|
Ke J, Zhang C, Harikumar KG, Zylstra-Diegel CR, Wang L, Mowry LE, Miller LJ, Williams BO, Xu HE. Modulation of β-catenin signaling by glucagon receptor activation. PLoS One 2012; 7:e33676. [PMID: 22438981 PMCID: PMC3306284 DOI: 10.1371/journal.pone.0033676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.
Collapse
Affiliation(s)
- Jiyuan Ke
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail: (JK); (HEX)
| | - Chenghai Zhang
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Cassandra R. Zylstra-Diegel
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Liren Wang
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Laura E. Mowry
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Bart O. Williams
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- VARI/SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail: (JK); (HEX)
| |
Collapse
|
285
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:21-71. [PMID: 22017973 DOI: 10.1016/b978-0-12-386035-4.00002-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnts compromise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the Wnt-signal studies have revealed that distinct Wnts activate multiple intracellular cascades that regulate cellular proliferation, differentiation, migration, and polarity. Although the mechanism by which Wnts regulate different pathways selectively remains to be clarified, evidence has accumulated that in addition to the formation of ligand-receptor pairs, phosphorylation of receptors, receptor-mediated endocytosis, acidification, and the presence of cofactors, such as heparan sulfate proteoglycans, are also involved in the activation of specific Wnt pathways. Here, we review the mechanism of activation in Wnt signaling initiated on the cell-surface membrane. In addition, the mechanisms for fine-tuning by cross talk between Wnt and other signaling are also discussed.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
286
|
Cho YD, Kim WJ, Yoon WJ, Woo KM, Baek JH, Lee G, Kim GS, Ryoo HM. Wnt3a stimulatesMepe,Matrix extracellular phosphoglycoprotein, expression directly by the activation of the canonical Wnt signaling pathway and indirectly through the stimulation of autocrine Bmp-2 expression. J Cell Physiol 2012; 227:2287-96. [DOI: 10.1002/jcp.24038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
287
|
Shahi P, Park D, Pond AC, Seethammagari M, Chiou SH, Cho K, Carstens JL, Decker WK, McCrea PD, Ittmann MM, Rosen JM, Spencer DM. Activation of Wnt signaling by chemically induced dimerization of LRP5 disrupts cellular homeostasis. PLoS One 2012; 7:e30814. [PMID: 22303459 PMCID: PMC3267738 DOI: 10.1371/journal.pone.0030814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion.
Collapse
Affiliation(s)
- Payam Shahi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dongsu Park
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adam C. Pond
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mamatha Seethammagari
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shin-Heng Chiou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kyucheol Cho
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Julienne L. Carstens
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
288
|
Iozzi S, Remelli R, Lelli B, Diamanti D, Pileri S, Bracci L, Roncarati R, Caricasole A, Bernocco S. Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction. ISRN MOLECULAR BIOLOGY 2012; 2012:823875. [PMID: 27398238 PMCID: PMC4908242 DOI: 10.5402/2012/823875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
Abstract
Background. DKK1 antagonizes canonical Wnt signalling through high-affinity binding to LRP5/6, an essential component of the Wnt receptor complex responsible for mediating downstream canonical Wnt signalling. DKK1 overexpression is known for its pathological implications in osteoporosis, cancer, and neurodegeneration, suggesting the interaction with LRP5/6 as a potential therapeutic target. Results. We show that the small-molecule NCI8642 can efficiently displace DKK1 from LRP6 and block DKK1 inhibitory activity on canonical Wnt signalling, as shown in binding and cellular assays, respectively. We further characterize NCI8642 binding activity on LRP6 by Surface Plasmon Resonance (SPR) technology. Conclusions. This study demonstrates that the DKK1-LRP6 interaction can be the target of small molecules and unlocks the possibility of new therapeutic tools for diseases associated with DKK1 dysregulation.
Collapse
Affiliation(s)
- Sara Iozzi
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Rosaria Remelli
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Barbara Lelli
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Diamanti
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Silvia Pileri
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Renza Roncarati
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; High-throughput Screening Unit, Center for Genomic Regulation, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Andrea Caricasole
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Simonetta Bernocco
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| |
Collapse
|
289
|
Katanaev VL, Kryuchkov MV. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. BIOCHEMISTRY (MOSCOW) 2012; 76:1556-81. [DOI: 10.1134/s0006297911130116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
290
|
Shi C, Li J, Wang W, Cao W, Cao X, Wan M. Antagonists of LRP6 regulate PTH-induced cAMP generation. Ann N Y Acad Sci 2012; 1237:39-46. [PMID: 22082363 DOI: 10.1111/j.1749-6632.2011.06226.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
LRP6 is a common coreceoptor for different G protein-coupled seven-transmembrane receptors in production of cAMP. Extracelluar proteins sclerostin and DKK1, initially identified as antagonists for Wnt signaling by binding to LRP6, are negative regulators for bone formation. Here, we show that both sclerostin and DKK1 inhibit PTH-stimulated cAMP production. In addition, PTH suppresses expression of sclerostin in osteocytes in mice. We also found that sclerostin and DKK1 binds to LRP6 as antagonists to increase the availability of LRP6 to facilitate PTH signaling in a positive-feedback fashion. These studies reveal a previously unrecognized function of sclerostin and DKK1, which provides an alternative explanation for the application of sclerostin and DKK1 neutralization on enhancing bone formation as a potential therapy for skeletal diseases.
Collapse
Affiliation(s)
- Chenhui Shi
- Shihezi Medical College, Shihezi University, Xinjiang, China
| | | | | | | | | | | |
Collapse
|
291
|
Peradziryi H, Tolwinski NS, Borchers A. The many roles of PTK7: a versatile regulator of cell-cell communication. Arch Biochem Biophys 2012; 524:71-6. [PMID: 22230326 DOI: 10.1016/j.abb.2011.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022]
Abstract
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.
Collapse
Affiliation(s)
- Hanna Peradziryi
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB), GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
292
|
Henríquez JP, Salinas PC. Dual roles for Wnt signalling during the formation of the vertebrate neuromuscular junction. Acta Physiol (Oxf) 2012; 204:128-36. [PMID: 21554559 DOI: 10.1111/j.1748-1716.2011.02295.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wnt proteins play prominent roles in different aspects of neuronal development culminating with the formation of complex neuronal circuits. Here, we discuss new studies addressing the function of Wnt signalling at the peripheral neuromuscular junction (NMJ). In both, invertebrate and vertebrate organisms, Wnt signalling promotes and also inhibits the assembly of the neuromuscular synapse. Here, we focus our attention on recent studies at the vertebrate NMJ that demonstrate that some Wnt proteins collaborate with the Agrin-MuSK signalling to induce post-synaptic differentiation. In contrast, Wnts that activate the Wnt/β-catenin signalling inhibit post-synaptic differentiation. The dual function of different Wnts might finely modulate the proper apposition of the pre- and post-synaptic terminals during NMJ formation and growth.
Collapse
Affiliation(s)
- J P Henríquez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile.
| | | |
Collapse
|
293
|
Screening for small molecule inhibitors of embryonic pathways: sometimes you gotta crack a few eggs. Bioorg Med Chem 2011; 20:1869-77. [PMID: 22261025 DOI: 10.1016/j.bmc.2011.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 12/17/2022]
Abstract
Extract prepared from Xenopus eggs represents a cell-free system that has been shown to recapitulate a multitude of cellular processes, including cell cycle regulation, DNA replication/repair, and cytoskeletal dynamics. In addition, this system has been used to successfully reconstitute the Wnt pathway. Xenopus egg extract, which can be biochemically manipulated, offers an ideal medium in which small molecule screening can be performed in near native milieu. Thus, the use of Xenopus egg extract for small molecule screening represents an ideal bridge between targeted and phenotypic screening approaches. This review focuses on the use of this system for small molecules modulators of major signal transduction pathways (Notch, Hedgehog, and Wnt) that are critical for the development of the early Xenopus embryo. We describe the properties of Xenopus egg extract and our own high throughput screen for small molecules that modulate the Wnt pathway using this cell-free system. We propose that Xenopus egg extract could similarly be adapted for screening for modulators of the Notch and Hedgehog pathways.
Collapse
|
294
|
Valvezan AJ, Zhang F, Diehl JA, Klein PS. Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. J Biol Chem 2011; 287:3823-32. [PMID: 22184111 DOI: 10.1074/jbc.m111.323337] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is essential for many signaling pathways and cellular processes. As Adenomatous Polyposis Coli (APC) functions in many of the same processes, we investigated a role for APC in the regulation of GSK-3-dependent signaling. We find that APC directly enhances GSK-3 activity. Furthermore, knockdown of APC mimics inhibition of GSK-3 by reducing phosphorylation of glycogen synthase and by activating mTOR, revealing novel roles for APC in the regulation of these enzymes. Wnt signaling inhibits GSK-3 through an unknown mechanism, and this results in both stabilization of β-catenin and activation of mTOR. We therefore hypothesized that Wnts may regulate GSK-3 by disrupting the interaction between APC and the Axin-GSK-3 complex. We find that Wnts rapidly induce APC dissociation from Axin, correlating with β-catenin stabilization. Furthermore, Axin interaction with the Wnt co-receptor LRP6 causes APC dissociation from Axin. We propose that APC regulates multiple signaling pathways by enhancing GSK-3 activity, and that Wnts induce APC dissociation from Axin to reduce GSK-3 activity and activate downstream signaling. APC regulation of GSK-3 also provides a novel mechanism for Wnt regulation of multiple downstream effectors, including β-catenin and mTOR.
Collapse
Affiliation(s)
- Alexander J Valvezan
- Cell and Molecular Biology Graduate Group, The Leonard and Madlyn Abramson Family Cancer Research Institute and Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
295
|
Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes 2011; 18:383-8. [PMID: 21897222 DOI: 10.1097/med.0b013e32834afff2] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Wingless tail (Wnt) pathway is crucial for osteoblast activation and action. This review summarizes the evidence published during the previous year on the emerging role of Wnt signaling alterations in the pathogenesis, diagnosis, and potential therapeutic approaches of osteoporosis. RECENT FINDINGS New insights into the mechanisms regulating Wnt/β-catenin canonical pathway, including the role of Kremen-2 receptor, lamin A/C protein, periostin, and pleiotropin in bone physiology, the crosstalk between the RUNX-2 transcription-factor cascade and the Wnt pathway, and the concept that individual Wnt ligands may have a unique and distinct mission in bone milieu, are presented. Nutritional habits may affect Wnt signaling in bone. Serum sclerostin and dickkopf-1 levels may serve as markers of bone metabolism and disease, although further standardization methods are required. Finally, the effect of current antiosteoporotic treatments on Wnt signaling is discussed, as well as the therapeutic potential of drugs targeting either Wnt signaling amplification or Wnt antagonists' attenuation. SUMMARY Although Wnt pathway is currently a field of thorough investigation, it is still far from been fully elucidated. Understanding its complex pathophysiology has evoked promising therapeutic approaches for osteoporosis. However, given that Wnt signaling is crucial for many tissues, emerging knowledge should be cautiously translated in therapeutics.
Collapse
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 General Military Hospital, Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | |
Collapse
|
296
|
Liu C, Yao M, Hogue CWV. Near-membrane ensemble elongation in the proline-rich LRP6 intracellular domain may explain the mysterious initiation of the Wnt signaling pathway. BMC Bioinformatics 2011; 12 Suppl 13:S13. [PMID: 22372892 PMCID: PMC3278829 DOI: 10.1186/1471-2105-12-s13-s13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background LRP6 is a membrane protein crucial in the initiation of canonical Wnt/β-catenin signalling. Its function is dependent on its proline-serine rich intracellular domain. LRP6 has five PPP(S/T)P motifs that are phosphorylated during activation, starting with the site closest to the membrane. Like all long proline rich regions, there is no stable 3D structure for this isolated, contiguous region. Results In our study, we use a computational simulation tool to sample the conformational space of the LRP6 intracellular domain, under the spatial constraints imposed by (a) the membrane and (b) the close approach of the neighboring intracellular molecular complex, which is assembled on Frizzled when Wnt binds to both LRP6 and Frizzled on the opposite side of the membrane. We observe that an elongated form dominates in the LRP6 intracellular domain structure ensemble. This elongation could relieve conformational auto-inhibition of the PPP(S/T)PX(S/T) motif binding sites and allow GSK3 and CK1 to approach their phosphorylation sites, thereby activating LRP6 and the downstream pathway. Conclusions We propose a model in which the conformation of the LRP6 intracellular domain is elongated before activation. This is based on the intrusion of the Frizzled complex into the ensemble space of the proline rich region of LRP6, which alters the shape of its available ensemble space. To test whether this observed ensemble conformational change is sequence dependent, we did a control simulation with a hypothetical sequence with 50% proline and 50% serine in alternating residues. We confirm that this ensemble neighbourhood-based conformational change is independent of sequence and conclude that it is likely found in all proline rich sequences. These observations help us understand the nature of proline rich regions which are both unstructured and which seem to evolve at a higher rate of mutation, while maintaining sequence composition.
Collapse
Affiliation(s)
- Chengcheng Liu
- Computation and Systems Biology Programme, Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore
| | | | | |
Collapse
|
297
|
Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, Yamamoto H, Li J, Kirchner K, Hoffmann C, Stern P, Kikuchi A, Schambony A, Weidinger G. Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev Cell 2011; 21:1129-43. [PMID: 22100263 DOI: 10.1016/j.devcel.2011.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/09/2011] [Accepted: 10/20/2011] [Indexed: 02/03/2023]
Abstract
Wnt proteins can activate distinct signaling pathways, but little is known about the mechanisms regulating pathway selection. Here we show that the metastasis-associated transmembrane protein Wnt-activated inhibitory factor 1 (Waif1/5T4) interferes with Wnt/β-catenin signaling and concomitantly activates noncanonical Wnt pathways. Waif1 inhibits β-catenin signaling in zebrafish and Xenopus embryos as well as in mammalian cells, and zebrafish waif1a acts as a direct feedback inhibitor of wnt8-mediated mesoderm and neuroectoderm patterning during zebrafish gastrulation. Waif1a binds to the Wnt coreceptor LRP6 and inhibits Wnt-induced LRP6 internalization into endocytic vesicles, a process that is required for pathway activation. Thus, Waif1a modifies Wnt/β-catenin signaling by regulating LRP6 subcellular localization. In addition, Waif1a enhances β-catenin-independent Wnt signaling in zebrafish embryos and Xenopus explants by promoting a noncanonical function of Dickkopf1. These results suggest that Waif1 modulates pathway selection in Wnt-receiving cells.
Collapse
Affiliation(s)
- Birgit Kagermeier-Schenk
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Ahn VE, Chu MLH, Choi HJ, Tran D, Abo A, Weis WI. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev Cell 2011; 21:862-73. [PMID: 22000856 DOI: 10.1016/j.devcel.2011.09.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/07/2011] [Accepted: 09/12/2011] [Indexed: 12/17/2022]
Abstract
LDL receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four β-propeller/EGF-like domain repeats. The first two repeats, LRP6(1-2), bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle X-ray scattering analysis of LRP6(1-4) bound to a noninhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors.
Collapse
Affiliation(s)
- Victoria E Ahn
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
299
|
Pedersen L, Jensen MH, Krishna S. Dickkopf1--a new player in modelling the Wnt pathway. PLoS One 2011; 6:e25550. [PMID: 22022411 PMCID: PMC3192063 DOI: 10.1371/journal.pone.0025550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 09/07/2011] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling pathway transducing the stabilization of β-catenin is essential for metazoan embryo development and is misregulated in many diseases such as cancers. In recent years models have been proposed for the Wnt signaling pathway during the segmentation process in developing embryos. Many of these include negative feedback loops where Axin2 plays a key role. However, Axin2 null mice show no segmentation phenotype. We therefore propose a new model where the negative feedback involves Dkk1 rather than Axin2. We show that this model can exhibit the same type of oscillations as the previous models with Axin2 and as observed in experiments. We show that a spatial Wnt gradient can consistently convert this temporal periodicity into the spatial periodicity of somites, provided the oscillations in new cells arising in the presomitic mesoderm are synchronized with the oscillations of older cells. We further investigate the hypothesis that a change in the Wnt level in the tail bud during the later stages of somitogenesis can lengthen the time period of the oscillations and hence the size and separation of the later somites.
Collapse
Affiliation(s)
- Lykke Pedersen
- Center for Models of Life, Niels Bohr Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
300
|
Markatseli AE, Hatzi E, Bouba I, Georgiou I, Challa A, Tigas S, Tsatsoulis A. Association of the A1330V and V667M polymorphisms of LRP5 with bone mineral density in Greek peri- and postmenopausal women. Maturitas 2011; 70:188-93. [DOI: 10.1016/j.maturitas.2011.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 01/06/2023]
|