251
|
Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, Mamoshina P, Putin E, Swick AG, Moskalev A, Zhavoronkov A. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2017; 8:2127-2152. [PMID: 27677171 PMCID: PMC5076455 DOI: 10.18632/aging.101047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022]
Abstract
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Aleksey V Belikov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Andrew Garazha
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Center for Biogerontology and Regenerative Medicine, Moscow, 121099, Russia
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Maria Suntsova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Alena Ivanova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Larisa Venkova
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Nicolas Borisov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Anton Buzdin
- Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Polina Mamoshina
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Evgeny Putin
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.,School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA.,Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, Oxford, UK
| |
Collapse
|
252
|
Aliper A, Jellen L, Cortese F, Artemov A, Karpinsky-Semper D, Moskalev A, Swick AG, Zhavoronkov A. Towards natural mimetics of metformin and rapamycin. Aging (Albany NY) 2017; 9:2245-2268. [PMID: 29165314 PMCID: PMC5723685 DOI: 10.18632/aging.101319] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Franco Cortese
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
- Department of Biomedical and Molecular Science, Queen's University School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
| |
Collapse
|
253
|
Mamoshina P, Ojomoko L, Yanovich Y, Ostrovski A, Botezatu A, Prikhodko P, Izumchenko E, Aliper A, Romantsov K, Zhebrak A, Ogu IO, Zhavoronkov A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2017; 9:5665-5690. [PMID: 29464026 PMCID: PMC5814166 DOI: 10.18632/oncotarget.22345] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.
Collapse
Affiliation(s)
- Polina Mamoshina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Lucy Ojomoko
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | | | | | | | | | - Eugene Izumchenko
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Aliper
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | - Konstantin Romantsov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | - Alexander Zhebrak
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | - Iraneus Obioma Ogu
- Africa Blockchain Artificial Intelligence for Healthcare Initiative, Insilico Medicine, Inc, Abuja, Nigeria
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,The Biogerontology Research Foundation, London, United Kingdom
| |
Collapse
|
254
|
Nishimura Y, Tagawa M, Ito H, Tsuruma K, Hara H. Overcoming Obstacles to Drug Repositioning in Japan. Front Pharmacol 2017; 8:729. [PMID: 29075191 PMCID: PMC5641581 DOI: 10.3389/fphar.2017.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
Drug repositioning (DR) is the process of identifying new indications for existing drugs. DR usually focuses on drugs that have cleared phase-I safety trials but has yet to show efficacy for the intended indication. Therefore, DR can probably skip the preclinical and phase-I study, which can reduce the cost throughout drug development. However, the expensive phase-II/III trials are required to establish efficacy. The obstacles to DR include identification of new indications with a high success rate in clinical studies, obtaining funding for clinical studies, patent protection, and approval systems. To tackle these obstacles, various approaches have been applied to DR worldwide. In this perspective, we provide representative examples of DR and discuss the ongoing efforts to overcome obstacles to DR in Japan.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Tagawa
- Medical Affairs, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
255
|
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22:1680-1685. [PMID: 28881183 DOI: 10.1016/j.drudis.2017.08.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/29/2023]
Abstract
Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era.
Collapse
Affiliation(s)
- Lu Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jianjun Tan
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Dan Han
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hao Zhu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA; The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA.
| |
Collapse
|
256
|
Long NP, Lim DK, Mo C, Kim G, Kwon SW. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice. Sci Rep 2017; 7:8552. [PMID: 28819110 PMCID: PMC5561257 DOI: 10.1038/s41598-017-08892-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Geographical origin determination of white rice has become the major issue of food industry. However, there is still lack of a high-throughput method for rapidly and reproducibly differentiating the geographical origins of commercial white rice. In this study, we developed a method that employed lipidomics and deep learning to discriminate white rice from Korea to China. A total of 126 white rice of 30 cultivars from different regions were utilized for the method development and validation. By using direct infusion-mass spectrometry-based targeted lipidomics, 17 lysoglycerophospholipids were simultaneously characterized within minutes per sample. Unsupervised data exploration showed a noticeable overlap of white rice between two countries. In addition, lysophosphatidylcholines (lysoPCs) were prominent in white rice from Korea while lysophosphatidylethanolamines (lysoPEs) were enriched in white rice from China. A deep learning prediction model was built using 2014 white rice and validated using two different batches of 2015 white rice. The model accurately discriminated white rice from two countries. Among 10 selected predictors, lysoPC(18:2), lysoPC(14:0), and lysoPE(16:0) were the three most important features. Random forest and gradient boosting machine models also worked well in this circumstance. In conclusion, this study provides an architecture for high-throughput classification of white rice from different geographical origins.
Collapse
Affiliation(s)
- Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Kyu Lim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyeun Mo
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Giyoung Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Sung Won Kwon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
257
|
Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. Mol Pharm 2017; 14:3098-3104. [PMID: 28703000 DOI: 10.1021/acs.molpharmaceut.7b00346] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
Collapse
Affiliation(s)
- Artur Kadurin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern , Baltimore, Maryland 21218, United States.,Steklov Mathematical Institute at St. Petersburg , St. Petersburg 191023, Russia.,Kazan Federal University , Kazan, Republic of Tatarstan 420008, Russia
| | - Sergey Nikolenko
- National Research University Higher School of Economics , St. Petersburg 190008, Russia.,Steklov Mathematical Institute at St. Petersburg , St. Petersburg 191023, Russia.,Kazan Federal University , Kazan, Republic of Tatarstan 420008, Russia
| | - Kuzma Khrabrov
- Search Department, Mail.Ru Group Ltd. , Moscow 125167, Russia
| | - Alex Aliper
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern , Baltimore, Maryland 21218, United States
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern , Baltimore, Maryland 21218, United States.,The Biogerontology Research Foundation , Trevissome Park, Truro TR4 8UN, U.K.,Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| |
Collapse
|
258
|
Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017; 8:10883-10890. [PMID: 28029644 PMCID: PMC5355231 DOI: 10.18632/oncotarget.14073] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request even using natural language as input. In this paper we present the first application of generative adversarial autoencoders (AAE) for generating novel molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output the AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, which when negative indicates the reduction in the number of tumor cells after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anti-cancer properties. This approach is a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties.
Collapse
Affiliation(s)
- Artur Kadurin
- Search Department, Mail.Ru Group Ltd., Moscow, Russia.,Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,Big Data and Text Analysis Laboratory, Kazan Federal University, Kazan, Republic of Tatarstan, Russia.,St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, Petersburg, Russia
| | - Alexander Aliper
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | - Andrey Kazennov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Polina Mamoshina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,Department of Computer Science, University of Oxford, Oxford, UK
| | - Quentin Vanhaelen
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA
| | | | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, Maryland, USA.,The Biogerontology Research Foundation, Trevissome Park, Truro TR4 8UN, UK.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
259
|
Koutsoukas A, Monaghan KJ, Li X, Huan J. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J Cheminform 2017; 9:42. [PMID: 29086090 PMCID: PMC5489441 DOI: 10.1186/s13321-017-0226-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/27/2017] [Indexed: 01/03/2023] Open
Abstract
Background In recent years, research in artificial neural networks has resurged, now under the deep-learning umbrella, and grown extremely popular. Recently reported success of DL techniques in crowd-sourced QSAR and predictive toxicology competitions has showcased these methods as powerful tools in drug-discovery and toxicology research. The aim of this work was dual, first large number of hyper-parameter configurations were explored to investigate how they affect the performance of DNNs and could act as starting points when tuning DNNs and second their performance was compared to popular methods widely employed in the field of cheminformatics namely Naïve Bayes, k-nearest neighbor, random forest and support vector machines. Moreover, robustness of machine learning methods to different levels of artificially introduced noise was assessed. The open-source Caffe deep-learning framework and modern NVidia GPU units were utilized to carry out this study, allowing large number of DNN configurations to be explored. Results We show that feed-forward deep neural networks are capable of achieving strong classification performance and outperform shallow methods across diverse activity classes when optimized. Hyper-parameters that were found to play critical role are the activation function, dropout regularization, number hidden layers and number of neurons. When compared to the rest methods, tuned DNNs were found to statistically outperform, with p value <0.01 based on Wilcoxon statistical test. DNN achieved on average MCC units of 0.149 higher than NB, 0.092 than kNN, 0.052 than SVM with linear kernel, 0.021 than RF and finally 0.009 higher than SVM with radial basis function kernel. When exploring robustness to noise, non-linear methods were found to perform well when dealing with low levels of noise, lower than or equal to 20%, however when dealing with higher levels of noise, higher than 30%, the Naïve Bayes method was found to perform well and even outperform at the highest level of noise 50% more sophisticated methods across several datasets. Electronic supplementary material The online version of this article (doi:10.1186/s13321-017-0226-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexios Koutsoukas
- Department of Electrical Engineering and Computer Sciences, University of Kansas, Lawrence, KS, 66047-7621, USA
| | - Keith J Monaghan
- Department of Electrical Engineering and Computer Sciences, University of Kansas, Lawrence, KS, 66047-7621, USA
| | - Xiaoli Li
- Department of Electrical Engineering and Computer Sciences, University of Kansas, Lawrence, KS, 66047-7621, USA
| | - Jun Huan
- Department of Electrical Engineering and Computer Sciences, University of Kansas, Lawrence, KS, 66047-7621, USA.
| |
Collapse
|
260
|
Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. ACTA ACUST UNITED AC 2017; 2:311-327. [PMID: 30062151 PMCID: PMC6034501 DOI: 10.1016/j.jacbts.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The traditional paradigm of cardiovascular disease research derives insight from large-scale, broadly inclusive clinical studies of well-characterized pathologies. These insights are then put into practice according to standardized clinical guidelines. However, stagnation in the development of new cardiovascular therapies and variability in therapeutic response implies that this paradigm is insufficient for reducing the cardiovascular disease burden. In this state-of-the-art review, we examine 3 interconnected ideas we put forth as key concepts for enabling a transition to precision cardiology: 1) precision characterization of cardiovascular disease with machine learning methods; 2) the application of network models of disease to embrace disease complexity; and 3) using insights from the previous 2 ideas to enable pharmacology and polypharmacology systems for more precise drug-to-patient matching and patient-disease stratification. We conclude by exploring the challenges of applying a precision approach to cardiology, which arise from a deficit of the required resources and infrastructure, and emerging evidence for the clinical effectiveness of this nascent approach.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khader Shameer
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben Readhead
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Partho P Sengupta
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medical Biochemistry and Biophysics Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
261
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
262
|
Kim IW, Oh JM. Deep learning: from chemoinformatics to precision medicine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0332-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
263
|
Dovrolis N, Kolios G, Spyrou G, Maroulakou I. Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 2017; 22:805-813. [PMID: 28363518 DOI: 10.1016/j.drudis.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
When faced with time- and money-consuming problems, new practices in pharmaceutical R&D arose when trying to alleviate them. Drug repositioning has great promise and when combined with today's computational power and intelligence it becomes more precise and potent. This work showcases current approaches of creating a computational pipeline for drug repositioning, along with an extensive example of how researchers can influence therapeutic approaches and further understanding, through either single or multiple disease studies. This paradigm is based on three neurodegenerative diseases with pathophysiological similarities. It is our goal to provide the readers with all the information needed to enrich their research and note expectations along the way.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Ioanna Maroulakou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Greece.
| |
Collapse
|
264
|
Beverly A, Kaye AD, Urman RD. SCAMPs for Multimodal Post-Operative Analgesia: A Concept to Standardize and Individualize Care. Curr Pain Headache Rep 2017; 21:5. [DOI: 10.1007/s11916-017-0603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
265
|
Wooden B, Goossens N, Hoshida Y, Friedman SL. Using Big Data to Discover Diagnostics and Therapeutics for Gastrointestinal and Liver Diseases. Gastroenterology 2017; 152:53-67.e3. [PMID: 27773806 PMCID: PMC5193106 DOI: 10.1053/j.gastro.2016.09.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Technologies such as genome sequencing, gene expression profiling, proteomic and metabolomic analyses, electronic medical records, and patient-reported health information have produced large amounts of data from various populations, cell types, and disorders (big data). However, these data must be integrated and analyzed if they are to produce models or concepts about physiological function or mechanisms of pathogenesis. Many of these data are available to the public, allowing researchers anywhere to search for markers of specific biological processes or therapeutic targets for specific diseases or patient types. We review recent advances in the fields of computational and systems biology and highlight opportunities for researchers to use big data sets in the fields of gastroenterology and hepatology to complement traditional means of diagnostic and therapeutic discovery.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology and Hepatology, Department of Medical Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
266
|
Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q, Aliper A, Vijg J, Osipov AN, Labat I, West MD, Buzdin A, Cantor CR, Nikolsky Y, Borisov N, Irincheeva I, Khokhlovich E, Sidransky D, Camargo ML, Zhavoronkov A. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nat Commun 2016; 7:13427. [PMID: 27848968 PMCID: PMC5116087 DOI: 10.1038/ncomms13427] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/03/2016] [Indexed: 01/02/2023] Open
Abstract
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Collapse
Affiliation(s)
- Ivan V Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA
| | - Ksenia V Lezhnina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA
| | - Evgeny Izumchenko
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - Artem V Artemov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA
| | - Sergey Medintsev
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA
| | - Quentin Vanhaelen
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA
| | - Alexander Aliper
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Laboratory of Bioinformatics, D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Andreyan N Osipov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Laboratory of Bioinformatics, D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Ivan Labat
- BioTime, Inc., 1010 Atlantic Avenue, Alameda, California 94501, USA
| | - Michael D West
- BioTime, Inc., 1010 Atlantic Avenue, Alameda, California 94501, USA
| | - Anton Buzdin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Laboratory of Bioinformatics, D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia.,National Research Centre 'Kurchatov Institute', Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova square, Moscow 123182, Russia
| | - Charles R Cantor
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | - Yuri Nikolsky
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Skolkovo Foundation, 5 Nobelya street, Skolkovo Innovation Centre, Mozhajskij region, Moscow 143026, Russia
| | - Nikolay Borisov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Laboratory of Bioinformatics, D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia.,National Research Centre 'Kurchatov Institute', Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova square, Moscow 123182, Russia
| | - Irina Irincheeva
- Nutrition and Metabolic Health group, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Edward Khokhlovich
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - Miguel Luiz Camargo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, Maryland 21218, USA.,Laboratory of Bioinformatics, D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia.,The Biogerontology Research Foundation, 2354 Chynoweth House, Trevissome Park, Truro TR4 8UN, UK
| |
Collapse
|
267
|
Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 2016; 22:210-222. [PMID: 27693712 DOI: 10.1016/j.drudis.2016.09.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure-based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA.
| | - Polina Mamoshina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Alexander M Aliper
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Artem Artemov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ksenia Lezhnina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Ozerov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Labat
- BioTime Inc., 1010 Atlantic Avenue, 102, Alameda, CA 94501, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| |
Collapse
|
268
|
Ekins S. The Next Era: Deep Learning in Pharmaceutical Research. Pharm Res 2016; 33:2594-603. [PMID: 27599991 DOI: 10.1007/s11095-016-2029-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
Abstract
Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina, 27526, USA. .,Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California, 94010, USA.
| |
Collapse
|