251
|
Abstract
SMYD3 is a member of the SET and MYND-domain family of methyl-transferases, the increased expression of which correlates with poor prognosis in various types of cancer. In liver and colon tumors, SMYD3 is localized in the nucleus, where it interacts with RNA Pol II and H3K4me3 and functions as a selective transcriptional amplifier of oncogenes and genes that control cell proliferation and metastatic spread. Smyd3 expression has a high discriminative power for the characterization of liver tumors and positively correlates with poor prognosis. In lung and pancreatic cancer, SMYD3 acts in the cytoplasm, potentiating oncogenic Ras/ERK signaling through the methylation of the MAP3K2 kinase and the subsequent release from its inhibitor. A clinico-pathological analysis of lung cancer patients uncovers prognostic significance of SMYD3 only for first progression survival. However, stratification of patients according to their smoking history significantly expands the prognostic value of SMYD3 to overall survival and other features, suggesting that smoking-related effects saturate the clinical analysis and mask the function of SMYD3 as an oncogenic potentiator.
Collapse
|
252
|
Vasudevan D, Bovee RC, Thomas DD. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide 2016; 59:54-62. [PMID: 27553128 DOI: 10.1016/j.niox.2016.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule with multiple regulatory functions in physiology and disease. The most studied molecular mechanisms underlying the biological functions of NO include its reaction with heme proteins and regulation of protein activity via modification of thiol residues. A significant number of transcriptional responses and phenotypes observed in NO microenvironments, however, still lack mechanistic understanding. Recent studies shed new light on NO signaling by revealing its influence on epigenetic changes within the cell. Epigenetic alterations are important determinants of transcriptional responses and cell phenotypes, which can relay heritable information during cell division. As transcription across the genome is highly sensitive to these upstream epigenetic changes, this mode of NO signaling provides an alternate explanation for NO-mediated gene expression changes and phenotypes. This review will provide an overview of the interplay between NO and epigenetics as well as emphasize the unprecedented importance of these pathways to explain phenotypic effects associated with biological NO synthesis.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Urology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rhea C Bovee
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
253
|
Abnormal histone acetylation of CD8 + T cells in patients with severe aplastic anemia. Int J Hematol 2016; 104:540-547. [PMID: 27485471 DOI: 10.1007/s12185-016-2061-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
Severe aplastic anemia (SAA) is a rare autoimmune disease characterized by severe pancytopenia and bone marrow failure, which is caused by activated T lymphocytes. In the present study, we evaluated histone H3 acetylation levels of bone marrow CD8+ T cells in SAA patients, and analyzed its correlation with clinical condition parameters. We found that the percentages of CD8+ T cell histone H3 acetylation in patients with untreated SAA, recovering SAA (R-SAA) and normal control, were 1.21 ± 0.08, 1.05 ± 0.36, and 1.00 ± 0.41, respectively, with no significant statistical differences. However, the amount of CD8+ T cell histone H3 acetylation from untreated SAA was 176.21 ± 32.22 μg/mg protein, which was significantly higher than that of complete response (CR)-SAA (104.29 ± 62.06 μg/mg protein) and normal control (133.94 ± 56.27 μg/mg protein) (P < 0.05) groups. Moreover, histone H3 acetylation amount of CD8+ T cell was significantly and negatively correlated with absolute neutrophil count, proportion of reticulocytes, ratio of CD4+ to CD8+ T cell in peripheral blood, and percentage of bone marrow erythroid (P < 0.05). To some extent, it also negatively correlated with hemoglobin level, platelet count, percentage of bone marrow granulocyte, and megakaryocyte count. Abnormal histone H3 acetylation of CD8+ T cells may thus play a role in the immune pathogenesis of SAA.
Collapse
|
254
|
Li N, Li Y, Lv J, Zheng X, Wen H, Shen H, Zhu G, Chen TY, Dhar SS, Kan PY, Wang Z, Shiekhattar R, Shi X, Lan F, Chen K, Li W, Li H, Lee MG. ZMYND8 Reads the Dual Histone Mark H3K4me1-H3K14ac to Antagonize the Expression of Metastasis-Linked Genes. Mol Cell 2016; 63:470-84. [PMID: 27477906 DOI: 10.1016/j.molcel.2016.06.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/02/2016] [Accepted: 06/23/2016] [Indexed: 02/05/2023]
Abstract
Histone acetylation, including acetylated H3K14 (H3K14ac), is generally linked to gene activation. Monomethylated histone H3 lysine 4 (H3K4me1), together with other gene-activating marks, denotes active genes. In contrast to usual gene-activating functions of H3K14ac and H3K4me1, we here show that the dual histone modification mark H3K4me1-H3K14ac is recognized by ZMYND8 (also called RACK7) and can function to counteract gene expression. We identified ZMYND8 as a transcriptional corepressor of the H3K4 demethylase JARID1D. ZMYND8 antagonized the expression of metastasis-linked genes, and its knockdown increased the cellular invasiveness in vitro and in vivo. The plant homeodomain (PHD) and Bromodomain cassette in ZMYND8 mediated the combinatorial recognition of H3K4me1-H3K14ac and H3K4me0-H3K14ac by ZMYND8. These findings uncover an unexpected role for the signature H3K4me1-H3K14ac in attenuating gene expression and reveal a metastasis-suppressive epigenetic mechanism in which ZMYND8's PHD-Bromo cassette couples H3K4me1-H3K14ac with downregulation of metastasis-linked genes.
Collapse
Affiliation(s)
- Na Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Lv
- Institute for Academic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA; Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, The Methodist Hospital Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiangdong Zheng
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hongjie Shen
- Key Laboratory of Epigenetics, Institutes of Biomedical Sciences and Key Laboratory of Birth Defect, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Guangjing Zhu
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tsai-Yu Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Pu-Yeh Kan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhibin Wang
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Fei Lan
- Key Laboratory of Epigenetics, Institutes of Biomedical Sciences and Key Laboratory of Birth Defect, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Kaifu Chen
- Institute for Academic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA; Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, The Methodist Hospital Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
255
|
Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol 2016; 27:198-209. [PMID: 27425039 DOI: 10.1080/14397595.2016.1206174] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, characterized by typically an axial arthritis. AS is the prototype of a group of disorders called spondyloarthropathies, which is believed to have common clinical manifestations and genetic predisposition. To date, the exact etiology of AS remains unclear. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused through environmental factors have been extensively surveyed with respect to the pathogenesis of AS, resulted in important advances. This review article focuses on the recent advances in the field of AS research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with AS. HLA genes most significantly linked with AS susceptibility include HLA-B27 and its subtypes. Numerous non-HLA genes such as those in ubiquitination, aminopeptidases and MHC class I presentation molecules like ERAP-1 were also reported. Moreover, epigenetic modifications occurred in AS has been summarized. Taken together, the findings presented in this review attempt to explain the circumstance by which both genetic variations and epigenetic modifications are involved in triggering and development of AS. Nonetheless, several unanswered dark sides continue to clog our exhaustive understanding of AS. Future researches in the field of epigenetics should be carried out to extend our vision of AS etiopathogenesis.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Saeed Aslani
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | | | - Jafar Karami
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Ahmad Reza Jamshidi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
256
|
McDaniel SL, Fligor JE, Ruan C, Cui H, Bridgers JB, DiFiore JV, Guo AH, Li B, Strahl BD. Combinatorial Histone Readout by the Dual Plant Homeodomain (PHD) Fingers of Rco1 Mediates Rpd3S Chromatin Recruitment and the Maintenance of Transcriptional Fidelity. J Biol Chem 2016; 291:14796-802. [PMID: 27226578 PMCID: PMC4938196 DOI: 10.1074/jbc.m116.720193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Indexed: 12/30/2022] Open
Abstract
The plant homeodomain (PHD) finger is found in many chromatin-associated proteins and functions to recruit effector proteins to chromatin through its ability to bind both methylated and unmethylated histone residues. Here, we show that the dual PHD fingers of Rco1, a member of the Rpd3S histone deacetylase complex recruited to transcribing genes, operate in a combinatorial manner in targeting the Rpd3S complex to histone H3 in chromatin. Although mutations in either the first or second PHD finger allow for Rpd3S complex formation, the assembled complexes from these mutants cannot recognize nucleosomes or function to maintain chromatin structure and prevent cryptic transcriptional initiation from within transcribed regions. Taken together, our findings establish a critical role of combinatorial readout in maintaining chromatin organization and in enforcing the transcriptional fidelity of genes.
Collapse
Affiliation(s)
| | - Jennifer E Fligor
- the Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Chun Ruan
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Haochen Cui
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Joseph B Bridgers
- the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Angela H Guo
- the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Bing Li
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Brian D Strahl
- From the Curriculum in Genetics and Molecular Biology and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
257
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
258
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
259
|
Lomberk GA, Iovanna J, Urrutia R. The promise of epigenomic therapeutics in pancreatic cancer. Epigenomics 2016; 8:831-42. [PMID: 27337224 PMCID: PMC5066125 DOI: 10.2217/epi-2015-0016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often viewed to arise primarily by genetic alterations. However, today we know that many aspects of the cancer phenotype require a crosstalk among these genetic alterations with epigenetic changes. Indeed, aberrant gene expression patterns, driven by epigenetics are fixed by altered signaling from mutated oncogenes and tumor suppressors to define the PDAC phenotype. This conceptual framework may have significant mechanistic value and could offer novel possibilities for treating patients affected with PDAC. In fact, extensive investigations are leading to the development of small molecule drugs that reversibly modify the epigenome. These new ‘epigenetic therapeutics’ discussed herein are promising to fuel a new era of studies, by providing the medical community with new tools to treat this dismal disease.
Collapse
Affiliation(s)
- Gwen A Lomberk
- Laboratory of Epigenetics & Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry & Molecular Biology, Biophysics, & Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université & Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Laboratory of Epigenetics & Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry & Molecular Biology, Biophysics, & Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
260
|
Bai X, Lu C, Jin J, Tian S, Guo Z, Chen P, Zhai G, Zheng S, He X, Fan E, Zhang Y, Zhang K. Development of a DNA-Templated Peptide Probe for Photoaffinity Labeling and Enrichment of the Histone Modification Reader Proteins. Angew Chem Int Ed Engl 2016; 55:7993-7. [DOI: 10.1002/anie.201602558] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Xue Bai
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Congcong Lu
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Jin Jin
- College of Pharmacy; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Shanshan Tian
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Zhenchang Guo
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Pu Chen
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Guijin Zhai
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Shuzhen Zheng
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Xiwen He
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie; Universität Freiburg; Stefan-Meier-Straße 17 Freiburg 79104 Germany
| | - Yukui Zhang
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 China
| | - Kai Zhang
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| |
Collapse
|
261
|
Bai X, Lu C, Jin J, Tian S, Guo Z, Chen P, Zhai G, Zheng S, He X, Fan E, Zhang Y, Zhang K. Development of a DNA-Templated Peptide Probe for Photoaffinity Labeling and Enrichment of the Histone Modification Reader Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xue Bai
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Congcong Lu
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Jin Jin
- College of Pharmacy; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Shanshan Tian
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Zhenchang Guo
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Pu Chen
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Guijin Zhai
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| | - Shuzhen Zheng
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Xiwen He
- Department of Chemistry; Nankai University; Weijin Road 94# Tianjin 300071 China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie; Universität Freiburg; Stefan-Meier-Straße 17 Freiburg 79104 Germany
| | - Yukui Zhang
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 China
| | - Kai Zhang
- Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical, Epigenetics; Department of Biochemistry and Molecular Biology; Tianjin Medical University; Qixiangtai Road 22# 300070 Tianjin China
| |
Collapse
|
262
|
Garner CM, Kim SH, Spears BJ, Gassmann W. Express yourself: Transcriptional regulation of plant innate immunity. Semin Cell Dev Biol 2016; 56:150-162. [PMID: 27174437 DOI: 10.1016/j.semcdb.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The plant immune system is a complex network of components that function together to sense the presence and activity of potential biotic threats, and integrate these signals into an appropriate output, namely the transcription of genes that activate an immune response that is commensurate with the perceived threat. Given the variety of biotic threats a plant must face the immune response must be plastic, but because an immune response is costly to the plant in terms of energy expenditure and development it must also be under tight control. To meet these needs transcriptional control is exercised at multiple levels. In this article we will review some of the latest developments in understanding how the plant immune response is regulated at the level of transcription. New roles are being discovered for the long-studied WRKY and TGA transcription factor families, while additional critical defense functions are being attributed to TCPs and other transcription factors. Dynamically controlling access to DNA through post-translational modification of histones is emerging as an essential component of priming, maintaining, attenuating, and repressing transcription in response to biotic stress. Unsurprisingly, the plant's transcriptional response is targeted by pathogen effectors, and in turn resistance proteins stand guard over and participate in transcriptional regulation. Together, these multiple layers lead to the observed complexity of the plant transcriptional immune response, with different transcription factors or chromatin components playing a prominent role depending on the plant-pathogen interaction being studied.
Collapse
Affiliation(s)
- Christopher M Garner
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sang Hee Kim
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Benjamin J Spears
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
263
|
Wang X, Chen CW, Armstrong SA. The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev 2016; 36:68-72. [PMID: 27151433 DOI: 10.1016/j.gde.2016.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Chromatin based (Epigenetic) mechanisms have been shown to play important roles in the regulation of gene expression during tumorigenesis and development. Mouse modeling suggests the methyltransferase DOT1L as a potential therapeutic target for MLL-rearranged leukemia. Epigenomic profiling indicates an abnormal H3K79me2 pattern on MLL-fusion targeted genes, but the molecular mechanism underlying this epigenetic dependency is not well understood. In this review, we will discuss recent advances in understanding the epigenetic mechanisms governed by DOT1L in the maintenance of gene expression. We will highlight the structural basis of chromatin targeting of DOT1L through its cofactors and the role of DOT1L in repelling transcription repressive complexes during leukemia development.
Collapse
Affiliation(s)
- Xi Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Chun-Wei Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
264
|
Lillico R, Stesco N, Khorshid Amhad T, Cortes C, Namaka MP, Lakowski TM. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity. Future Med Chem 2016; 8:879-97. [PMID: 27173004 DOI: 10.4155/fmc-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.
Collapse
Affiliation(s)
- Ryan Lillico
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicholas Stesco
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tina Khorshid Amhad
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Claudia Cortes
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Mike P Namaka
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Ted M Lakowski
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
265
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
266
|
Sinha S, Verma S, Chaturvedi MM. Differential Expression of SWI/SNF Chromatin Remodeler Subunits Brahma and Brahma-Related Gene During Drug-Induced Liver Injury and Regeneration in Mouse Model. DNA Cell Biol 2016; 35:373-84. [PMID: 27097303 DOI: 10.1089/dna.2015.3155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chromatin remodeling activity of mammalian SWI/SNF complex is carried out by either Brahma (BRM) or Brahma-related gene (BRG-1). The BRG-1 regulates genes involved in cell proliferation, whereas BRM is associated with cell differentiation, and arrest of cell growth. Global modifications of histones and expression of genes of chromatin-remodeling subunits have not been studied in in vivo model systems. In the present study, we investigate epigenetic modifications of histones and the expression of genes in thioacetamide (TAA)-induced liver injury and regeneration in a mouse model. In the present study, we report that hepatocyte proliferation and H3S10 phosphorylation occur during 60 to 72 h post TAA treatment in mice. Furthermore, there was change in the H3K9 acetylation and H3K9 trimethylation pattern with respect to liver injury and regeneration phase. Looking into the expression pattern of Brg-1 and Brm, it is evident that they contribute substantially to the process of liver regeneration. The SWI/SNF remodeler might contain BRG-1 as its ATPase subunit during injury phase. Whereas, BRM-associated SWI/SNF remodeler might probably be predominant during decline of injury phase and initiation of regeneration phase. Furthermore, during the regeneration phase, BRG-1-containing remodeler again predominates. Considering all these observations, the present study depicts an interplay between chromatin interacting machineries in different phases of thioacetamide-induced liver injury and regeneration.
Collapse
Affiliation(s)
- Sonal Sinha
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India
| | - Sudhir Verma
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India
| | - Madan M Chaturvedi
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India .,2 Cluster Innovation Center, Delhi University , Delhi, India
| |
Collapse
|
267
|
Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis. Sci Rep 2016; 6:24587. [PMID: 27079666 PMCID: PMC4832343 DOI: 10.1038/srep24587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/31/2016] [Indexed: 01/19/2023] Open
Abstract
Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.
Collapse
|
268
|
Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits. Brain Sci 2016; 6:brainsci6020012. [PMID: 27070644 PMCID: PMC4931489 DOI: 10.3390/brainsci6020012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.
Collapse
|
269
|
Yang Q, Diamond MP, Al-Hendy A. Early Life Adverse Environmental Exposures Increase the Risk of Uterine Fibroid Development: Role of Epigenetic Regulation. Front Pharmacol 2016; 7:40. [PMID: 26973527 PMCID: PMC4772696 DOI: 10.3389/fphar.2016.00040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
Uterine Fibroids [UF(s), AKA: leiomyoma] are the most important benign neoplastic threat to women's health. They are the most common cause of hysterectomy imposing untold personal consequences and 100s of billions of healthcare dollars, worldwide. Currently, there is no long term effective FDA-approved medical treatment available, and surgery is the mainstay. The etiology of UFs is not fully understood. In this regard, we and others have recently reported that somatic mutations in the gene encoding the transcriptional mediator subunit Med12 are found to occur at a high frequency (∼85%) in UFs. UFs likely originate when a Med12 mutation occurs in a myometrial stem cell converting it into a tumor-forming stem cell leading to a clonal fibroid lesion. Although the molecular attributes underlying the mechanistic formation of UFs is largely unknown, a growing body of literature implicates unfavorable early life environmental exposures as potentially important contributors. Early life exposure to EDCs during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life. Neonatal exposure to the EDCs such as diethylstilbestrol (DES) and genistein during reproductive tract development has been shown to increase the incidence, multiplicity and overall size of UFs in the Eker rat model, concomitantly reprogramming estrogen-responsive gene expression. Importantly, EDC exposure represses enhancer of zeste 2 (EZH2) and reduces levels of histone 3 lysine 27 trimethylation (H3K27me3) repressive mark through Estrogen receptor/Phosphatidylinositide 3-kinases/Protein kinase B non-genomic signaling in the developing uterus. Considering the fact that distinct Mediator Complex Subunit 12 (Med12) mutations are detected in different fibroid lesions in the same uterus, the emergence of each Med12 mutation is likely an independent event in an altered myometrial stem cell. It is therefore possible that a chronic reduction in DNA repair capacity eventually causes the emergence of mutations such as Med12 in myometrial stem cells converting them into fibroid tumor-forming stem cells, and thereby leads to the development of UFs. Advancing our understanding of the mechanistic role epigenetic regulation of stem cells plays in mediating risk and tumorigenesis will help in pointing the way toward the development of novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| |
Collapse
|
270
|
Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma 2016; 125:75-93. [PMID: 26188466 PMCID: PMC4761009 DOI: 10.1007/s00412-015-0530-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.
Collapse
Affiliation(s)
- Anne C Mirabella
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Benjamin M Foster
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Till Bartke
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
271
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
272
|
Blum R. Stepping inside the realm of epigenetic modifiers. Biomol Concepts 2016; 6:119-36. [PMID: 25915083 DOI: 10.1515/bmc-2015-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
The ability to regulate gene expression in response to environmental alterations is vital for the endurance of all cells. However, unlike bacteria and unicellular organisms, cells of multicellular eukaryotes have developed this competency in a highly sophisticated manner, which ultimately allows for multiple lineages of differentiated cells. To maintain stability and generate progeny, differentiated cells must remain lineage-committed through numerous cell generations, and therefore their transcriptional modus operandi ought to be memorized and transmittable. To preserve the specialized characteristics of differentiated cells, it is crucial that transcriptional alterations that are triggered by specific external or intrinsic stimuli can last also after stimuli fading and propagate onto daughter cells. The unique composition of DNA and histones, and their ability to acquire a variety of epigenetic modifications, enables eukaryotic chromatin to assimilate cellular plasticity and molecular memory. The most well-studied types of epigenetic modifiers are covalently modifying DNA or histones, mostly in a reversible manner. Additional epigenetic mechanisms include histone variant replacement, energy-utilizing remodeling factors, and noncoding transcripts assembled with modifying complexes. Working with multifunctional complexes including transcription factors, epigenetic modifiers have the potential to dictate a variety of transcriptional programs underlying all cellular lineages, while utilizing in each the same source DNA as their substrates.
Collapse
|
273
|
Ng MK, Cheung P. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context. Biochem Cell Biol 2016. [DOI: 10.1139/bcb-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.
Collapse
Affiliation(s)
- Marlee K. Ng
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| | - Peter Cheung
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
274
|
Histone modifications in DNA damage response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:257-70. [PMID: 26825946 DOI: 10.1007/s11427-016-5011-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.
Collapse
|
275
|
Veith N, Ziehr H, MacLeod RAF, Reamon-Buettner SM. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol 2016; 16:6. [PMID: 26800878 PMCID: PMC4722726 DOI: 10.1186/s12896-016-0238-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recombinant cell lines developed for therapeutic antibody production often suffer instability or lose recombinant protein expression during long-term culture. Heterogeneous gene expression among cell line subclones may result from epigenetic modifications of DNA or histones, the protein component of chromatin. We thus investigated in such cell lines, DNA methylation and the chromatin environment along the human eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) promoter in an antibody protein-expression vector which was integrated into the Chinese hamster ovary (CHO) cell line genome. RESULTS We analyzed four PT1-CHO cell lines which exhibited losses of protein expression at advanced passage number (>P35) growing in adherent conditions and in culture medium with 10 % FCS. These cell lines exhibited different integration sites and transgene copy numbers as determined by fluorescence in situ hybridization (FISH) and quantitative PCR (qPCR), respectively. By qRT-PCR, we analyzed the recombinant mRNA expression and correlated it with DNA methylation and with results from various approaches interrogating the chromatin landscape along the EEF1A1 promoter region. Each PT1-CHO cell line displayed specific epigenetic signatures or chromatin marks correlating with recombinant mRNA expression. The cell line with the lowest recombinant mRNA expression (PT1-1) was characterized by the highest nucleosome occupancy and displayed the lowest enrichment for histone marks associated with active transcription. In contrast, the cell line with the highest recombinant mRNA expression (PT1-55) exhibited the highest numbers of formaldehyde-assisted isolation of regulatory elements (FAIRE)-enriched regions, and was marked by enrichment for histone modifications H3K9ac and H3K9me3. Another cell line with the second highest recombinant mRNA transcription and the most stable protein expression (PT1-7) had the highest enrichments of the histone variants H3.3 and H2A.Z, and the histone modification H3K9ac. A further cell line (PT1-30) scored the highest enrichments for the bivalent marks H3K4me3 and H3K27me3. Finally, DNA methylation made a contribution, but only in the culture medium with reduced FCS or in a different expression vector. CONCLUSIONS Our results suggest that the chromatin state along the EEF1A1 promoter region can help predict recombinant mRNA expression, and thus may assist in selecting desirable clones during cell line development for protein production.
Collapse
Affiliation(s)
- Nathalie Veith
- Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Holger Ziehr
- Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Roderick A F MacLeod
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany.
| | - Stella Marie Reamon-Buettner
- Preclinical Pharmacology and In Vitro Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
276
|
Li J, Zhu S, Ke XX, Cui H. Role of several histone lysine methyltransferases in tumor development. Biomed Rep 2016; 4:293-299. [PMID: 26998265 PMCID: PMC4774316 DOI: 10.3892/br.2016.574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022] Open
Abstract
The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action.
Collapse
Affiliation(s)
- Jifu Li
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing 400716, P.R. China
| | - Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
277
|
Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain. Sci Rep 2016; 6:19010. [PMID: 26743651 PMCID: PMC4705554 DOI: 10.1038/srep19010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders.
Collapse
|
278
|
Abstract
Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence of a small number of chemical inhibitors for methyllysine reader proteins supports the viability of these proteins as targets for drug development. This article introduces the biochemistry and biology of methyllysine reader proteins, provides an overview of functions for those families of readers that have been targeted to date (MBT, PHD, tudor, and chromodomains), and reviews the development of synthetic agents that directly block their methyllysine reading functions.
Collapse
Affiliation(s)
- Natalia Milosevich
- Department of Chemistry, University of Victoria , Victoria, British Columbia V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria , Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
279
|
Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. J Biol Chem 2015; 291:2664-81. [PMID: 26655721 DOI: 10.1074/jbc.m115.679985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability.
Collapse
Affiliation(s)
- Santanu Adhikary
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Moitri Basu
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Siddhartha Roy
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|
280
|
Pike JW, Meyer MB, St John HC, Benkusky NA. Epigenetic histone modifications and master regulators as determinants of context dependent nuclear receptor activity in bone cells. Bone 2015; 81:757-764. [PMID: 25819039 PMCID: PMC4584159 DOI: 10.1016/j.bone.2015.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/13/2015] [Indexed: 12/22/2022]
Abstract
Genomic annotation of unique and combinatorial epigenetic modifications along with transcription factor occupancy is having a profound impact on our understanding of the genome. These studies have led to a better appreciation of the dynamic nature of the epigenetic and transcription factor binding components that reveal overarching principles of the genome as well as tissue specificity. In this minireview, we discuss the presence and potential functions of several of these features across the genome in osteoblast lineage cells. We examine how these features are modulated during cellular maturation, affect transcriptional output and phenotype, and how they alter the ability of cells to respond to systemic signals directed by calcemic hormones such as 1,25-dihydroxyvitamin D3 and PTH. In particular, we describe recent experiments which indicate that progressive stages of bone cell differentiation affect RUNX2 binding to the genome, modify and restrict patterns of gene expression, and dramatically alter cellular response to the vitamin D hormone. These studies expand our understanding of mechanisms that govern steroid hormone regulation of gene expression, while highlighting the increasing complexity that is evident relative to these basic cellular processes. The results also have profound implications with respect to the impact of skeletal diseases on transcriptional outcomes as well. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
281
|
Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. Br J Nutr 2015; 115:411-21. [DOI: 10.1017/s0007114515004511] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThis study was conducted to investigate the effect of in ovo feeding (IOF) of folic acid on the folate metabolism, immune function and the involved epigenetic modification of broilers. A total of 400 (Cobb) hatching eggs were randomly divided into four groups (0, 50, 100 and 150 µg injection of folic acid at embryonic age 11 d), and chicks hatched from each treatment were randomly divided into six replicates with 12 broilers/replicate after incubation. The results indicated that, in ovo, 100- and 150-µg folic acid injections improved the hatchability. The average daily gain and feed conversion ratio increased in the 150-µg group during the late growth stage. Simultaneously, in the 100- and 150-µg groups, an increase was observed in hepatic folate content and the expression of methylenetetrahydrofolate reductase (d1 and 42) and methionine synthase reductase (d21). IgG and IgM concentrations, as well as plasma lysozyme activity of broilers, showed a marked increase along with increasing folic acid levels. The splenic expression levels of IL-2 and IL-4 were up-regulated, whereas that of IL-6 was down-regulated, in the 100- and 150-µg folic acid treatment groups. In addition, histone methylation in IL-2 and IL-4 promoters exhibited an enrichment of H3K4m2 but a loss of H3K9me2 with the increased amount of folic acid additive. In contrast, a decrease in H3K4m2 and an increase in H3K9me2 were observed in the IL-6 promoter in folic acid treatments. Furthermore, in ovo, the 150-µg folic acid injection improved the chromatin tightness of the IL-2 and IL-4 promoter regions. Our findings suggest that IOF of 150 µg of folic acid can improve the growth performance and folate metabolism of broilers, and enhance the relationship between immune function and epigenetic regulation of immune genes, which are involved with the alterations in chromatin conformation and histone methylation in their promoters.
Collapse
|
282
|
Kamps JJ, Huang J, Poater J, Xu C, Pieters BJ, Dong A, Min J, Sherman W, Beuming T, Matthias Bickelhaupt F, Li H, Mecinović J. Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Nat Commun 2015; 6:8911. [PMID: 26578293 PMCID: PMC4673829 DOI: 10.1038/ncomms9911] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
A large number of structurally diverse epigenetic reader proteins specifically recognize methylated lysine residues on histone proteins. Here we describe comparative thermodynamic, structural and computational studies on recognition of the positively charged natural trimethyllysine and its neutral analogues by reader proteins. This work provides experimental and theoretical evidence that reader proteins predominantly recognize trimethyllysine via a combination of favourable cation-π interactions and the release of the high-energy water molecules that occupy the aromatic cage of reader proteins on the association with the trimethyllysine side chain. These results have implications in rational drug design by specifically targeting the aromatic cage of readers of trimethyllysine.
Collapse
Affiliation(s)
- Jos J.A.G. Kamps
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jiaxin Huang
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jordi Poater
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Bas J.G.E. Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Woody Sherman
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036 USA
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036 USA
| | - F. Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
283
|
Epigenetic mechanisms: An emerging role in pathogenesis and its therapeutic potential in systemic sclerosis. Int J Biochem Cell Biol 2015; 67:92-100. [DOI: 10.1016/j.biocel.2015.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022]
|
284
|
Beaver JE, Peacor BC, Bain JV, James LI, Waters ML. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water. Org Biomol Chem 2015; 13:3220-6. [PMID: 25437861 DOI: 10.1039/c4ob02231a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.
Collapse
Affiliation(s)
- Joshua E Beaver
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
285
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|
286
|
Manna S, Kim JK, Baugé C, Cam M, Zhao Y, Shetty J, Vacchio MS, Castro E, Tran B, Tessarollo L, Bosselut R. Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun 2015; 6:8152. [PMID: 26328764 PMCID: PMC4569738 DOI: 10.1038/ncomms9152] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Although histone H3 lysine 27 trimethylation (H3K27Me3) is associated with gene silencing, whether H3K27Me3 demethylation affects transcription and cell differentiation in vivo has remained elusive. To investigate this, we conditionally inactivated the two H3K27Me3 demethylases, Jmjd3 and Utx, in non-dividing intrathymic CD4(+) T-cell precursors. Here we show that both enzymes redundantly promote H3K27Me3 removal at, and expression of, a specific subset of genes involved in terminal thymocyte differentiation, especially S1pr1, encoding a sphingosine-phosphate receptor required for thymocyte egress. Thymocyte expression of S1pr1 was not rescued in Jmjd3- and Utx-deficient male mice, which carry the catalytically inactive Utx homolog Uty, supporting the conclusion that it requires H3K27Me3 demethylase activity. These findings demonstrate that Jmjd3 and Utx are required for T-cell development, and point to a requirement for their H3K27Me3 demethylase activity in cell differentiation.
Collapse
Affiliation(s)
- Sugata Manna
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jong Kyong Kim
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Catherine Baugé
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Margaret Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yongmei Zhao
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jyoti Shetty
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bao Tran
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
287
|
Curry E, Green I, Chapman-Rothe N, Shamsaei E, Kandil S, Cherblanc FL, Payne L, Bell E, Ganesh T, Srimongkolpithak N, Caron J, Li F, Uren AG, Snyder JP, Vedadi M, Fuchter MJ, Brown R. Dual EZH2 and EHMT2 histone methyltransferase inhibition increases biological efficacy in breast cancer cells. Clin Epigenetics 2015; 7:84. [PMID: 26300989 PMCID: PMC4545913 DOI: 10.1186/s13148-015-0118-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Many cancers show aberrant silencing of gene expression and overexpression of histone methyltransferases. The histone methyltransferases (HKMT) EZH2 and EHMT2 maintain the repressive chromatin histone methylation marks H3K27me and H3K9me, respectively, which are associated with transcriptional silencing. Although selective HKMT inhibitors reduce levels of individual repressive marks, removal of H3K27me3 by specific EZH2 inhibitors, for instance, may not be sufficient for inducing the expression of genes with multiple repressive marks. RESULTS We report that gene expression and inhibition of triple negative breast cancer cell growth (MDA-MB-231) are markedly increased when targeting both EZH2 and EHMT2, either by siRNA knockdown or pharmacological inhibition, rather than either enzyme independently. Indeed, expression of certain genes is only induced upon dual inhibition. We sought to identify compounds which showed evidence of dual EZH2 and EHMT2 inhibition. Using a cell-based assay, based on the substrate competitive EHMT2 inhibitor BIX01294, we have identified proof-of-concept compounds that induce re-expression of a subset of genes consistent with dual HKMT inhibition. Chromatin immunoprecipitation verified a decrease in silencing marks and an increase in permissive marks at the promoter and transcription start site of re-expressed genes, while Western analysis showed reduction in global levels of H3K27me3 and H3K9me3. The compounds inhibit growth in a panel of breast cancer and lymphoma cell lines with low to sub-micromolar IC50s. Biochemically, the compounds are substrate competitive inhibitors against both EZH2 and EHMT1/2. CONCLUSIONS We have demonstrated that dual inhibition of EZH2 and EHMT2 is more effective at eliciting biological responses of gene transcription and cancer cell growth inhibition compared to inhibition of single HKMTs, and we report the first dual EZH2-EHMT1/2 substrate competitive inhibitors that are functional in cells.
Collapse
Affiliation(s)
- Edward Curry
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Ian Green
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Nadine Chapman-Rothe
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Elham Shamsaei
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Sarah Kandil
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Fanny L Cherblanc
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Luke Payne
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Emma Bell
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Thota Ganesh
- />Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | - Joachim Caron
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Fengling Li
- />Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Anthony G. Uren
- />MRC Clinical Sciences Centre, Hammersmith Hospital Campus, London, W12 0NN UK
| | - James P. Snyder
- />Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Masoud Vedadi
- />Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Matthew J. Fuchter
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Robert Brown
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
- />Section of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5NG UK
| |
Collapse
|
288
|
Maleszewska M, Kaminska B. Deregulation of histone-modifying enzymes and chromatin structure modifiers contributes to glioma development. Future Oncol 2015; 11:2587-601. [PMID: 26289459 DOI: 10.2217/fon.15.171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epigenetic landscape is deregulated in cancer due to aberrant activation or inactivation of enzymes maintaining and modifying the epigenome. Histone modifications and global aberrations at the histone level may result in distorted patterns of gene expression, and malfunction of proteins that regulate chromatin modification and remodeling. Recent whole genome studies demonstrated that histones and chaperone proteins harbor mutations that may result in gross alterations of the epigenome leading to genome instability. Glioma development is a multistep process, involving genetic and epigenetic alterations. This review summarizes newly identified mechanisms affecting expression/functions of histone-modifying enzymes and chromatin modifiers in gliomas. We discuss recent approaches to overcome epigenetic alterations with histone-modifying enzyme inhibitors and their prospects for glioma therapy.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland
| |
Collapse
|
289
|
KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death Dis 2015; 6:e1857. [PMID: 26291311 PMCID: PMC4558493 DOI: 10.1038/cddis.2015.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation.
Collapse
|
290
|
Tao L, Wang XL, Guo MH, Zhang YW. Analysis of genomic DNA methylation and gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis) after continuous seedling breeding. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
291
|
Jin J, Shi J, Liu B, Liu Y, Huang Y, Yu Y, Dong A. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice. PLANT PHYSIOLOGY 2015; 168:1275-85. [PMID: 25855537 PMCID: PMC4528726 DOI: 10.1104/pp.114.255737] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/04/2015] [Indexed: 05/03/2023]
Abstract
The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Jinlei Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Yanchao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Ying Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (J.J., J.S., B.L., Y.Y., A.D.); andNational Center for Protein Science Shanghai, Graduate University of the Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.L., Y.H.)
| |
Collapse
|
292
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
293
|
Lomberk GA, Urrutia R. The Triple-Code Model for Pancreatic Cancer: Cross Talk Among Genetics, Epigenetics, and Nuclear Structure. Surg Clin North Am 2015; 95:935-52. [PMID: 26315515 DOI: 10.1016/j.suc.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma is painful, generally incurable, and frequently lethal. The current progression model indicates that this cancer evolves by mutations and deletions in key oncogenes and tumor suppressor genes. This article describes an updated, more comprehensive model that includes concepts from the fields of epigenetics and nuclear architecture. Widespread use of next-generation sequencing for identifying genetic and epigenetic changes genome-wide will help identify and validate more and better markers for this disease. Epigenetic alterations are amenable to pharmacologic manipulations, thus this new integrated paradigm will contribute to advance this field from a mechanistic and translational point of view.
Collapse
Affiliation(s)
- Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Guggenheim 10-24A, Rochester, MN 55905, USA.
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA.
| |
Collapse
|
294
|
Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, Drabløs F. EpiFactors: a comprehensive database of human epigenetic factors and complexes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav067. [PMID: 26153137 PMCID: PMC4494013 DOI: 10.1093/database/bav067] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
Epigenetics refers to stable and long-term alterations of cellular traits that are
not caused by changes in the DNA sequence per se. Rather, covalent
modifications of DNA and histones affect gene expression and genome stability
via proteins that recognize and act upon such modifications. Many
enzymes that catalyse epigenetic modifications or are critical for enzymatic
complexes have been discovered, and this is encouraging investigators to study the
role of these proteins in diverse normal and pathological processes. Rapidly growing
knowledge in the area has resulted in the need for a resource that compiles,
organizes and presents curated information to the researchers in an easily accessible
and user-friendly form. Here we present EpiFactors, a manually curated database
providing information about epigenetic regulators, their complexes, targets and
products. EpiFactors contains information on 815 proteins, including 95 histones and
protamines. For 789 of these genes, we include expressions values across several
samples, in particular a collection of 458 human primary cell samples (for
approximately 200 cell types, in many cases from three individual donors), covering
most mammalian cell steady states, 255 different cancer cell lines (representing
approximately 150 cancer subtypes) and 134 human postmortem tissues. Expression
values were obtained by the FANTOM5 consortium using Cap Analysis of Gene Expression
technique. EpiFactors also contains information on 69 protein complexes that are
involved in epigenetic regulation. The resource is practical for a wide range of
users, including biologists, pharmacologists and clinicians. Database URL: http://epifactors.autosome.ru
Collapse
Affiliation(s)
- Yulia A Medvedeva
- Institute of Personal and Predictive Medicine of Cancer, 08916 Badalona, Spain, Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia,
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rezvan Ehsani
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Ivan V Kulakovskiy
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilya E Vorontsov
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pouda Panahandeh
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Grigory Khimulya
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Takeya Kasukawa
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama 230-0045, Kanagawa, Japan
| | | | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway,
| |
Collapse
|
295
|
Kimura H, Hayashi-Takanaka Y, Stasevich TJ, Sato Y. Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem Cell Biol 2015; 144:101-9. [PMID: 26138929 PMCID: PMC4522274 DOI: 10.1007/s00418-015-1344-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 01/29/2023]
Abstract
Protein localization and dynamics can now be visualized in living cells using the fluorescent protein fusion technique, but it is still difficult to selectively detect molecules with a specific function. As a posttranslational protein modification is often associated with a specific function, marking specifically modified protein molecules in living cells is a way to track an important fraction of protein. In the nucleus, histones are subjected to a variety of modifications such as acetylation and methylation that are associated with epigenetic gene regulation. RNA polymerase II, an enzyme that transcribes genes, is also differentially phosphorylated during the initiation and elongation of transcription. To understand the mechanism of gene regulation in vivo, we have developed methods to track histone and RNA polymerase II modifications using probes derived from modification-specific monoclonal antibodies. In Fab-based live endogenous modification labeling (FabLEM), fluorescently labeled antigen-binding fragments (Fabs) are loaded into cells. Fabs bind to target modifications in the nucleus with a binding time of a second to tens of seconds, and so the modification can be tracked without disturbing cell function. For tracking over longer periods of time or in living animals, we have also developed a genetically encoded system to express a modification-specific intracellular antibody (mintbody). Transgenic fruit fly and zebrafish that express histone H3 Lys9 acetylation-specific mintbody developed normally and remain fertile, suggesting that visualizing histone modifications in any tissue in live animals has become possible. These live cell modification tracking techniques will facilitate future studies on epigenetic regulation related to development, differentiation, and disease. Moreover, these techniques can be applied to any other protein modification, opening up new avenues in broad areas in biology and medicine.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan,
| | | | | | | |
Collapse
|
296
|
Fernandez-Twinn DS, Constância M, Ozanne SE. Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol 2015; 43:85-95. [PMID: 26135290 DOI: 10.1016/j.semcdb.2015.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
It is now well established that the environment to which we are exposed during fetal and neonatal life can have a long-term impact on our health. This has been termed the developmental origins of health and disease. Factors known to have such programming effects include intrauterine nutrient availability (determined by maternal nutrition and placental function), endocrine disruptors, toxins and infectious agents. Epigenetic processes have emerged as a key mechanism by which the early environment can permanently influence cell function and metabolism after multiple rounds of cell division. More recently it has been suggested that programmed effects can be observed beyond the first generation and that therefore epigenetic mechanisms could form the basis of transmission of phenotype from parent to child to grandchild and beyond. Here we review the evidence for such processes.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, United Kingdom; Centre for Trophoblast Research, University of Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
297
|
Hartmann MD, Boichenko I, Coles M, Lupas AN, Hernandez Alvarez B. Structural dynamics of the cereblon ligand binding domain. PLoS One 2015; 10:e0128342. [PMID: 26024445 PMCID: PMC4449219 DOI: 10.1371/journal.pone.0128342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/25/2015] [Indexed: 12/02/2022] Open
Abstract
Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution.
Collapse
Affiliation(s)
- Marcus D. Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail: (MDH); (BHA)
| | - Iuliia Boichenko
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail: (MDH); (BHA)
| |
Collapse
|
298
|
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu Rev Genomics Hum Genet 2015; 15:269-93. [PMID: 25184531 DOI: 10.1146/annurev-genom-090613-094245] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mendelian disorders of the epigenetic machinery are a newly delineated group of multiple congenital anomaly and intellectual disability syndromes resulting from mutations in genes encoding components of the epigenetic machinery. The gene products affected in these inherited conditions act in trans and are expected to have widespread epigenetic consequences. Many of these syndromes demonstrate phenotypic overlap with classical imprinting disorders and with one another. The various writer and eraser systems involve opposing players, which we propose must maintain a balance between open and closed chromatin states in any given cell. An imbalance might lead to disrupted expression of disease-relevant target genes. We suggest that classifying disorders based on predicted effects on this balance would be informative regarding pathogenesis. Furthermore, strategies targeted at restoring this balance might offer novel therapeutic avenues, taking advantage of available agents such as histone deacetylase inhibitors and histone acetylation antagonists.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | | |
Collapse
|
299
|
Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 2015; 12:488-97. [DOI: 10.1038/nrcardio.2015.71] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
300
|
Kumar D, Saha S. HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani. Nucleic Acids Res 2015; 43:5423-41. [PMID: 25948582 PMCID: PMC4477661 DOI: 10.1093/nar/gkv431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|