251
|
Li J, Zhu S, Kozono D, Ng K, Futalan D, Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, Carter BS, Kwon CH, Furnari F, Cavenee W, Elledge S, Chen CC. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 2015; 5:882-93. [PMID: 24658464 PMCID: PMC4011590 DOI: 10.18632/oncotarget.1801] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.
Collapse
|
252
|
Pan W, Gu W, Nagpal S, Gephart MH, Quake SR. Brain tumor mutations detected in cerebral spinal fluid. Clin Chem 2015; 61:514-22. [PMID: 25605683 DOI: 10.1373/clinchem.2014.235457] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Detecting tumor-derived cell-free DNA (cfDNA) in the blood of brain tumor patients is challenging, presumably owing to the blood-brain barrier. Cerebral spinal fluid (CSF) may serve as an alternative "liquid biopsy" of brain tumors by enabling measurement of circulating DNA within CSF to characterize tumor-specific mutations. Many aspects about the characteristics and detectability of tumor mutations in CSF remain undetermined. METHODS We used digital PCR and targeted amplicon sequencing to quantify tumor mutations in the cfDNA of CSF and plasma collected from 7 patients with solid brain tumors. Also, we applied cancer panel sequencing to globally characterize the somatic mutation profile from the CSF of 1 patient with suspected leptomeningeal disease. RESULTS We detected tumor mutations in CSF samples from 6 of 7 patients with solid brain tumors. The concentration of the tumor mutant alleles varied widely between patients, from <5 to nearly 3000 copies/mL CSF. We identified 7 somatic mutations from the CSF of a patient with leptomeningeal disease by use of cancer panel sequencing, and the result was concordant with genetic testing on the primary tumor biopsy. CONCLUSIONS Tumor mutations were detectable in cfDNA from the CSF of patients with different primary and metastatic brain tumors. We designed 2 strategies to characterize tumor mutations in CSF for potential clinical diagnosis: the targeted detection of known driver mutations to monitor brain metastasis and the global characterization of genomic aberrations to direct personalized cancer care.
Collapse
Affiliation(s)
| | - Wei Gu
- Department of Bioengineering, Department of Pathology and Laboratory Medicine, University of California-San Francisco, San Francisco, CA
| | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
253
|
Fleischhacker M, Schmidt B. Extracellular Nucleic Acids and Cancer. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
254
|
Hochberg FH, Atai NA, Gonda D, Hughes MS, Mawejje B, Balaj L, Carter RS. Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev Mol Diagn 2014; 14:439-52. [PMID: 24746164 DOI: 10.1586/14737159.2014.905202] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioma is the most common brain tumor. For the more aggressive form, glioblastoma, standard treatment includes surgical resection, irradiation with adjuvant temozolomide and, on recurrence, experimental chemotherapy. However, the survival of patients remains poor. There is a critical need for minimally invasive biomarkers for diagnosis and as measures of response to therapeutic interventions. Glioma shed extracellular vesicles (EVs), which invade the surrounding tissue and circulate within both the cerebrospinal fluid and the systemic circulation. These tumor-derived EVs and their content serve as an attractive source of biomarkers. In this review, we discuss the current state of the art of biomarkers for glioma with emphasis on their EV derivation.
Collapse
Affiliation(s)
- Fred H Hochberg
- Department of Neurology and Program in Neuroscience, Massachusetts General Hospital and Harvard Medical School, Suite 340, 175 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Tietje A, Maron KN, Wei Y, Feliciano DM. Cerebrospinal fluid extracellular vesicles undergo age dependent declines and contain known and novel non-coding RNAs. PLoS One 2014; 9:e113116. [PMID: 25420022 PMCID: PMC4242609 DOI: 10.1371/journal.pone.0113116] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023] Open
Abstract
Brain development requires precise orchestration of cellular events through the coordinate exchange of information between distally located cells. One mechanism by which intercellular communication is achieved is through the transfer of extracellular vesicles (EVs). Exosomes are EVs that carry lipids, nucleic acids, and proteins and are detectable in most biological fluids including cerebrospinal fluid (CSF). Here we report that CSF EV concentrations undergo age dependent fluctuations. We characterized EV RNA content by next generation small RNA sequencing and miRNA microarray analysis and identified a temporal shift in CSF EV content. CSF EVs encapsulated miRNAs that contain a conserved hnRNPA2/B1 recognition sequence. We found that hnRNPA2/B1-containing EVs were produced by choroid plexus epithelial cells and that hnRNPA2/B1 containing EVs decreased with age. These results provide insight into EV exchange of miRNAs within the central nervous system and a framework to understand how changes in EVs may have an important impact on brain development.
Collapse
Affiliation(s)
- Ashlee Tietje
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kourtney N. Maron
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
256
|
Kros JM, Mustafa DM, Dekker LJM, Sillevis Smitt PAE, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro Oncol 2014; 17:343-60. [PMID: 25253418 DOI: 10.1093/neuonc/nou207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023] Open
Abstract
Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Lennard J M Dekker
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Peter A E Sillevis Smitt
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Theo M Luider
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| |
Collapse
|
257
|
Milbury CA, Zhong Q, Lin J, Williams M, Olson J, Link DR, Hutchison B. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 1:8-22. [PMID: 27920993 PMCID: PMC5129438 DOI: 10.1016/j.bdq.2014.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 01/10/2023]
Abstract
Digital PCR offers very high assay sensitivity and limit of detection. An approach for calculating limit of detection is demonstrated for two EGFR assays. Assay LoDs have been evaluated for eighteen cancer targets.
Digital PCR offers very high sensitivity compared to many other technologies for processing molecular detection assays. Herein, a process is outlined for determining the lower limit of detection (LoD) of two droplet-based digital PCR assays for point mutations of the epidermal growth factor receptor (EGFR) gene. Hydrolysis probe mutation-detection assays for EGFR p.L858R and p.T790M mutations were characterized in detail. Furthermore, sixteen additional cancer-related mutation assays were explored by the same approach. For the EGFR L8585R assay, the assay sensitivity is extremely good, and thus, the LoD is limited by the amount of amplifiable DNA that is analyzed. With 95% confidence limits, the LoD is one mutant in 180,000 wild-type molecules for the evaluation of 3.3 μg of genomic DNA, and detection of one mutant molecule in over 4 million wild-type molecules was achieved when 70 million copies of DNA were processed. The measured false-positive rate for the EGFR L8585R assay is one in 14 million, which indicates the theoretical LoD if an unlimited amount of DNA is evaluated. For the EFGR T790M assay, the LoD is one mutant in 13,000 for analysis of a 3.3 μg sample of genomic DNA, and the dPCR assay limit sensitivity approaches one mutant in 22,000 wild-type molecules.
Collapse
Key Words
- Assay sensitivity
- Digital PCR
- EGFR L858R
- EGFR T790M
- EGFR, epidermal growth factor receptor
- Limit of detection
- LoB, limit of blank
- LoD, limit of detection
- Mutation detection
- N, total number of droplet events counted
- NMut, number of droplets with only mutated DNA
- NWT, number of droplets with only wild-type DNA
- PCR, Polymerase Chain Reaction
- R, ratio of mutant to wild-type molecules
- RFP, average false positive rate (ΛFP/#WT)
- p, fraction of PCR-positive droplets
- ΛFP, average number of false-positive events
- λ, average number of targets “loaded” per droplet
Collapse
Affiliation(s)
- Coren A Milbury
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Qun Zhong
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jesse Lin
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Miguel Williams
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jeff Olson
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Darren R Link
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Brian Hutchison
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA 01821, USA
| |
Collapse
|
258
|
Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 2014; 35:8425-38. [DOI: 10.1007/s13277-014-2262-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 02/03/2023] Open
|
259
|
Brain metastasis: new opportunities to tackle therapeutic resistance. Mol Oncol 2014; 8:1120-31. [PMID: 24953014 DOI: 10.1016/j.molonc.2014.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 01/14/2023] Open
Abstract
Brain metastasis is a devastating complication of cancer with unmet therapeutic needs. The incidence of brain metastasis has been rising in cancer patients and its response to treatment is limited due to the singular characteristics of brain metastasis (i.e., blood-brain-barrier, immune system, stroma). Despite improvements in the treatment and control of extracranial disease, the outcomes of patients with brain metastasis remain dismal. The mechanisms that allow tumor cells to promulgate metastases to the brain remain poorly understood. Further work is required to identify the molecular alterations inherent to brain metastasis in order to identify novel therapeutic targets and explicate the mechanisms of resistance to systemic therapeutics. In this article, we review current knowledge of the unique characteristics of brain metastasis, implications in therapeutic resistance, and the possibility of developing biomarkers to rationally guide the use of targeted agents.
Collapse
|
260
|
Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 2014; 28:14-23. [PMID: 24783980 DOI: 10.1016/j.semcancer.2014.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/24/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
Different types of RNAs identified thus far represent a diverse group of macromolecules that are involved in the regulation of different biological processes. RNA is generally thought to be localized primarily in the nucleus and cytoplasm; however, some types of RNA have been detected in the extracellular milieu. These extracellular RNA (exRNA) molecules are protected from degradation and it is now widely accepted that extracellular vesicles and ribonucleoprotein particles serve as transport vehicles for exRNA among cells. The functional consequence of this transfer of genetic information probably encompasses a broad range of normal developmental and physiologic processes in many organisms. This review will focus on the role of exRNA communication in cancer. We will focus on different types of RNA species identified and characterized within tumor-derived extracellular vesicles. Further, we will describe the role of exRNAs in cancer progression, as well as their potential for use as diagnostic biomarkers and therapeutic tools for monitoring and treating cancer, respectively.
Collapse
|
261
|
Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 2014; 20:385-93. [PMID: 24703619 DOI: 10.1016/j.molmed.2014.03.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis, and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anticancer therapy. Here, we summarise the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread.
Collapse
Affiliation(s)
- Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 2129, USA
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
262
|
Roberts CH, Last A, Burr SE, Bailey RL, Mabey DC, Holland MJ. Will droplet digital PCR become the test of choice for detecting and quantifying ocularChlamydia trachomatisinfection? Maybe. Expert Rev Mol Diagn 2014; 14:253-6. [DOI: 10.1586/14737159.2014.897609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
263
|
Jia S, Zocco D, Samuels ML, Chou MF, Chammas R, Skog J, Zarovni N, Momen-Heravi F, Kuo WP. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 2014; 14:307-21. [PMID: 24575799 DOI: 10.1586/14737159.2014.893828] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have been shown to carry a variety of biomacromolecules including mRNA, microRNA and other non-coding RNAs. Within the past 5 years, EVs have emerged as a promising minimally invasive novel source of material for molecular diagnostics. Although EVs can be easily identified and collected from biological fluids, further research and proper validation is needed in order for them to be useful in the clinical setting. In addition, innovative and more efficient means of nucleic acid profiling are needed to facilitate investigations into the cellular and molecular mechanisms of EV function and to establish their potential as useful clinical biomarkers and therapeutic tools. In this article, we provide an overview of recent technological improvements in both upstream EV isolation and downstream analytical technologies, including digital PCR and next generation sequencing, highlighting future prospects for EV-based molecular diagnostics.
Collapse
Affiliation(s)
- Shidong Jia
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Redzic JS, Ung TH, Graner MW. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:65-77. [PMID: 24634586 PMCID: PMC3952682 DOI: 10.2147/pgpm.s39768] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI]), and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs) are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review the features of GBM EVs, in terms of EV content and activities that may lead to the use of EVs as serially accessible biomarkers for diagnosis and treatment response in neuro-oncology.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Timothy H Ung
- Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Michael W Graner
- Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
265
|
Beaver JA, Jelovac D, Balukrishna S, Cochran R, Croessmann S, Zabransky DJ, Wong HY, Toro PV, Cidado J, Blair BG, Chu D, Burns T, Higgins MJ, Stearns V, Jacobs L, Habibi M, Lange J, Hurley PJ, Lauring J, VanDenBerg D, Kessler J, Jeter S, Samuels ML, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff AC, Park BH. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res 2014; 20:2643-2650. [PMID: 24504125 DOI: 10.1158/1078-0432.ccr-13-2933] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Detecting circulating plasma tumor DNA (ptDNA) in patients with early-stage cancer has the potential to change how oncologists recommend systemic therapies for solid tumors after surgery. Droplet digital polymerase chain reaction (ddPCR) is a novel sensitive and specific platform for mutation detection. EXPERIMENTAL DESIGN In this prospective study, primary breast tumors and matched pre- and postsurgery blood samples were collected from patients with early-stage breast cancer (n = 29). Tumors (n = 30) were analyzed by Sanger sequencing for common PIK3CA mutations, and DNA from these tumors and matched plasma were then analyzed for PIK3CA mutations using ddPCR. RESULTS Sequencing of tumors identified seven PIK3CA exon 20 mutations (H1047R) and three exon 9 mutations (E545K). Analysis of tumors by ddPCR confirmed these mutations and identified five additional mutations. Presurgery plasma samples (n = 29) were then analyzed for PIK3CA mutations using ddPCR. Of the 15 PIK3CA mutations detected in tumors by ddPCR, 14 of the corresponding mutations were detected in presurgical ptDNA, whereas no mutations were found in plasma from patients with PIK3CA wild-type tumors (sensitivity 93.3%, specificity 100%). Ten patients with mutation-positive ptDNA presurgery had ddPCR analysis of postsurgery plasma, with five patients having detectable ptDNA postsurgery. CONCLUSIONS This prospective study demonstrates accurate mutation detection in tumor tissues using ddPCR, and that ptDNA can be detected in blood before and after surgery in patients with early-stage breast cancer. Future studies can now address whether ptDNA detected after surgery identifies patients at risk for recurrence, which could guide chemotherapy decisions for individual patients.
Collapse
Affiliation(s)
- Julia A Beaver
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Danijela Jelovac
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | | | - Rory Cochran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Sarah Croessmann
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Daniel J Zabransky
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Hong Yuen Wong
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Patricia Valda Toro
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Justin Cidado
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Brian G Blair
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Timothy Burns
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15213-1863
| | | | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Lisa Jacobs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Mehran Habibi
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Julie Lange
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Paula J Hurley
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Josh Lauring
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Dustin VanDenBerg
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Jill Kessler
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Stacie Jeter
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | | | - Dianna Maar
- Bio-Rad Laboratories, Digital Biology Center, Pleasanton, CA 94566
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | | | - Pedram Argani
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Antonio C Wolff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| | - Ben H Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287
| |
Collapse
|
266
|
Guan Z, Zou Y, Zhang M, Lv J, Shen H, Yang P, Zhang H, Zhu Z, James Yang C. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. BIOMICROFLUIDICS 2014; 8:014110. [PMID: 24753730 PMCID: PMC3977795 DOI: 10.1063/1.4866766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/12/2014] [Indexed: 05/07/2023]
Abstract
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.
Collapse
Affiliation(s)
- Zhichao Guan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiangquan Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
267
|
Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H, Griffiths D, Bhowmick N, Chung LWK, Gandellini P, Freeman MR, Demichelis F, Di Vizio D. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013; 12:3526-36. [PMID: 24091630 PMCID: PMC3906338 DOI: 10.4161/cc.26539] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.
Collapse
Affiliation(s)
- Matteo Morello
- Cancer Biology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|