251
|
Lycklama A Nijeholt JA, Wu ZC, Driessen AJM. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J Biol Chem 2011; 286:43881-43890. [PMID: 22033919 PMCID: PMC3243504 DOI: 10.1074/jbc.m111.297507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
The central pore of the SecYEG preprotein-conducting channel is closed at the periplasmic face of the membrane by a plug domain. To study its conformational dynamics, the plug was labeled site-specifically with an environment-sensitive fluorophore. In the presence of a stable preprotein translocation inter-mediate, the SecY plug showed an enhanced solvent exposure consistent with a displacement from the hydrophobic central pore region. In contrast, binding and insertion of a ribosome-bound nascent membrane protein did not alter the plug conformation. These data indicate different plug dynamics depending on the ligand bound state of the SecYEG channel.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Zht Cheng Wu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
252
|
Luirink J, Yu Z, Wagner S, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:965-76. [PMID: 22201544 DOI: 10.1016/j.bbabio.2011.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
253
|
Bondar AN, White SH. Hydrogen bond dynamics in membrane protein function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:942-50. [PMID: 22178866 DOI: 10.1016/j.bbamem.2011.11.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022]
Abstract
Changes in inter-helical hydrogen bonding are associated with the conformational dynamics of membrane proteins. The function of the protein depends on the surrounding lipid membrane. Here we review through specific examples how dynamical hydrogen bonds can ensure an elegant and efficient mechanism of long-distance intra-protein and protein-lipid coupling, contributing to the stability of discrete protein conformational substates and to rapid propagation of structural perturbations. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
254
|
Tsukazaki T, Nureki O. The mechanism of protein export enhancement by the SecDF membrane component. Biophysics (Nagoya-shi) 2011; 7:129-133. [PMID: 27857601 PMCID: PMC5036778 DOI: 10.2142/biophysics.7.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022] Open
Abstract
Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
255
|
Morita K, Tokuda H, Nishiyama KI. Multiple SecA molecules drive protein translocation across a single translocon with SecG inversion. J Biol Chem 2011; 287:455-464. [PMID: 22074917 DOI: 10.1074/jbc.m111.301754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is a translocation ATPase that drives protein translocation. D209N SecA, a dominant-negative mutant, binds ATP but is unable to hydrolyze it. This mutant was inactive to proOmpA translocation. However, it generated a translocation intermediate of 18 kDa. Further addition of wild-type SecA caused its translocation into either mature OmpA or another intermediate of 28 kDa that can be translocated into mature by a proton motive force. The addition of excess D209N SecA during translocation caused a topology inversion of SecG. Moreover, an intermediate of SecG inversion was identified when wild-type and D209N SecA were used in the same amounts. These results indicate that multiple SecA molecules drive translocation across a single translocon with SecG inversion. Here, we propose a revised model of proOmpA translocation in which a single catalytic cycle of SecA causes translocation of 10-13 kDa with ATP binding and hydrolysis, and SecG inversion is required when the next SecA cycle begins with additional ATP hydrolysis.
Collapse
Affiliation(s)
- Kazuhiro Morita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hajime Tokuda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ken-Ichi Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
256
|
Abstract
SecA signal peptide interaction is critical for initiating protein translocation in the bacterial Sec-dependent pathway. Here, we have utilized the recent nuclear magnetic resonance (NMR) and Förster resonance energy transfer studies that mapped the location of the SecA signal peptide-binding site to design and isolate signal peptide-binding-defective secA mutants. Biochemical characterization of the mutant SecA proteins showed that Ser226, Val310, Ile789, Glu806, and Phe808 are important for signal peptide binding. A genetic system utilizing alkaline phosphatase secretion driven by different signal peptides was employed to demonstrate that both the PhoA and LamB signal peptides appear to recognize a common set of residues at the SecA signal peptide-binding site. A similar system containing either SecA-dependent or signal recognition particle (SRP)-dependent signal peptides along with the prlA suppressor mutation that is defective in signal peptide proofreading activity were employed to distinguish between SecA residues that are utilized more exclusively for signal peptide recognition or those that also participate in the proofreading and translocation functions of SecA. Collectively, our data allowed us to propose a model for the location of the SecA signal peptide-binding site that is more consistent with recent structural insights into this protein translocation system.
Collapse
|
257
|
Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. ACTA ACUST UNITED AC 2011; 18:685-98. [PMID: 21700205 DOI: 10.1016/j.chembiol.2011.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed.
Collapse
|
258
|
Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011; 286:44702-9. [PMID: 22033925 DOI: 10.1074/jbc.m111.300111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 μM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 2011; 30:4387-97. [PMID: 21897368 DOI: 10.1038/emboj.2011.314] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022] Open
Abstract
The heterotrimeric SecYEG complex comprises a protein-conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Förster's resonance energy transfer and fluorescence (cross-) correlation spectroscopy with single-molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane.
Collapse
|
260
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
261
|
Dünschede B, Bals T, Funke S, Schünemann D. Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 2011; 286:35187-95. [PMID: 21832051 DOI: 10.1074/jbc.m111.250746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.
Collapse
Affiliation(s)
- Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
262
|
Lee YC, Chen IC, Yu CM, Huang YJ, Hsu HJ, Yang AS. Effects of signal sequence on phage-displayed disulfide-stabilized single chain antibody variable fragment (sc-dsFv) libraries. Biochem Biophys Res Commun 2011; 411:348-353. [PMID: 21741355 DOI: 10.1016/j.bbrc.2011.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
Phage-displayed single chain variable fragment (scFv) libraries are powerful tools in antibody engineering. Disulfide-stabilized scFv (sc-dsFv) with an interface disulfide bond is structure-wise more stable than the corresponding scFv. A set of recently discovered signal sequences replacing the wild type (pelB) signal peptidase cleavage site in the c-region has been shown to be effective in rescuing the expression of sc-dsFv libraries on the phage surface. However, the effects of the other regions of the signal sequence on the expression of the sc-dsFv libraries and on the formation of the interface disulfide bond in the phage-displayed sc-dsFv have not been clear. In this work, selected novel signal sequence variants in the h-region were shown to be equally effective in promoting sc-dsFv library expression on the phage surface; the expression level and complexity of the sc-dsFv libraries were comparable to the corresponding scFv libraries produced with the wild-type (pelB) signal sequence. The interface disulfide bond in the phage-displayed sc-dsFv was proven to form to a large extent in the library variant ensemble generated with signal sequence variants in both the h-region and the c-region. The sc-dsFv engineering platform established in this work can be applied to many of the known scFv molecules which are in need of a more stable version for the applications under harsh conditions or for longer shelf-life.
Collapse
Affiliation(s)
- Yu-Ching Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
263
|
Abstract
Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to overcome these obstacles.
Collapse
Affiliation(s)
- Sichen Shao
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
264
|
Affiliation(s)
- Ross E. Dalbey
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Peng Wang
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
265
|
Affiliation(s)
- Christine L. Hagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; ,
| |
Collapse
|
266
|
Trueman SF, Mandon EC, Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 2011; 22:2983-93. [PMID: 21737680 PMCID: PMC3164448 DOI: 10.1091/mbc.e11-01-0070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transition between the closed and open conformations of the protein translocation channel controls the efficiency of protein translocation and the fidelity of signal sequence recognition. Mutations in Sec61 that delay or accelerate this structural transition have antagonistic effects on translocation efficiency and fidelity. The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7, and TM8 in Sec61p) to expose the signal sequence–binding site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles, which reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
267
|
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 2011; 19:430-9. [PMID: 21397193 DOI: 10.1016/j.str.2010.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022]
Abstract
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.
Collapse
|
268
|
Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B. Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 2011; 10:3617-31. [PMID: 21648951 DOI: 10.1021/pr200268r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.
Collapse
Affiliation(s)
- Tatiana Pisareva
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. Membrane protein integration into the endoplasmic reticulum. FEBS J 2011; 278:3846-58. [PMID: 21592307 DOI: 10.1111/j.1742-4658.2011.08185.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
270
|
Yap MN, Bernstein HD. The translational regulatory function of SecM requires the precise timing of membrane targeting. Mol Microbiol 2011; 81:540-53. [PMID: 21635582 DOI: 10.1111/j.1365-2958.2011.07713.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, secA expression is regulated at the translational level by an upstream gene (secM) that encodes a presecretory protein. SecM contains a C-terminal sequence motif that induces a transient translation arrest. Inhibition of SecM membrane targeting prolongs the translation arrest and increases SecA synthesis by concomitantly altering the structure of the secM-secA mRNA. Here we show that the SecM signal peptide plays an essential role in this regulatory process by acting as a molecular timer that co-ordinates membrane targeting with the synthesis of the arrest motif. We found that signal peptide mutations that alter targeting kinetics and insertions or deletions that change the distance between the SecM signal peptide and the arrest motif perturb the balance between the onset and release of arrest that is required to regulate SecA synthesis. Furthermore, we found that the strength of the interaction between the ribosome and the SecM arrest motif is calibrated to ensure the release of arrest upon membrane targeting. Our results strongly suggest that several distinctive features of the SecM protein evolved as a consequence of constraints imposed by the ribosome and the Sec machinery.
Collapse
Affiliation(s)
- Mee-Ngan Yap
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
271
|
Cole JL, Correia JJ, Stafford WF. The use of analytical sedimentation velocity to extract thermodynamic linkage. Biophys Chem 2011; 159:120-8. [PMID: 21703752 DOI: 10.1016/j.bpc.2011.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 01/10/2023]
Abstract
For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT 06269, USA
| | | | | |
Collapse
|
272
|
Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci U S A 2011; 108:E359-64. [PMID: 21606334 DOI: 10.1073/pnas.1100120108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integral membrane proteins are integrated cotranslationally into the membrane of the endoplasmic reticulum in a process mediated by the Sec61 translocon. Transmembrane α-helices in a translocating polypeptide chain gain access to the surrounding membrane through a lateral gate in the wall of the translocon channel [van den Berg B, et al. (2004) Nature 427:36-44; Zimmer J, et al. (2008) Nature 455:936-943; Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107:17182-17187]. To clarify the nature of the membrane-integration process, we have measured the insertion efficiency into the endoplasmic reticulum membrane of model hydrophobic segments containing nonproteinogenic aliphatic and aromatic amino acids. We find that an amino acid's contribution to the apparent free energy of membrane-insertion is directly proportional to the nonpolar accessible surface area of its side chain, as expected for thermodynamic partitioning between aqueous and nonpolar phases. But unlike bulk-phase partitioning, characterized by a nonpolar solvation parameter of 23 cal/(mol · Å(2)), the solvation parameter for transfer from translocon to bilayer is 6-10 cal/(mol · Å(2)), pointing to important differences between translocon-guided partitioning and simple water-to-membrane partitioning. Our results provide compelling evidence for a thermodynamic partitioning model and insights into the physical properties of the translocon.
Collapse
|
273
|
Abstract
Clp/Hsp100 proteins are essential motor proteins in protein quality control pathways in all organisms. Such enzymes couple the energy derived from ATP binding and hydrolysis to translocate and unfold polypeptide substrates. Often they perform this role in collaboration with proteases for protein removal or with other chaperones for protein disaggregation. Unlike other well-characterized motor proteins, fundamental parameters such as the microscopic rate constants and overall rate of translocation, step-size (amino acids translocated per step), processivity, and directionality are not available for many of these enzymes. We have recently developed a fluorescence stopped-flow method to elucidate these fundamental mechanistic details. In addition, we have developed a quantitative method to examine the single-turnover time courses that result from the rapid mixing experiments. With these two advances in hand, we have recently reported the first determination of the microscopic rate constants, overall rate of translocation, kinetic step-size, and processivity for the E. coli ClpA polypeptide translocase. Here, we report a description of both the fluorescence stopped-flow method to examine the mechanism of enzyme catalyzed polypeptide translocation and the mathematics required to quantitatively examine the resulting time courses.
Collapse
|
274
|
Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. Structure and function of a membrane component SecDF that enhances protein export. Nature 2011; 474:235-8. [PMID: 21562494 DOI: 10.1038/nature09980] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
Protein translocation across the bacterial membrane, mediated by the secretory translocon SecYEG and the SecA ATPase, is enhanced by proton motive force and membrane-integrated SecDF, which associates with SecYEG. The role of SecDF has remained unclear, although it is proposed to function in later stages of translocation as well as in membrane protein biogenesis. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.3 Å resolution, revealing a pseudo-symmetrical, 12-helix transmembrane domain belonging to the RND superfamily and two major periplasmic domains, P1 and P4. Higher-resolution analysis of the periplasmic domains suggested that P1, which binds an unfolded protein, undergoes functionally important conformational changes. In vitro analyses identified an ATP-independent step of protein translocation that requires both SecDF and proton motive force. Electrophysiological analyses revealed that SecDF conducts protons in a manner dependent on pH and the presence of an unfolded protein, with conserved Asp and Arg residues at the transmembrane interface between SecD and SecF playing essential roles in the movements of protons and preproteins. Therefore, we propose that SecDF functions as a membrane-integrated chaperone, powered by proton motive force, to achieve ATP-independent protein translocation.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Gumbart J, Chipot C, Schulten K, Qian MX, Wang RQ, Lu SZ, Liu J, Li GH, Chen YD. Free energy of nascent-chain folding in the translocon. J Am Chem Soc 2011; 133:7602-7. [PMID: 21524073 DOI: 10.1021/ja2019299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During their synthesis, many water-soluble proteins and nearly all membrane proteins transit through a protein-conducting channel in the membrane, the Sec translocon, from where they are inserted into the lipid bilayer. Increasing evidence indicates that folding of the nascent protein begins already within the ribosomal exit tunnel in a sequence- and environment-dependent fashion. To examine the effects of the translocon on the nascent-chain folding, we have calculated the potential of mean force for α-helix formation of a 10-alanine oligopeptide as a function of its position within the translocon channel. We find that the predominant conformational states, α-helical and extended, reflect those found for the peptide in water. However, the translocon, via its surface properties and its variable diameter, shifts the equilibrium in favor of the α-helical state. Thus, we suggest that the translocon facilitates not only the insertion of membrane proteins into the bilayer but also their folding.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. Proc Natl Acad Sci U S A 2011; 108:7775-80. [PMID: 21518907 DOI: 10.1073/pnas.1101705108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein translocation in Escherichia coli is mediated by the translocase that in its minimal form consists of the protein-conducting channel SecYEG, and the motor protein, SecA. SecYEG forms a narrow pore in the membrane that allows passage of unfolded proteins only. Molecular dynamics simulations suggest that the maximal width of the central pore of SecYEG is limited to . To access the functional size of the SecYEG pore, the precursor of outer membrane protein A was modified with rigid spherical tetraarylmethane derivatives of different diameters at a unique cysteine residue. SecYEG allowed the unrestricted passage of the precursor of outer membrane protein A conjugates carrying tetraarylmethanes with diameters up to , whereas a sized molecule blocked the translocation pore. Translocation of the protein-organic molecule hybrids was strictly proton motive force-dependent and occurred at a single pore. With an average diameter of an unfolded polypeptide chain of , the pore accommodates structures of at least , which is vastly larger than the predicted maximal width of a single pore by molecular dynamics simulations.
Collapse
|
277
|
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 2011; 18:614-21. [PMID: 21499241 PMCID: PMC3412285 DOI: 10.1038/nsmb.2026] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
The ubiquitous SecY/Sec61–complex translocates nascent secretory proteins across cellular membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly detergent solubilized Sec–complexes have been reported. Here, we present a single–particle cryo–electron microscopy structure of the SecYEG complex in a membrane environment at sub–nanometer resolution, bound to a translating ribosome. Using the SecYEG complex reconstituted in a so–called Nanodisc, we could trace the nascent polypeptide chain from the peptidyl transferase center into the membrane. The reconstruction allowed for the identification of ribosome–lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the PCC. Based on our map and molecular dynamics simulations we present a model of a signal anchor–gated PCC in the membrane.
Collapse
|
278
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
279
|
Palladino P, Saviano G, Tancredi T, Benedetti E, Rossi F, Ragone R. Structural determinants of protein translocation in bacteria: conformational flexibility of SecA IRA1 loop region. J Pept Sci 2011; 17:263-9. [DOI: 10.1002/psc.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/04/2010] [Accepted: 10/08/2010] [Indexed: 11/09/2022]
|
280
|
Abstract
The essential cellular functions of secretion and protein degradation require a molecular machine to unfold and translocate proteins either across a membrane or into a proteolytic complex. Protein translocation is also critical for microbial pathogenesis, namely bacteria can use translocase channels to deliver toxic proteins into a target cell. Anthrax toxin (Atx), a key virulence factor secreted by Bacillus anthracis, provides a robust biophysical model to characterize transmembrane protein translocation. Atx is comprised of three proteins: the translocase component, protective antigen (PA) and two enzyme components, lethal factor (LF) and oedema factor (OF). Atx forms an active holotoxin complex containing a ring-shaped PA oligomer bound to multiple copies of LF and OF. These complexes are endocytosed into mammalian host cells, where PA forms a protein-conducting translocase channel. The proton motive force unfolds and translocates LF and OF through the channel. Recent structure and function studies have shown that LF unfolds during translocation in a force-dependent manner via a series of metastable intermediates. Polypeptide-binding clamps located throughout the PA channel catalyse substrate unfolding and translocation by stabilizing unfolding intermediates through the formation of a series of interactions with various chemical groups and α-helical structure presented by the unfolding polypeptide during translocation.
Collapse
Affiliation(s)
- Katie L Thoren
- Departments of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
281
|
Spector J, Zakharov S, Lill Y, Sharma O, Cramer WA, Ritchie K. Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys J 2011; 99:3880-6. [PMID: 21156129 DOI: 10.1016/j.bpj.2010.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022] Open
Abstract
Diffusion of two Escherichia coli outer membrane proteins-the cobalamin (vitamin B12) receptor (BtuB) and the OmpF porin, which are implicated in the cellular import pathways of colicins and phages-was measured in vivo. The lateral mobility of these proteins is relevant to the mechanism of formation of the translocon for cellular import of colicins such as the rRNase colicin E3. The diffusion coefficient (D) of BtuB, the primary colicin receptor, complexed to fluorescent antibody or colicin, is 0.05±0.01 μm2/s and 0.10±0.02 μm2/s, respectively, over a timescale of 25-150 ms. Mutagenesis of the BtuB TonB box, which eliminates or significantly weakens the interaction between BtuB and the TonB energy-transducing protein that is anchored in the cytoplasmic membrane, resulted in a fivefold larger value of D, 0.27±0.06 μm2/s for antibody-labeled BtuB, indicating a cytoskeletal-like interaction of TonB with BtuB. OmpF has a diffusion coefficient of 0.006±0.002 μm2/s, ∼10-fold smaller than that of BtuB, and is restricted within a domain of diameter 100 nm, showing it to be relatively immobile compared to BtuB. Thus, formation of the outer membrane translocon for cellular import of the nuclease colicins is a demonstrably dynamic process, because it depends on lateral diffusion of BtuB and collisional interaction with relatively immobile OmpF.
Collapse
Affiliation(s)
- Jeff Spector
- Department of Physics, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
282
|
Endo T, Yamano K, Kawano S. Structural insight into the mitochondrial protein import system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:955-70. [DOI: 10.1016/j.bbamem.2010.07.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 11/28/2022]
|
283
|
Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011; 12:563-78. [PMID: 21255212 DOI: 10.1111/j.1600-0854.2011.01167.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Wowor AJ, Yu D, Kendall DA, Cole JL. Energetics of SecA dimerization. J Mol Biol 2011; 408:87-98. [PMID: 21315086 DOI: 10.1016/j.jmb.2011.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/17/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Transport of many proteins to extracytoplasmic locations occurs via the general secretion (Sec) pathway. In Escherichia coli, this pathway is composed of the SecYEG protein-conducting channel and the SecA ATPase. SecA plays a central role in binding the signal peptide region of preproteins, directing preproteins to membrane-bound SecYEG and promoting translocation coupled with ATP hydrolysis. Although it is well established that SecA is crucial for preprotein transport and thus cell viability, its oligomeric state during different stages of transport remains ill defined. We have characterized the energetics of SecA dimerization as a function of salt concentration and temperature and defined the linkage of SecA dimerization and signal peptide binding using analytical ultracentrifugation. The use of a new fluorescence detector permitted an analysis of SecA dimerization down to concentrations as low as 50 nM. The dimer dissociation constants are strongly dependent on salt. Linkage analysis indicates that SecA dimerization is coupled to the release of about five ions, demonstrating that electrostatic interactions play an important role in stabilizing the SecA dimer interface. Binding of signal peptide reduces SecA dimerization affinity, such that K(d) increases about 9-fold from 0.28 μM in the absence of peptide to 2.68 μM in the presence of peptide. The weakening of the SecA dimer that accompanies signal peptide binding may poise the SecA dimer to dissociate upon binding to SecYEG.
Collapse
Affiliation(s)
- Andy J Wowor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
285
|
Das S, Oliver DB. Mapping of the SecA·SecY and SecA·SecG interfaces by site-directed in vivo photocross-linking. J Biol Chem 2011; 286:12371-80. [PMID: 21317284 DOI: 10.1074/jbc.m110.182931] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457, USA
| | | |
Collapse
|
286
|
Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A 2011; 108:3596-601. [PMID: 21317362 DOI: 10.1073/pnas.1012758108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nascent membrane proteins typically insert in a sequential fashion into the membrane via a protein-conducting channel, the Sec translocon. How this process occurs is still unclear, although a thermodynamic partitioning between the channel and the membrane environment has been proposed. Experiment- and simulation-based scales for the insertion free energy of various amino acids are, however, at variance, the former appearing to lie in a narrower range than the latter. Membrane insertion of arginine, for instance, requires 14-17 kcal/mol according to molecular dynamics simulations, but only 2-3 kcal/mol according to experiment. We suggest that this disagreement is resolved by assuming a two-stage insertion process wherein the first step, the insertion into the translocon, is energized by protein synthesis and, therefore, has an effectively zero free-energy cost; the second step, the insertion into the membrane, invokes the translocon as an intermediary between the fully hydrated and the fully inserted locations. Using free-energy perturbation calculations, the effective transfer free energies from the translocon to the membrane have been determined for both arginine and leucine amino acids carried by a background polyleucine helix. Indeed, the insertion penalty for arginine as well as the insertion gain for leucine from the translocon to the membrane is found to be significantly reduced compared to direct insertion from water, resulting in the same compression as observed in the experiment-based scale.
Collapse
|
287
|
Tang Y, Pan X, Tai PC, Sui S. Electron microscopic visualization of asymmetric precursor translocation intermediates: SecA functions as a dimer. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1049-56. [PMID: 21104364 DOI: 10.1007/s11427-010-4061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/22/2010] [Indexed: 11/27/2022]
Abstract
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I(31)) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I(31) structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.
Collapse
Affiliation(s)
- Ying Tang
- State-Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
288
|
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 2010; 28:1581-91. [PMID: 21081480 DOI: 10.1093/molbev/msq305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Collapse
Affiliation(s)
- Janette Tong
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Rapoport TA. A preliminary report on my life in science. Mol Biol Cell 2010; 21:3770-2. [PMID: 21079005 PMCID: PMC2982106 DOI: 10.1091/mbc.e10-05-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
I describe my wanderings from the United States to East Germany and back. I hope this gives a glimpse of science in East Germany and encourages people who do science under less than favorable conditions. Although elements of my story are unique, the main points are general: don't be afraid to start something new; it pays to be persistent; and science is a passion—if it feels like fun, you've probably got it right.
Collapse
Affiliation(s)
- Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
290
|
Deville K, Gold VAM, Robson A, Whitehouse S, Sessions RB, Baldwin SA, Radford SE, Collinson I. The oligomeric state and arrangement of the active bacterial translocon. J Biol Chem 2010; 286:4659-69. [PMID: 21056980 PMCID: PMC3039378 DOI: 10.1074/jbc.m110.175638] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein secretion in bacteria is driven through the ubiquitous SecYEG complex by the ATPase SecA. The structure of SecYEG alone or as a complex with SecA in detergent reveal a monomeric heterotrimer enclosing a central protein channel, yet in membranes it is dimeric. We have addressed the functional significance of the oligomeric status of SecYEG in protein translocation using single molecule and ensemble methods. The results show that while monomers are sufficient for the SecA- and ATP-dependent association of SecYEG with pre-protein, active transport requires SecYEG dimers arranged in the back-to-back conformation. Molecular modeling of this dimeric structure, in conjunction with the new functional data, provides a rationale for the presence of both active and passive copies of SecYEG in the functional translocon.
Collapse
Affiliation(s)
- Karine Deville
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 2010; 17:1383-90. [PMID: 21037566 PMCID: PMC3133606 DOI: 10.1038/nsmb.1923] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023]
Abstract
The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LF(N)). The first α-helix and β-strand of each LF(N) unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.
Collapse
|
292
|
Bondar AN, del Val C, Freites JA, Tobias DJ, White SH. Dynamics of SecY translocons with translocation-defective mutations. Structure 2010; 18:847-57. [PMID: 20637421 DOI: 10.1016/j.str.2010.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/28/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The SecY/Sec61 translocon complex, located in the endoplasmic reticulum membrane of eukaryotes (Sec61) or the plasma membrane of prokaryotes (SecY), mediates the transmembrane secretion or insertion of nascent proteins. Mutations that permit the secretion of nascent proteins with defective signal sequences (Prl-phenotype), or interfere with the transmembrane orientation of newly synthesized protein segments, can affect protein topogenesis. The crystallographic structure of SecYEbeta from Methanococcus jannaschii revealed widespread distribution of mutations causing topogenesis defects, but not their molecular mechanisms. Based upon prolonged molecular dynamics simulations of wild-type M. jannaschii SecYEbeta and an extensive sequence-conservation analysis, we show that the closed state of the translocon is stabilized by hydrogen-bonding interactions of numerous highly conserved amino acids. Perturbations induced by mutation at various locations are rapidly relayed to the plug segment that seals the wild-type closed-state translocon, leading to displacement and increased hydration of the plug.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | | | |
Collapse
|
293
|
Trabuco LG, Schreiner E, Gumbart J, Hsin J, Villa E, Schulten K. Applications of the molecular dynamics flexible fitting method. J Struct Biol 2010; 173:420-7. [PMID: 20932910 DOI: 10.1016/j.jsb.2010.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.
Collapse
Affiliation(s)
- Leonardo G Trabuco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
294
|
On the energetics of translocon-assisted insertion of charged transmembrane helices into membranes. Proc Natl Acad Sci U S A 2010; 107:17598-603. [PMID: 20876127 DOI: 10.1073/pnas.1012207107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The understanding of the mechanism of insertion of transmembrane (TM) helixes through the translocon presents a major open challenge. Although the experimental information about the partition of the inserted helices between the membrane and the solution contains crucial information about this process, it is not clear how to extract this information. In particular, it is not clear how to rationalize the small apparent insertion energy, ΔG(app), of an ionized residue in the center of a TM helix. Here we explore the nature of the insertion energies, asking what should be the value of these parameters if their measurements represent equilibrium conditions. This is done using a coarse-grained model with advanced electrostatic treatment. Estimating the energetics of ionized arginine of a TM helix in the presence of neighboring helixes or the translocon provides a rationale for the observed ΔG(app) of ionized residues. It is concluded that the apparent insertion free energy of TM with charged residues reflects probably more than just the free energy of moving the isolate single helix from water into the membrane. The present approach should be effective not only in exploring the mechanism of the operation of the translocon but also for studies of other membrane proteins.
Collapse
|
295
|
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 2010; 107:17182-7. [PMID: 20855604 DOI: 10.1073/pnas.1012556107] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the protein-translocating channel SecYEβ from Pyrococcus furiosus at 3.1-Å resolution suggests a mechanism for chaperoning transmembrane regions of a protein substrate during its lateral delivery into the lipid bilayer. Cytoplasmic segments of SecY orient the C-terminal α-helical region of another molecule, suggesting a general binding mode and a promiscuous guiding surface capable of accommodating diverse nascent chains at the exit of the ribosomal tunnel. To accommodate this putative nascent chain mimic, the cytoplasmic vestibule widens, and a lateral exit portal is opened throughout its entire length for partition of transmembrane helical segments to the lipid bilayer. In this primed channel, the central plug still occludes the pore while the lateral gate is opened, enabling topological arbitration during early protein insertion. In vivo, a 15 amino acid truncation of the cytoplasmic C-terminal helix of SecY fails to rescue a secY-deficient strain, supporting the essential role of this helix as suggested from the structure.
Collapse
|
296
|
Harada Y, Li H, Wall JS, Li H, Lennarz WJ. Structural studies and the assembly of the heptameric post-translational translocon complex. J Biol Chem 2010; 286:2956-65. [PMID: 20826819 DOI: 10.1074/jbc.m110.159517] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, some of the nascent chains can be post-translationally translocated into the endoplasmic reticulum through the heptameric post-translational translocon complex (post-translocon). This membrane-protein complex is composed of the protein-conducting channel and the tetrameric Sec62/63 complex. The Sec62/63 complex plays crucial roles in targeting of the signal recognition particle-independent protein substrate to the protein-conducting channel and in assembly of the post-translocon. Although the molecular mechanism of the post-translational translocation process has been well established, the structure of the post-translocon and how the channel and the Sec62/63 complex form the heptameric complex are largely uncharacterized. Here, we report a 20-Å resolution cryo-electron microscopy structure of the post-translocon. The purified post-translocon was found to have a mass of 287 kDa, which is consistent with the unit stoichiometry of the seven subunits as determined by a cysteine labeling experiment. We demonstrated that Triton X-100 dissociated the heptameric complex into three subcomplexes identified as the trimeric translocon Sec61-Sbh1-Sss1, the Sec63-Sec71-Sec72 trimer, and the heterotetramer Sec62-Sec63-Sec71-Sec72, respectively. Additionally, a role of the sixth cytosolic loop of Sec61 in assembly of the post-translocon was demonstrated. Mutations of conserved, positively charged amino acid residues in the loop caused decreased formation of the post-translocon. These studies provide the first architectural description of the yeast post-translocon.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
297
|
Seepersaud R, Bensing BA, Yen YT, Sullam PM. Asp3 mediates multiple protein-protein interactions within the accessory Sec system of Streptococcus gordonii. Mol Microbiol 2010; 78:490-505. [PMID: 20807195 DOI: 10.1111/j.1365-2958.2010.07346.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial binding to human platelets is an important step in the pathogenesis of infective endocarditis. Streptococcus gordonii can mediate its platelet attachment through a cell wall glycoprotein termed GspB ('gordonii surface protein B'). GspB export is mediated by a seven-component accessory Sec system, containing two homologues of the general secretory pathway (SecA2 and SecY2) and five accessory Sec proteins (Asps1-5). Here we show that the Asps are required for optimal export of GspB independent of the glycosylation process. Furthermore, yeast two-hybrid screening of the accessory Sec system revealed interactions occurring between Asp3 and the other components of the system. Asp3 was shown to bind SecA2, Asp1, Asp2 and itself. Mutagenesis of Asp3 identified N- and C-terminal regions that are essential for GspB transport, and conserved residues within the C-terminal domain mediated Asp3 binding to other accessory Sec components. The loss of binding by Asp3 also resulted in an impaired ability of S. gordonii to secrete GspB. These studies indicate that Asp3 is a central element mediating multiple interactions among accessory Sec components that are essential for GspB transport to the cell surface.
Collapse
Affiliation(s)
- Ravin Seepersaud
- San Francisco Veteran Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
298
|
Randall LL, Henzl MT. Direct identification of the site of binding on the chaperone SecB for the amino terminus of the translocon motor SecA. Protein Sci 2010; 19:1173-9. [PMID: 20512970 DOI: 10.1002/pro.392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane-embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N-terminal residues 2 through 11 of SecA and the C-terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.
Collapse
Affiliation(s)
- Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
299
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
300
|
Bonardi F, London G, Nouwen N, Feringa BL, Driessen AJM. Light-Induced Control of Protein Translocation by the SecYEG Complex. Angew Chem Int Ed Engl 2010; 49:7234-8. [DOI: 10.1002/anie.201002243] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|