251
|
Grueber CE, Sutton JT, Heber S, Briskie JV, Jamieson IG, Robertson BC. Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Mol Ecol 2017; 26:2660-2673. [PMID: 28214377 DOI: 10.1111/mec.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/27/2022]
Abstract
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred.
Collapse
Affiliation(s)
- Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, RMC Gunn Building (B19), NSW 2006, Australia.,San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA
| | - Jolene T Sutton
- Department of Biology, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA
| | - Sol Heber
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - James V Briskie
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ian G Jamieson
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Bruce C Robertson
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
252
|
Heston JB, White SA. To transduce a zebra finch: interrogating behavioral mechanisms in a model system for speech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:691-706. [PMID: 28271185 PMCID: PMC5589492 DOI: 10.1007/s00359-017-1153-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/15/2017] [Accepted: 02/03/2017] [Indexed: 02/03/2023]
Abstract
The ability to alter neuronal gene expression, either to affect levels of endogenous molecules or to express exogenous ones, is a powerful tool for linking brain and behavior. Scientists continue to finesse genetic manipulation in mice. Yet mice do not exhibit every behavior of interest. For example, Mus musculus do not readily imitate sounds, a trait known as vocal learning and a feature of speech. In contrast, thousands of bird species exhibit this ability. The circuits and underlying molecular mechanisms appear similar between disparate avian orders and are shared with humans. An advantage of studying vocal learning birds is that the neurons dedicated to this trait are nested within the surrounding brain regions, providing anatomical targets for relating brain and behavior. In songbirds, these nuclei are known as the song control system. Molecular function can be interrogated in non-traditional model organisms by exploiting the ability of viruses to insert genetic material into neurons to drive expression of experimenter-defined genes. To date, the use of viruses in the song control system is limited. Here, we review prior successes and test additional viruses for their capacity to transduce basal ganglia song control neurons. These findings provide a roadmap for troubleshooting the use of viruses in animal champions of fascinating behaviors—nowhere better featured than at the 12th International Congress!
Collapse
Affiliation(s)
- Jonathan B Heston
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Neurosciences, University of California, San Diego, San Diego, CA, 92093, USA
| | - Stephanie A White
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
253
|
Patthey C, Tong YG, Tait CM, Wilson SI. Evolution of the functionally conserved DCC gene in birds. Sci Rep 2017; 7:42029. [PMID: 28240293 PMCID: PMC5327406 DOI: 10.1038/srep42029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes.
Collapse
Affiliation(s)
- Cedric Patthey
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | - Yong Guang Tong
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | | | - Sara Ivy Wilson
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| |
Collapse
|
254
|
A reliable and flexible gene manipulation strategy in posthatch zebra finch brain. Sci Rep 2017; 7:43244. [PMID: 28233828 PMCID: PMC5324116 DOI: 10.1038/srep43244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Songbird models meaningfully contribute to many fields including learned vocal communication, the neurobiology of social interactions, brain development, and ecology. The value of investigating gene-brain-behavior relationships in songbirds is therefore high. Viral infections typically used in other lab animals to deliver gene editing constructs have been less effective in songbirds, likely due to immune system properties. We therefore leveraged the in vivo electroporation strategy used in utero in rodents and in ovo in poultry, and apply it to posthatch zebra finch songbird chicks. We present a series of experiments with a combination of promoters, fluorescent protein genes, and piggyBac transposase vectors to demonstrate that this can be a reliable, efficient, and flexible strategy for genome manipulation. We discuss options for gene delivery experiments to test circuit and behavioral hypotheses using a variety of manipulations, including gene overexpression, CRISPR/Cas9 gene editing, inducible technologies, optogenetic or DREADD cellular control, and cell type-specific expression.
Collapse
|
255
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
256
|
Knief U, Schielzeth H, Backström N, Hemmrich‐Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W. Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations. Mol Ecol 2017; 26:1285-1305. [DOI: 10.1111/mec.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Holger Schielzeth
- Department of Population Ecology Friedrich Schiller University Jena 07743 Jena Germany
| | - Niclas Backström
- Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | | | - Michael Wittig
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University 24105 Kiel Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University 24105 Kiel Germany
| | - Simon C. Griffith
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- School of Biological, Earth & Environmental Sciences University of New South Wales Sydney NSW 2057 Australia
| | - Hans Ellegren
- Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| |
Collapse
|
257
|
dos Santos MDS, Kretschmer R, Frankl-Vilches C, Bakker A, Gahr M, O´Brien PCM, Ferguson-Smith MA, de Oliveira EHC. Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary. PLoS One 2017; 12:e0170997. [PMID: 28129381 PMCID: PMC5271350 DOI: 10.1371/journal.pone.0170997] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/14/2017] [Indexed: 11/18/2022] Open
Abstract
Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1.
Collapse
Affiliation(s)
| | - Rafael Kretschmer
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Patricia C. M. O´Brien
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Edivaldo H. C. de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil
- Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
258
|
Hofmeister EK, Lund M, Shearn-Bochsler V, Balakrishnan CN. Susceptibility and Antibody Response of the Laboratory Model Zebra Finch (Taeniopygia guttata) to West Nile Virus. PLoS One 2017; 12:e0167876. [PMID: 28045891 PMCID: PMC5207765 DOI: 10.1371/journal.pone.0167876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Since the introduction of West Nile virus (WNV) into North America in 1999 a number of passerine bird species have been found to play a role in the amplification of the virus. Arbovirus surveillance, observational studies and experimental studies have implicated passerine birds (songbirds, e.g., crows, American robins, house sparrows, and house finches) as significant reservoirs of WNV in North America, yet we lack a tractable passerine animal model for controlled studies of the virus. The zebra finch (Taeniopygia guttata) serves as a model system across a diversity of fields, and here we develop the zebra finch a songbird model for WNV. Like many natural hosts of WNV, we found that zebra finches developed sufficient viremia to serve as a competent host, yet in general resisted mortality from infection. In the Australian zebra finch (AZF) T. g. castanotis, we detected WNV in the majority of sampled tissues by 4 days post injection (dpi). However, WNV was not detected in tissues of sacrificed birds at 14 dpi, shortly after the development of detectable anti-WNV antibodies in the majority of birds indicating successful viral clearance. We compared susceptibility between the two zebra finch subspecies AZF and Timor zebra finch (TZF) T. g. guttata. Compared to AZF, WNV RNA was detected in a larger proportion of challenged TZF and molecular detection of virus in the serum of TZF was significantly higher than in AZF. Given the observed moderate host competence and disease susceptibility, we suggest that zebra finches are appropriate as models for the study of WNV and although underutilized in this respect, may be ideal models for the study of the many diseases carried and transmitted by songbirds.
Collapse
Affiliation(s)
- Erik K. Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Melissa Lund
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Valerie Shearn-Bochsler
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | | |
Collapse
|
259
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
260
|
Hou PS, Kumamoto T, Hanashima C. A Sensitive and Versatile In Situ Hybridization Protocol for Gene Expression Analysis in Developing Amniote Brains. Methods Mol Biol 2017; 1650:319-334. [PMID: 28809032 DOI: 10.1007/978-1-4939-7216-6_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of specific RNA molecules in embryonic tissues has wide research applications including studying gene expression dynamics in brain development and evolution. Recent advances in sequencing technologies have introduced new animal models to explore the molecular principles underlying the assembly and diversification of brain circuits between different amniote species. Here, we provide a step-by-step protocol for a versatile in situ hybridization method that is immediately applicable to a range of amniote embryos including zebra finch and Madagascar ground gecko, two new model organisms that have rapidly emerged for comparative brain studies over recent years. The sensitive detection of transcripts from low to high abundance expression range using the same platform enables direct comparison of gene of interest among different amniotes, providing high-resolution spatiotemporal information of gene expression to dissect the molecular principles underlying brain evolution.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
261
|
Kapusta A, Suh A. Evolution of bird genomes-a transposon's-eye view. Ann N Y Acad Sci 2016; 1389:164-185. [DOI: 10.1111/nyas.13295] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Alexander Suh
- Department of Evolutionary Biology (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
262
|
Jarvis ED. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class. Annu Rev Anim Biosci 2016; 4:45-59. [PMID: 26884102 DOI: 10.1146/annurev-animal-021815-111216] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
263
|
Bolton PE, West AJ, Cardilini APA, Clark JA, Maute KL, Legge S, Brazill-Boast J, Griffith SC, Rollins LA. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae). PLoS One 2016; 11:e0167723. [PMID: 27936082 PMCID: PMC5147959 DOI: 10.1371/journal.pone.0167723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/20/2016] [Indexed: 11/18/2022] Open
Abstract
Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae) is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam P A Cardilini
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jennalee A Clark
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kimberley L Maute
- Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Wildlife Conservancy, Perth, Western Australia, Australia
| | - Sarah Legge
- Australian Wildlife Conservancy, Perth, Western Australia, Australia
| | - James Brazill-Boast
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
264
|
Damas J, O'Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, Fowler K, Joseph S, Swain MT, Griffin DK, Larkin DM. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 2016; 27:875-884. [PMID: 27903645 PMCID: PMC5411781 DOI: 10.1101/gr.213660.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
Most recent initiatives to sequence and assemble new species’ genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts.” This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome.
Collapse
Affiliation(s)
- Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - Rebecca O'Connor
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - Vasileios Panagiotis E Lenis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Henry J Martell
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Anjali Mandawala
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom.,School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, United Kingdom
| | - Katie Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, United Kingdom
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| |
Collapse
|
265
|
Bragg JG, Potter S, Bi K, Catullo R, Donnellan SC, Eldridge MDB, Joseph L, Keogh JS, Oliver P, Rowe KC, Moritz C. Resources for phylogenomic analyses of Australian terrestrial vertebrates. Mol Ecol Resour 2016; 17:869-876. [DOI: 10.1111/1755-0998.12633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Jason G. Bragg
- Research School of Biology and Centre for Biodiversity Analysis; The Australian National University; Canberra ACT 0200 Australia
| | - Sally Potter
- Research School of Biology and Centre for Biodiversity Analysis; The Australian National University; Canberra ACT 0200 Australia
| | - Ke Bi
- Computational Genomics Resource Laboratory (CGRL); California Institute for Quantitative Biosciences (QB3); University of California; Berkeley CA 94720 USA
| | - Renee Catullo
- Biological Sciences; Macquarie University; Sydney NSW 2109 Australia
| | | | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum; 1 William St Sydney NSW 2010 Australia
| | - Leo Joseph
- The Commonwealth Scientific and Industrial Research Organization; National Research Collections Australia; GPO Box 1700 Canberra ACT 2601 Australia
| | - J. Scott Keogh
- Research School of Biology and Centre for Biodiversity Analysis; The Australian National University; Canberra ACT 0200 Australia
| | - Paul Oliver
- Research School of Biology and Centre for Biodiversity Analysis; The Australian National University; Canberra ACT 0200 Australia
| | | | - Craig Moritz
- Research School of Biology and Centre for Biodiversity Analysis; The Australian National University; Canberra ACT 0200 Australia
| |
Collapse
|
266
|
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W. Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol 2016; 17:199. [PMID: 27687629 PMCID: PMC5043542 DOI: 10.1186/s13059-016-1056-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits. Results Using whole-genome SNP data, we screened 948 wild zebra finches for polymorphic inversions and describe four large (12–63 Mb) intraspecific inversion polymorphisms with allele frequencies close to 50 %. Using additional data from 5229 birds and 9764 eggs from wild and three captive zebra finch populations, we show that only the largest inversions increase embryo mortality in heterokaryotypic males, with surprisingly small effect sizes. We test for a heterozygote advantage on other fitness components but find no evidence for heterosis for any of the inversions. Yet, we find strong additive effects on several morphological traits. Conclusions The mechanism that has carried the derived inversion haplotypes to such high allele frequencies remains elusive. It appears that selection has effectively minimized the costs associated with inversions in zebra finches. The highly skewed distribution of recombination events towards the chromosome ends in zebra finches and other estrildid species may function to minimize crossovers in the inverted regions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1056-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany. .,Current address: Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany.
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2057, Australia
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| |
Collapse
|
267
|
Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV. SNPs across time and space: population genomic signatures of founder events and epizootics in the House Finch ( Haemorhous mexicanus). Ecol Evol 2016; 6:7475-7489. [PMID: 28725414 PMCID: PMC5513257 DOI: 10.1002/ece3.2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.
Collapse
Affiliation(s)
- Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Paul M Nolan
- Department of Biology The Citadel Charleston SC USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
268
|
Buck KA, Varian-Ramos CW, Cristol DA, Swaddle JP. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance. PLoS One 2016; 11:e0162440. [PMID: 27668745 PMCID: PMC5036838 DOI: 10.1371/journal.pone.0162440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0-2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs.
Collapse
Affiliation(s)
- Kenton A. Buck
- Institute for Integrative Bird Behavior Studies, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Claire W. Varian-Ramos
- Biology Department, Colorado State University – Pueblo, Pueblo, Colorado, United States of America
| | - Daniel A. Cristol
- Institute for Integrative Bird Behavior Studies, College of William and Mary, Williamsburg, Virginia, United States of America
| | - John P. Swaddle
- Institute for Integrative Bird Behavior Studies, College of William and Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
269
|
Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL. Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Ecol 2016; 25:4488-507. [PMID: 27484941 DOI: 10.1111/mec.13792] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Recent technological developments allow investigation of the repeatability of evolution at the genomic level. Such investigation is particularly powerful when applied to a ring species, in which spatial variation represents changes during the evolution of two species from one. We examined genomic variation among three subspecies of the greenish warbler ring species, using genotypes at 13 013 950 nucleotide sites along a new greenish warbler consensus genome assembly. Genomic regions of low within-group variation are remarkably consistent between the three populations. These regions show high relative differentiation but low absolute differentiation between populations. Comparisons with outgroup species show the locations of these peaks of relative differentiation are not well explained by phylogenetically conserved variation in recombination rates or selection. These patterns are consistent with a model in which selection in an ancestral form has reduced variation at some parts of the genome, and those same regions experience recurrent selection that subsequently reduces variation within each subspecies. The degree of heterogeneity in nucleotide diversity is greater than explained by models of background selection, but is consistent with selective sweeps. Given the evidence that greenish warblers have had both population differentiation for a long period of time and periods of gene flow between those populations, we propose that some genomic regions underwent selective sweeps over a broad geographic area followed by within-population selection-induced reductions in variation. An important implication of this 'sweep-before-differentiation' model is that genomic regions of high relative differentiation may have moved among populations more recently than other genomic regions.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
| | - Miguel Alcaide
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Kira E Delmore
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Jessica H Irwin
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Gregory L Owens
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
270
|
Nogaret A, Meliza CD, Margoliash D, Abarbanel HDI. Automatic Construction of Predictive Neuron Models through Large Scale Assimilation of Electrophysiological Data. Sci Rep 2016; 6:32749. [PMID: 27605157 PMCID: PMC5015021 DOI: 10.1038/srep32749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
We report on the construction of neuron models by assimilating electrophysiological data with large-scale constrained nonlinear optimization. The method implements interior point line parameter search to determine parameters from the responses to intracellular current injections of zebra finch HVC neurons. We incorporated these parameters into a nine ionic channel conductance model to obtain completed models which we then use to predict the state of the neuron under arbitrary current stimulation. Each model was validated by successfully predicting the dynamics of the membrane potential induced by 20–50 different current protocols. The dispersion of parameters extracted from different assimilation windows was studied. Differences in constraints from current protocols, stochastic variability in neuron output, and noise behave as a residual temperature which broadens the global minimum of the objective function to an ellipsoid domain whose principal axes follow an exponentially decaying distribution. The maximum likelihood expectation of extracted parameters was found to provide an excellent approximation of the global minimum and yields highly consistent kinetics for both neurons studied. Large scale assimilation absorbs the intrinsic variability of electrophysiological data over wide assimilation windows. It builds models in an automatic manner treating all data as equal quantities and requiring minimal additional insight.
Collapse
Affiliation(s)
- Alain Nogaret
- Department of Physics, University of Bath, Bath BA2 7AY, UK
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Daniel Margoliash
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Henry D I Abarbanel
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA.,Scripps Institution for Oceanography, Marine Physical Laboratory, La Jolla, CA 92093, USA
| |
Collapse
|
271
|
Knief U, Forstmeier W. Mapping centromeres of microchromosomes in the zebra finch (Taeniopygia guttata) using half-tetrad analysis. Chromosoma 2016; 125:757-68. [PMID: 26667931 PMCID: PMC5023761 DOI: 10.1007/s00412-015-0560-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
Abstract
Centromeres usually consist of hundreds of kilobases of repetitive sequence which renders them difficult to assemble. As a consequence, centromeres are often missing from assembled genomes and their locations on physical chromosome maps have to be inferred from flanking sequences via fluorescence in situ hybridization (FISH). Alternatively, centromere positions can be mapped using linkage analyses in accidentally triploid individuals formed by half-tetrads (resulting from the inheritance of two chromatids from a single meiosis). The current genome assembly of the zebra finch (Taeniopygia guttata) comprises 32 chromosomes, but only for the ten largest chromosomes centromere positions have been mapped using FISH. We here map the positions of most of the remaining centromeres using half-tetrad analyses. For this purpose, we genotyped 37 zebra finches that were triploid or tetraploid due to inheritance errors (and mostly died as embryos) together with their parents at 64 microsatellite markers (at least two per chromosome). Using the information on centromere positions on the ten largest chromosomes, we were able to identify 12 cases of non-disjunction in maternal meiosis I and 10 cases of non-disjunction in maternal meiosis II. These 22 informative cases allowed us to infer centromere positions on additional 19 microchromosomes in reference to the current genome assembly. This knowledge will be valuable for studies of chromosome evolution, meiotic drive and species divergence in the avian lineage.
Collapse
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| |
Collapse
|
272
|
Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, Larkin DM. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles. Genome Biol Evol 2016; 8:2442-51. [PMID: 27401172 PMCID: PMC5010900 DOI: 10.1093/gbe/evw166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes.
Collapse
Affiliation(s)
- Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Jitendra Narayan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Loretta Auvil
- Illinois Informatics Institute, University of Illinois, Urbana, IL 61801, USA
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - David W Burt
- Department of Genomics and Genetics, the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| |
Collapse
|
273
|
Santure AW. An ecological model organism flies into the genomics era. Mol Ecol Resour 2016; 16:379-81. [PMID: 26813493 DOI: 10.1111/1755-0998.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 11/26/2022]
Abstract
Despite the very rapid 'genomicization' of the field of Molecular Ecology in recent years, there have been relatively few annotated whole-genome assemblies of nonmodel organisms published. Instead, molecular ecologists have more frequently utilized next-generation sequencing technologies to develop genome-wide markers or to generate transcriptome data. Whole-genome assemblies are more expensive and require considerable computational resources and bioinformatic expertise. However, the availability of an annotated genome offers exciting opportunities to address fundamental questions in ecology and evolution that are difficult to address with moderate sets of markers or by transcriptome sequencing. Such questions include elucidating the roles of natural and sexual selection in shaping diversity, determining the roles of regulatory and protein-coding change in the evolution of traits, and determining the genomic architecture of sex-specific trait variation. Arguably, these questions are most tractable--and most interesting--in well-characterized species for which there is already some knowledge of natural and sexual selection, and of the traits that are most likely to link to fitness. In this issue, Mueller et al. (2016) present the assembly and annotation of the genome of the blue tit (Cyanistes caeruleus), a model ecological species. In addition, by sequencing the transcriptome of male and female blue tits, the authors identify and annotate sex-biased gene expression and conclude that noncoding RNA genes are likely to play a significant role in sex-biased expression. By making their assembly and annotation publically available and accessible via a genome browser, Mueller et al. (2016) offer exciting possibilities for further research into the genomic basis of adaptation, and investigation of the roles of natural and sexual selection, in this well-studied ecological model species.
Collapse
Affiliation(s)
- Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
274
|
Konopka G, Roberts TF. Insights into the Neural and Genetic Basis of Vocal Communication. Cell 2016; 164:1269-1276. [PMID: 26967292 DOI: 10.1016/j.cell.2016.02.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/11/2022]
Abstract
The use of vocalizations to communicate information and elaborate social bonds is an adaptation seen in many vertebrate species. Human speech is an extreme version of this pervasive form of communication. Unlike the vocalizations exhibited by the majority of land vertebrates, speech is a learned behavior requiring early sensory exposure and auditory feedback for its development and maintenance. Studies in humans and a small number of other species have provided insights into the neural and genetic basis for learned vocal communication and are helping to delineate the roles of brain circuits across the cortex, basal ganglia, and cerebellum in generating vocal behaviors. This Review provides an outline of the current knowledge about these circuits and the genes implicated in vocal communication, as well as a perspective on future research directions in this field.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
275
|
The Mouse-colored Tyrannulet (Phaeomyias murina) is a species complex that includes the Cocos Flycatcher (Nesotriccus ridgwayi), an island form that underwent a population bottleneck. Mol Phylogenet Evol 2016; 101:294-302. [DOI: 10.1016/j.ympev.2016.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 11/22/2022]
|
276
|
Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes. Cytogenet Genome Res 2016; 148:292-304. [DOI: 10.1159/000447478] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.
Collapse
|
277
|
Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0863-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
278
|
Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, García Girón C, Hourlier T, Howe K, Kähäri A, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S, Zadissa A, Flicek P, Searle SMJ. The Ensembl gene annotation system. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw093. [PMID: 27337980 PMCID: PMC4919035 DOI: 10.1093/database/baw093] [Citation(s) in RCA: 769] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html.
Collapse
Affiliation(s)
- Bronwen L Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Ayling
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Present addresses: The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Barrell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Eagle Genomics Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Laura Clarke
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Valery Curwen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Susan Fairley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julio Fernandez Banet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kevin Howe
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Kähäri
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Institutionen för cell-och molekylärbiologi, Uppsala University, Husargatan 3, Uppsala 752 37, Sweden
| | - Felix Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Magali Ruffier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Schuster
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna a-1090, Austria
| | - Y Amy Tang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jan-Hinnerk Vogel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Simon White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amonida Zadissa
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
279
|
Bentz AB, Sirman AE, Wada H, Navara KJ, Hood WR. Relationship between maternal environment and DNA methylation patterns of estrogen receptor alpha in wild Eastern Bluebird (Sialia sialis) nestlings: a pilot study. Ecol Evol 2016; 6:4741-52. [PMID: 27547309 PMCID: PMC4979703 DOI: 10.1002/ece3.2162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
There is mounting evidence that, across taxa, females breeding in competitive environments tend to allocate more testosterone to their offspring prenatally and these offspring typically have more aggressive and faster‐growing phenotypes. To date, no study has determined the mechanisms mediating this maternal effect's influence on offspring phenotype. However, levels of estrogen receptor alpha (ERα) gene expression are linked to differences in early growth and aggression; thus, maternal hormones may alter gene regulation, perhaps via DNA methylation, of ERα in offspring during prenatal development. We performed a pilot study to examine natural variation in testosterone allocation to offspring through egg yolks in wild Eastern Bluebirds (Sialia sialis) in varying breeding densities and percent DNA methylation of CG dinucleotides in the ERα promoter in offspring brain regions associated with growth and behavior. We hypothesized that breeding density would be positively correlated with yolk testosterone, and prenatal exposure to maternal‐derived yolk testosterone would be associated with greater offspring growth and decreased ERα promoter methylation. Yolk testosterone concentration was positively correlated with breeding density, nestling growth rate, and percent DNA methylation of one out of five investigated CpG sites (site 3) in the diencephalon ERα promoter, but none in the telencephalon (n = 10). Percent DNA methylation of diencephalon CpG site 3 was positively correlated with growth rate. These data suggest a possible role for epigenetics in mediating the effects of the maternal environment on offspring phenotype. Experimentally examining this mechanism with a larger sample size in future studies may help elucidate a prominent way in which animals respond to their environment. Further, by determining the mechanisms that mediate maternal effects, we can begin to understand the potential for the heritability of these mechanisms and the impact that maternal effects are capable of producing at an evolutionary scale.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Aubrey E Sirman
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Haruka Wada
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Kristen J Navara
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Wendy R Hood
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| |
Collapse
|
280
|
Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics. Syst Biol 2016; 65:910-24. [PMID: 27288477 DOI: 10.1093/sysbio/syw036] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and read overlap at recovered loci, and the high overall information that results. Sequence capture's benefits include flexibility and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets and studies for the purpose of drawing general conclusions about the impact of historical processes across biotas. We argue that sequence capture should be given greater attention as a method of obtaining data for studies in shallow systematics and comparative phylogeography.
Collapse
Affiliation(s)
- Michael G Harvey
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA,
| | - Brian Tilston Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA, Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA, and
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Brant C Faircloth
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
281
|
Wang N, Liang B, Wang J, Yeh CF, Liu Y, Liu Y, Liang W, Yao CT, Li SH. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves). Mol Phylogenet Evol 2016; 102:62-73. [PMID: 27233437 DOI: 10.1016/j.ympev.2016.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 01/11/2023]
Abstract
Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process.
Collapse
Affiliation(s)
- Ning Wang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Bin Liang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Chia-Fen Yeh
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang Liu
- State Key Laboratory of BioControl, College of Ecology and Evolution/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlin Liu
- Institute of Forestry Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Cheng-Te Yao
- High-Altitude Experimental Station, Taiwan Endemic Species Research Institute, Chi-chi 55244, Taiwan
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
282
|
Abstract
The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general.
Collapse
Affiliation(s)
- Diana Le Duc
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| |
Collapse
|
283
|
Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2016; 222:481-514. [PMID: 27160258 PMCID: PMC5225162 DOI: 10.1007/s00429-016-1229-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/21/2016] [Indexed: 02/01/2023]
Abstract
We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Collapse
Affiliation(s)
- Alba Vicario
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain.
| |
Collapse
|
284
|
Adam I, Mendoza E, Kobalz U, Wohlgemuth S, Scharff C. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Mol Cell Neurosci 2016; 74:96-105. [PMID: 27105823 DOI: 10.1016/j.mcn.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway.
Collapse
Affiliation(s)
- Iris Adam
- Department for Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | - Ezequiel Mendoza
- Department for Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | - Ursula Kobalz
- Department for Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | - Sandra Wohlgemuth
- Department for Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | - Constance Scharff
- Department for Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| |
Collapse
|
285
|
Almeida D, Maldonado E, Khan I, Silva L, Gilbert MTP, Zhang G, Jarvis ED, O'Brien SJ, Johnson WE, Antunes A. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biol Evol 2016; 8:1115-31. [PMID: 26979796 PMCID: PMC4860681 DOI: 10.1093/gbe/evw041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/19/2022] Open
Abstract
The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 avian whole genomes representing all major extant bird clades. Overall, 12 CYP2 subfamilies were identified, including the first description of the CYP2F, CYP2G, and several CYP2AF genes in avian genomes. Some of the CYP2 genes previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H, CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds.
Collapse
Affiliation(s)
- Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Emanuel Maldonado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Imran Khan
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzen, China Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Erich D Jarvis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia Oceanographic Center, Nova Southeastern University, Ft Lauderdale
| | - Warren E Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
286
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
287
|
Kim KW, Griffith SC, Burke T. Linkage mapping of a polymorphic plumage locus associated with intermorph incompatibility in the Gouldian finch (Erythrura gouldiae). Heredity (Edinb) 2016; 116:409-16. [PMID: 26786066 PMCID: PMC4806697 DOI: 10.1038/hdy.2015.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 01/04/2023] Open
Abstract
Colour polymorphism is known to facilitate speciation but the genetic basis of animal pigmentation and how colour polymorphisms contribute to speciation is poorly understood. Restricted recombination may promote linkage disequilibrium between the colour locus and incompatibility genes. Genomic rearrangement and the position of relevant loci within a chromosome are important factors that influence the frequency of recombination. Therefore, it is important to know the position of the colour locus, gene order and recombination landscape of the chromosome to understand the mechanism that generates incompatibilities between morphs. Recent studies showed remarkable pre- and postzygotic incompatibilities between sympatric colour morphs of the Gouldian finch (Erythrura gouldiae), in which head feather colour is genetically determined by a single sex-linked locus, Red. We constructed a genetic map for the Z chromosome of the Gouldian finch (male-specific map distance=131 cM), using 618 captive-bred birds and 34 microsatellite markers, to investigate the extent of inter- and intraspecific genomic rearrangements and variation in recombination rate within the Z chromosome. We refined the location of the Red locus to a ~7.2-cM interval in a region with a moderate recombination rate but outside the least-recombining, putative centromeric region. There was no evidence of chromosome-wide genomic rearrangements between the chromosomes carrying the red or black alleles with the current marker resolution. This work will contribute to identifying the causal gene, which will in turn enable alternative explanations for the association between incompatibility and colouration, such as fine-scale linkage disequilibrium, genomic rearrangements and pleiotropy, to be tested.
Collapse
Affiliation(s)
- K-W Kim
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - S C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - T Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
288
|
Jarvi SI, Bianchi KR, Farias ME, Txakeeyang A, McFarland T, Belcaid M, Asano A. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: 'amakihi (Hemignathus virens). Immunogenetics 2016; 68:461-475. [PMID: 26971289 DOI: 10.1007/s00251-016-0908-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences.
Collapse
Affiliation(s)
- Susan I Jarvi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA.
| | - Kiara R Bianchi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Margaret Em Farias
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Ann Txakeeyang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Thomas McFarland
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Mahdi Belcaid
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, Kane'ohe, HI, USA
| | - Ashley Asano
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| |
Collapse
|
289
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
290
|
von Rönn JA, Shafer AB, Wolf JB. Disruptive selection without genome-wide evolution across a migratory divide. Mol Ecol 2016; 25:2529-41. [DOI: 10.1111/mec.13521] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jan A.C. von Rönn
- Department of Evolutionary Genetics; Max Planck Institute of Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| | - Aaron B.A. Shafer
- Department of Evolutionary Biology and Science for Life Laboratory; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Jochen B.W. Wolf
- Department of Evolutionary Genetics; Max Planck Institute of Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
- Department of Evolutionary Biology and Science for Life Laboratory; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
291
|
Cui Y, Yan C, Sun T, Li J, Yue B, Zhang X, Li J. Identification of CR1 retroposons in Arborophila rufipectus and their application to Phasianidae phylogeny. Mol Ecol Resour 2016; 16:1037-49. [PMID: 26929266 DOI: 10.1111/1755-0998.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Chicken repeat 1 (CR1), a member of non-LTR retroposon, is an important phylogenetic marker in avian systematics. In this study, we reported several characteristics of CR1 elements in a draft genome of Arborophila rufipectus (Sichuan partridge). According to the analyses of RepeatMasker, approximately 254 966 CR1 elements were identified in A. rufipectus, covering 6.7% of the genome. Subsequently, we selected eighteen novel CR1 elements by comparing the chicken genome, turkey genome and assembled A. rufipectus scaffolds. Here, a combined data set comprising of 22 CR1 loci, mitochondrial genomes and eight unlinked introns was analysed to infer the evolutionary relationships of twelve Phasianidae species. The applicability of CR1 sequences for inferring avian phylogeny relative to mtDNA and intron sequences was investigated as well. Our results elucidated the position of A. rufipectus in Phasianidae with robust supports that it presented a sister clade to Arborophila ardens/Arborophila brunneopectus, and implied that genus Arborophila was in a basal phylogenetic position within Phasianidae and a phylogenetic affinity between Meleagris gallopavo and Pucrasia macrolopha. Therefore, this work not only resolved some of the confounding relationships among Phasianidae, but also suggested CR1 sequences could provide powerful complementary data for phylogeny reconstruction.
Collapse
Affiliation(s)
- Yaoyao Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chaochao Yan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Tianlin Sun
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
292
|
Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SMJ, Amode R, Brent S, Spooner W, Kulesha E, Yates A, Flicek P. Ensembl comparative genomics resources. Database (Oxford) 2016; 2016:bav096. [PMID: 26896847 PMCID: PMC4761110 DOI: 10.1093/database/bav096] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.
Collapse
Affiliation(s)
- Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Stephen Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Albert J. Vilella
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | | | - Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - Simon Brent
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - William Spooner
- Eagle Genomics Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK, and
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Eugene Kulesha
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| |
Collapse
|
293
|
Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SMJ, Amode R, Brent S, Spooner W, Kulesha E, Yates A, Flicek P. Ensembl comparative genomics resources. Database (Oxford) 2016; 2016:bav096. [PMID: 26896847 PMCID: PMC4761110 DOI: 10.1093/database/bav096 10.1093/database/baw053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 08/10/2024]
Abstract
Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.
Collapse
Affiliation(s)
- Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Stephen Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Albert J. Vilella
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | | | - Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - Simon Brent
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - William Spooner
- Eagle Genomics Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK, and
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Eugene Kulesha
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| | - Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA
| |
Collapse
|
294
|
Zeng QQ, He K, Sun DD, Ma MY, Ge YF, Fang SG, Wan QH. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes. BMC Evol Biol 2016; 16:42. [PMID: 26892934 PMCID: PMC4758006 DOI: 10.1186/s12862-016-0609-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. RESULTS Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). CONCLUSIONS More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.
Collapse
Affiliation(s)
- Qian-Qian Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ke He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China.
| | - Dan-Dan Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Mei-Ying Ma
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yun-Fa Ge
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
295
|
Boss J, Liedvogel M, Lundberg M, Olsson P, Reischke N, Naurin S, Åkesson S, Hasselquist D, Wright A, Grahn M, Bensch S. Gene expression in the brain of a migratory songbird during breeding and migration. MOVEMENT ECOLOGY 2016; 4:4. [PMID: 26881054 PMCID: PMC4753645 DOI: 10.1186/s40462-016-0069-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND We still have limited knowledge about the underlying genetic mechanisms that enable migrating species of birds to navigate the globe. Here we make an attempt to get insight into the genetic architecture controlling this complex innate behaviour. We contrast the gene expression profiles of two closely related songbird subspecies with divergent migratory phenotypes. In addition to comparing differences in migratory strategy we include a temporal component and contrast patterns between breeding adults and autumn migrating juvenile birds of both subspecies. The two willow warbler subspecies, Phylloscopus trochilus trochilus and P. t. acredula, are remarkably similar both in phenotype and genotype and have a narrow contact zone in central Scandinavia. Here we used a microarray gene chip representing 23,136 expressed sequence tags (ESTs) from the zebra finch Taeniopygia guttata to identify mRNA level differences in willow warbler brain tissue in relation to subspecies and season. RESULTS Out of the 22,109 EST probe sets that remained after filtering poorly binding probes, we found 11,898 (51.8 %) probe sets that could be reliably and uniquely matched to a total of 6,758 orthologous zebra finch genes. The two subspecies showed very similar levels of gene expression with less than 0.1 % of the probe sets being significantly differentially expressed. In contrast, 3,045 (13.8 %) probe sets were found to be differently regulated between samples collected from breeding adults and autumn migrating juvenile birds. The genes found to be differentially expressed between seasons appeared to be enriched for functional roles in neuronal firing and neuronal synapse formation. CONCLUSIONS Our results show that only few genes are differentially expressed between the subspecies. This suggests that the different migration strategies of the subspecies might be governed by few genes, or that the expression patterns of those genes are time-structured or tissue-specific in ways, which our approach fails to uncover. Our findings will be useful in the planning of new experiments designed to unravel the genes involved in the migratory program of birds.
Collapse
Affiliation(s)
- John Boss
- />Karolinska Institute, Department of Laboratory Medicine, Clinical Research Center, Karolinska University Hospital, SE-14186 Huddinge, Sweden
- />School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Miriam Liedvogel
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
- />Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Max Lundberg
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Peter Olsson
- />Centre of Environmental and Climate Research, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Nils Reischke
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Sara Naurin
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Susanne Åkesson
- />Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Dennis Hasselquist
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Anthony Wright
- />Karolinska Institute, Department of Laboratory Medicine, Clinical Research Center, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Mats Grahn
- />Karolinska Institute, Department of Laboratory Medicine, Clinical Research Center, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Staffan Bensch
- />Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, SE-22362 Lund, Sweden
| |
Collapse
|
296
|
A genome-wide search for epigenetically [corrected] regulated genes in zebra finch using MethylCap-seq and RNA-seq. Sci Rep 2016; 6:20957. [PMID: 26864856 PMCID: PMC4750092 DOI: 10.1038/srep20957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/14/2016] [Indexed: 01/20/2023] Open
Abstract
Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control.
Collapse
|
297
|
Gao B, Shen D, Xue S, Chen C, Cui H, Song C. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA 2016; 7:4. [PMID: 26862351 PMCID: PMC4746887 DOI: 10.1186/s13100-016-0059-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Teleosts are unique among vertebrates, with a wide range of haploid genome sizes in very close lineages, varying from less than 400 mega base pairs (Mb) for pufferfish to over 3000 Mb for salmon. The cause of the difference in genome size remains largely unexplained. Results In this study, we reveal that the differential success of transposable elements (TEs) correlates with the variation of genome size across four representative teleost species (zebrafish, medaka, stickleback, and tetraodon). The larger genomes represent a higher diversity within each clade (superfamily) and family and a greater abundance of TEs compared with the smaller genomes; zebrafish, representing the largest genome, shows the highest diversity and abundance of TEs in its genome, followed by medaka and stickleback; while the tetraodon, representing the most compact genome, displays the lowest diversity and density of TEs in its genome. Both of Class I (retrotransposons) and Class II TEs (DNA transposons) contribute to the difference of TE accumulation of teleost genomes, however, Class II TEs are the major component of the larger teleost genomes analyzed and the most important contributors to genome size variation across teleost lineages. The hAT and Tc1/Mariner superfamilies are the major DNA transposons of all four investigated teleosts. Divergence distribution revealed contrasting proliferation dynamics both between clades of retrotransposons and between species. The TEs within the larger genomes of the zebrafish and medaka represent relatively stronger activity with an extended time period during the evolution history, in contrast with the very young activity in the smaller stickleback genome, or the very low level of activity in the tetraodon genome. Conclusion Overall, our data shows that teleosts represent contrasting profiles of mobilomes with a differential density, diversity and activity of TEs. The differences in TE accumulation, dominated by DNA transposons, explain the main size variations of genomes across the investigated teleost species, and the species differences in both diversity and activity of TEs contributed to the variations of TE accumulations across the four teleost species. TEs play major roles in teleost genome evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Dan Shen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Songlei Xue
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Cai Chen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Hengmi Cui
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Chengyi Song
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
298
|
Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ, Madsen O, Verhoeven KJF, de Jager V, Megens HJ, Warren WC, Minx P, Crooijmans RPMA, Corcoran P, Sheldon BC, Slate J, Zeng K, van Oers K, Visser ME, Groenen MAM. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat Commun 2016; 7:10474. [PMID: 26805030 PMCID: PMC4737754 DOI: 10.1038/ncomms10474] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 12/12/2015] [Indexed: 12/30/2022] Open
Abstract
For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species. The great tit (Parus major) is known for its complex social-cognitive behaviour. Here, the authors sequence genomes of the great tit and show genes related to learning and cognition in regions under positive selection, as well as neuronal non-CpG methylation patterns similar to those observed in mammals.
Collapse
Affiliation(s)
- Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB Wageningen, The Netherlands
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kyle M Schachtschneider
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands.,Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Colin J Garroway
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB Wageningen, The Netherlands
| | - Victor de Jager
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB Wageningen, The Netherlands.,Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700AH Wageningen, The Netherlands
| |
Collapse
|
299
|
Fuxjager MJ, Lee JH, Chan TM, Bahn JH, Chew JG, Xiao X, Schlinger BA. Research Resource: Hormones, Genes, and Athleticism: Effect of Androgens on the Avian Muscular Transcriptome. Mol Endocrinol 2016; 30:254-71. [PMID: 26745669 DOI: 10.1210/me.2015-1270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Male vertebrate social displays vary from physically simple to complex, with the latter involving exquisite motor command of the body and appendages. Studies of these displays have, in turn, provided substantial insight into neuromotor mechanisms. The neotropical golden-collared manakin (Manacus vitellinus) has been used previously as a model to investigate intricate motor skills because adult males of this species perform an acrobatic and androgen-dependent courtship display. To support this behavior, these birds express elevated levels of androgen receptors (AR) in their skeletal muscles. Here we use RNA sequencing to explore how testosterone (T) modulates the muscular transcriptome to support male manakin courtship displays. In addition, we explore how androgens influence gene expression in the muscles of the zebra finch (Taenopygia guttata), a model passerine bird with a limited courtship display and minimal muscle AR. We identify androgen-dependent, muscle-specific gene regulation in both species. In addition, we identify manakin-specific effects that are linked to muscle use during the manakin display, including androgenic regulation of genes associated with muscle fiber contractility, cellular homeostasis, and energetic efficiency. Overall, our results point to numerous genes and gene networks impacted by androgens in male birds, including some that underlie optimal muscle function necessary for performing acrobatic display routines. Manakins are excellent models to explore gene regulation promoting athletic ability.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Jae-Hyung Lee
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Tak-Ming Chan
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Jae Hoon Bahn
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Jenifer G Chew
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Xinshu Xiao
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| | - Barney A Schlinger
- Department of Biology (M.J.F.), Wake Forest University, Winston-Salem, North Carolina 27109; Department of Life and Nanopharmaceutical Sciences (J.-H.L.), and Department of Maxillofacial Biomedical Engineering (J.-H.L.), School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Integrative Biology and Physiology (M.J.F., J.-H.L., T.-M.C., J.H.B., J.G.C., X.X., B.A.S.) and Laboratory of Neuroendocrinology (M.J.F., B.A.S.), Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095; and Smithsonian Tropical Research Institute (B.A.S.), 0843-03092 Balboa, Ancón, Panama
| |
Collapse
|
300
|
Shientag LJ, Garlick DS, Galati E. Amyloidosis in a Captive Zebra Finch (Taeniopygia guttata) Research Colony. Comp Med 2016; 66:225-234. [PMID: 27298248 PMCID: PMC4907532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/29/2015] [Indexed: 06/06/2023]
Abstract
Five birds in a captive zebra finch research colony were diagnosed with systemic amyloidosis within a 7-mo period by means of postmortem Congo red staining and green birefringence under polarized light. The liver was the most frequently and usually the most seriously affected organ, followed by the spleen and then the kidney. All 5 birds had been clinically affected with various inflammatory, infectious, and neoplastic conditions associated with amyloid A (AA) amyloidosis in humans and animals. Immunohistochemistry using antisera against duck AA protein revealed that tissues from 2 of the 5 birds were positive for the presence of AA protein and systemic inflammation-associated amyloidosis. Although the development of AA amyloidosis has been associated with chronic inflammation, trauma, and various infectious and neoplastic diseases as well as possible genetic predispositions and stresses linked to overcrowding, the root causes for individual cases of AA amyloidosis are incompletely understood. As far as we know, this report is the first description of AA amyloidosis in captive, research zebra finches.
Collapse
Affiliation(s)
- Lisa J Shientag
- Departments of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - David S Garlick
- Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Histo-Scientific Research Laboratories, Mount Jackson, Virginia, USA
| | - Erin Galati
- Histo-Scientific Research Laboratories, Mount Jackson, Virginia, USA
| |
Collapse
|