251
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
252
|
Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol 2015; 22:999-1007. [PMID: 26551076 PMCID: PMC4677832 DOI: 10.1038/nsmb.3122] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Numerous chromatin-remodeling factors are regulated by interactions with RNA, although the contexts and functions of RNA binding are poorly understood. Here we show that R-loops, RNA:DNA hybrids consisting of nascent transcripts hybridized to template DNA, modulate the binding of two key chromatin regulatory complexes, Tip60–p400 and polycomb repressive complex 2 (PRC2) in mouse embryonic stem cells (ESCs). Like PRC2, the Tip60–p400 histone acetyltransferase complex binds to nascent transcripts, but unlike PRC2, transcription promotes chromatin binding by Tip60–p400. Interestingly, we observed higher Tip60–p400 and lower PRC2 levels at genes marked by promoter-proximal R-loops. Furthermore, disruption of R-loops broadly reduced Tip60–p400 and increased PRC2 occupancy genome-wide. Consistent with these alterations, ESCs with reduced R-loops exhibited impaired differentiation. These results show that R-loops act both positively and negatively to modulate the recruitment of key pluripotency regulators.
Collapse
Affiliation(s)
- Poshen B Chen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hsiuyi V Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
253
|
Neve J, Burger K, Li W, Hoque M, Patel R, Tian B, Gullerova M, Furger A. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation. Genome Res 2015; 26:24-35. [PMID: 26546131 PMCID: PMC4691748 DOI: 10.1101/gr.193995.115] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
Abstract
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Andre Furger
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
254
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
255
|
Chekanova JA. Long non-coding RNAs and their functions in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:207-16. [PMID: 26342908 DOI: 10.1016/j.pbi.2015.08.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Eukaryotic genomes encode thousands of long noncoding RNAs (lncRNAs), which play important roles in essential biological processes. Although lncRNAs function in the nuclear and cytoplasmic compartments, most of them occur in the nucleus, often in association with chromatin. Indeed, many lncRNAs have emerged as key regulators of gene expression and genome stability. Emerging evidence also suggests that lncRNAs may contribute to the organization of nuclear domains. This review briefly summarizes the major types of eukaryotic lncRNAs and provides examples of their mechanisms of action, with focus on plant lncRNAs, mainly in Arabidopsis thaliana, and describes current advances in our understanding of the mechanisms of lncRNA action and the roles of lncRNAs in RNA-dependent DNA methylation and in the regulation of flowering time.
Collapse
Affiliation(s)
- Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
256
|
Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 2015; 130:537-55. [PMID: 26085200 PMCID: PMC4575390 DOI: 10.1007/s00401-015-1450-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.
Collapse
|
257
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
258
|
Munroe SH, Morales CH, Duyck TH, Waters PD. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA. PLoS One 2015; 10:e0137893. [PMID: 26368571 PMCID: PMC4569393 DOI: 10.1371/journal.pone.0137893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.
Collapse
Affiliation(s)
- Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Christopher H. Morales
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Tessa H. Duyck
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Australia, Sydney, Australia
| |
Collapse
|
259
|
Medler S, Ansari A. Gene looping facilitates TFIIH kinase-mediated termination of transcription. Sci Rep 2015; 5:12586. [PMID: 26286112 PMCID: PMC4541409 DOI: 10.1038/srep12586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/08/2015] [Indexed: 12/14/2022] Open
Abstract
TFIIH is a general transcription factor with kinase and helicase activities. The kinase activity resides in the Kin28 subunit of TFIIH. The role of Kin28 kinase in the early steps of transcription is well established. Here we report a novel role of Kin28 in the termination of transcription. We show that RNAPII reads through a termination signal upon kinase inhibition. Furthermore, the recruitment of termination factors towards the 3′ end of a gene was compromised in the kinase mutant, thus confirming the termination defect. A concomitant decrease in crosslinking of termination factors near the 5′ end of genes was also observed in the kinase-defective mutant. Simultaneous presence of termination factors towards both the ends of a gene is indicative of gene looping; while the loss of termination factor occupancy from the distal ends suggest the abolition of a looped gene conformation. Accordingly, CCC analysis revealed that the looped architecture of genes was severely compromised in the Kin28 kinase mutant. In a looping defective sua7-1 mutant, even the enzymatically active Kin28 kinase could not rescue the termination defect. These results strongly suggest a crucial role of Kin28 kinase-dependent gene looping in the termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall Detroit, MI 48202
| | - Athar Ansari
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall Detroit, MI 48202
| |
Collapse
|
260
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
261
|
GC skew defines distinct RNA polymerase pause sites in CpG island promoters. Genome Res 2015; 25:1600-9. [PMID: 26275623 PMCID: PMC4617957 DOI: 10.1101/gr.189068.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 08/14/2015] [Indexed: 12/15/2022]
Abstract
CpG islands (CGIs) are associated with over half of human gene promoters and are characterized by a unique chromatin environment and high levels of bidirectional transcriptional activity relative to surrounding genomic regions, suggesting that RNA polymerase (Pol II) progression past the CGI boundaries is restricted. Here we describe a novel transcriptional regulatory step wherein Pol II encounters an additional barrier to elongation distinct from the promoter-proximal pause and occurring at the downstream boundary of the CGI domain. For most CGI-associated promoters, Pol II exhibits a dominant pause at either the promoter-proximal or this distal site that correlates, both in position and in intensity, with local regions of high GC skew, a sequence feature known to form unique secondary structures. Upon signal-induced gene activation, long-range enhancer contacts at the dominant pause site are selectively enhanced, suggesting a new role for enhancers at the downstream pause. These data point to an additional level of control over transcriptional output at a subset of CGI-associated genes that is linked to DNA sequence and the integrity of the CGI domain.
Collapse
|
262
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
263
|
Functions of plants long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:155-62. [PMID: 26112461 DOI: 10.1016/j.bbagrm.2015.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
264
|
Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet 2015; 6:192. [PMID: 26089834 PMCID: PMC4452891 DOI: 10.3389/fgene.2015.00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5′ UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55–200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
265
|
Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015; 25:514-22. [PMID: 26045257 DOI: 10.1016/j.tcb.2015.05.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
R-loops, nucleic acid structures consisting of an RNA-DNA hybrid and displaced single-stranded (ss) DNA, are ubiquitous in organisms from bacteria to mammals. First described in bacteria where they initiate DNA replication, it now appears that R-loops regulate diverse cellular processes such as gene expression, immunoglobulin (Ig) class switching, and DNA repair. Changes in R-loop regulation induce DNA damage and genome instability, and recently it was shown that R-loops are associated with neurodegenerative disorders. We discuss recent developments in the field; in particular, the regulation and effects of R-loops in cells, their effect on genomic and epigenomic stability, and their potential contribution to the origin of diseases including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
266
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
267
|
Costantino L, Koshland D. The Yin and Yang of R-loop biology. Curr Opin Cell Biol 2015; 34:39-45. [PMID: 25938907 DOI: 10.1016/j.ceb.2015.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023]
Abstract
RNA performs diverse functions in cells, directing translation, modulating transcription and catalyzing enzymatic reactions. Remarkably RNA can also anneal to its genomic template co- or post-transcriptionally to generate an RNA-DNA hybrid and a displaced single-stranded DNA. These unusual nucleic acid structures are called R-loops. Studies in the last decades concentrated on the detrimental effects of R-loop formation, particularly on genome stability. In fact, R-loops are thought to play a role in several human diseases like cancer and neurodegenerative syndromes. But recent data has revealed that R-loops can also have a positive impact on cell processes, like regulating gene expression, chromosome structure and DNA repair. Here we summarize our current understanding of the formation and dissolution of R-loops, and discuss their negative and positive impact on genome structure and function.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
268
|
Brambati A, Colosio A, Zardoni L, Galanti L, Liberi G. Replication and transcription on a collision course: eukaryotic regulation mechanisms and implications for DNA stability. Front Genet 2015; 6:166. [PMID: 25972894 PMCID: PMC4412130 DOI: 10.3389/fgene.2015.00166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/12/2015] [Indexed: 12/20/2022] Open
Abstract
DNA replication and transcription are vital cellular processes during which the genetic information is copied into complementary DNA and RNA molecules. Highly complex machineries required for DNA and RNA synthesis compete for the same DNA template, therefore being on a collision course. Unscheduled replication–transcription clashes alter the gene transcription program and generate replication stress, reducing fork speed. Molecular pathways and mechanisms that minimize the conflict between replication and transcription have been extensively characterized in prokaryotic cells and recently identified also in eukaryotes. A pathological outcome of replication–transcription collisions is the formation of stable RNA:DNA hybrids in molecular structures called R-loops. Growing evidence suggests that R-loop accumulation promotes both genetic and epigenetic instability, thus severely affecting genome functionality. In the present review, we summarize the current knowledge related to replication and transcription conflicts in eukaryotes, their consequences on genome stability and the pathways involved in their resolution. These findings are relevant to clarify the molecular basis of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare del Consiglio Nazionale delle Ricerche Pavia, Italy
| | - Arianna Colosio
- Istituto di Genetica Molecolare del Consiglio Nazionale delle Ricerche Pavia, Italy
| | - Luca Zardoni
- Istituto di Genetica Molecolare del Consiglio Nazionale delle Ricerche Pavia, Italy
| | - Lorenzo Galanti
- Istituto di Genetica Molecolare del Consiglio Nazionale delle Ricerche Pavia, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare del Consiglio Nazionale delle Ricerche Pavia, Italy ; The FIRC Institute of Molecular Oncology Foundation Milan, Italy
| |
Collapse
|
269
|
Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 2015; 57:636-647. [PMID: 25699710 PMCID: PMC4351672 DOI: 10.1016/j.molcel.2015.01.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 11/07/2022]
Abstract
The mechanisms contributing to transcription-associated genomic instability are both complex and incompletely understood. Although R-loops are normal transcriptional intermediates, they are also associated with genomic instability. Here, we show that BRCA1 is recruited to R-loops that form normally over a subset of transcription termination regions. There it mediates the recruitment of a specific, physiological binding partner, senataxin (SETX). Disruption of this complex led to R-loop-driven DNA damage at those loci as reflected by adjacent γ-H2AX accumulation and ssDNA breaks within the untranscribed strand of relevant R-loop structures. Genome-wide analysis revealed widespread BRCA1 binding enrichment at R-loop-rich termination regions (TRs) of actively transcribed genes. Strikingly, within some of these genes in BRCA1 null breast tumors, there are specific insertion/deletion mutations located close to R-loop-mediated BRCA1 binding sites within TRs. Thus, BRCA1/SETX complexes support a DNA repair mechanism that addresses R-loop-based DNA damage at transcriptional pause sites. Endogenous BRCA1 and senataxin (SETX) interact in a BRCA1-driven process BRCA1/SETX complexes are recruited to R-loop-associated termination regions (TRs) BRCA1/SETX complexes suppress transcriptional DNA damage arising at nearby R-loops BRCA1 breast cancers reveal indel mutations near BRCA1 TR binding regions
Collapse
Affiliation(s)
- Elodie Hatchi
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | | | - Steffen Ventz
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | | | - Stoil Dimitrov
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shailja Pathania
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kristine M McKinney
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Matthew L Eaton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Sarah J Hill
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Giovanni Parmigiani
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | | | - David M Livingston
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
270
|
Butler JS, Napierala M. Friedreich's ataxia--a case of aberrant transcription termination? Transcription 2015; 6:33-6. [PMID: 25831023 PMCID: PMC4581357 DOI: 10.1080/21541264.2015.1026538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022] Open
Abstract
Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.
Collapse
Affiliation(s)
- Jill Sergesketter Butler
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
| | - Marek Napierala
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
- Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan, Poland
| |
Collapse
|
271
|
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16:167-77. [PMID: 25693130 PMCID: PMC4782187 DOI: 10.1038/nrm3953] [Citation(s) in RCA: 587] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II.
Collapse
Affiliation(s)
- Iris Jonkers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, 416 Biotechnology Building, 14853, Ithaca, New York, USA
| |
Collapse
|
272
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
273
|
Zhang ZZ, Pannunzio NR, Hsieh CL, Yu K, Lieber MR. The role of G-density in switch region repeats for immunoglobulin class switch recombination. Nucleic Acids Res 2014; 42:13186-93. [PMID: 25378327 PMCID: PMC4245955 DOI: 10.1093/nar/gku1100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/19/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023] Open
Abstract
The boundaries of R-loops are well-documented at immunoglobulin heavy chain loci in mammalian B cells. Within primary B cells or B cell lines, the upstream boundaries of R-loops typically begin early in the repetitive portion of the switch regions. Most R-loops terminate within the switch repetitive zone, but the remainder can extend a few hundred base pairs further, where G-density on the non-template DNA strand gradually drops to the genome average. Whether the G-density determines how far the R-loops extend is an important question. We previously studied the role of G-clusters in initiating R-loop formation, but we did not examine the role of G-density in permitting the elongation of the R-loop, after it had initiated. Here, we vary the G-density of different portions of the switch region in a murine B cell line. We find that both class switch recombination (CSR) and R-loop formation decrease significantly when the overall G-density is reduced from 46% to 29%. Short 50 bp insertions with low G-density within switch regions do not appear to affect either CSR or R-loop elongation, whereas a longer (150 bp) insertion impairs both. These results demonstrate that G-density is an important determinant of the length over which mammalian genomic R-loops extend.
Collapse
Affiliation(s)
- Zheng Z Zhang
- USC Norris Comprehensive Cancer Center, Molecular and Computational Biology Program, Departments of Biological Sciences; Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology; University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA 90089-9176, USA
| | - Nicholas R Pannunzio
- USC Norris Comprehensive Cancer Center, Molecular and Computational Biology Program, Departments of Biological Sciences; Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology; University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA 90089-9176, USA
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Center, Molecular and Computational Biology Program, Departments of Biological Sciences; Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology; University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA 90089-9176, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, 5175 Biomedical Physical Sciences, East Lansing, MI 48824, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, Molecular and Computational Biology Program, Departments of Biological Sciences; Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology; University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA 90089-9176, USA
| |
Collapse
|