251
|
Takahashi M, Kawamura A, Kato N, Nishi T, Hamachi I, Ohkanda J. Phosphopeptide-Dependent Labeling of 14-3-3 ζ Proteins by Fusicoccin-Based Fluorescent Probes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
252
|
Celebrating synthesis. Nat Chem Biol 2011; 7:855. [PMID: 22086274 DOI: 10.1038/nchembio.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
253
|
Abstract
The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts.
Collapse
|
254
|
Gerasov A, Shandura M, Kovtun Y, Losytskyy M, Negrutska V, Dubey I. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye. Anal Biochem 2011; 420:115-20. [PMID: 22005321 DOI: 10.1016/j.ab.2011.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/26/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications.
Collapse
Affiliation(s)
- Andriy Gerasov
- Institute of Organic Chemistry, National Academy of Sciences, 02660 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
255
|
Wang H, Koshi Y, Minato D, Nonaka H, Kiyonaka S, Mori Y, Tsukiji S, Hamachi I. Chemical Cell-Surface Receptor Engineering Using Affinity-Guided, Multivalent Organocatalysts. J Am Chem Soc 2011; 133:12220-8. [DOI: 10.1021/ja204422r] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hangxiang Wang
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoichiro Koshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daishiro Minato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shinya Tsukiji
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
256
|
Tanaka K, Kitadani M, Fukase K. Target-selective fluorescent "switch-on" protein labeling by 6π-azaelectrocyclization. Org Biomol Chem 2011; 9:5346-9. [PMID: 21691664 DOI: 10.1039/c1ob05320e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of azaelectrocyclization and FRET techniques to lysine groups enabled the selective and sensitive detection of a target protein from a mixture, with high fluorescence contrast.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
257
|
Construction of a 19F-lectin biosensor for glycoprotein imaging by using affinity-guided DMAP chemistry. Bioorg Med Chem Lett 2011; 21:4393-6. [PMID: 21737264 DOI: 10.1016/j.bmcl.2011.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
In this study, assisted by affinity-guided DMAP strategy, we developed a novel (19)F-modified lectin as a biosensor for specific detection and imaging of glycoproteins. Exploited the large chemical shift anisotropy property of (19)F nuclei, glycoproteins detected by our (19)F-biosensor are signatured by broadened peaks in (19)F NMR, hence enabled the distinction between glycoproteins and small molecule saccharides. Such signal on/off switching was also applied to glycoprotein imaging by (19)F MRI.
Collapse
|
258
|
Koda Y, Terashima T, Nomura A, Ouchi M, Sawamoto M. Fluorinated Microgel-Core Star Polymers as Fluorous Compartments for Molecular Recognition. Macromolecules 2011. [DOI: 10.1021/ma201076y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuta Koda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akihisa Nomura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mitsuo Sawamoto
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
259
|
Bojkowska K, Santoni de Sio F, Barde I, Offner S, Verp S, Heinis C, Johnsson K, Trono D. Measuring In Vivo Protein Half-Life. ACTA ACUST UNITED AC 2011; 18:805-15. [DOI: 10.1016/j.chembiol.2011.03.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/02/2011] [Accepted: 03/08/2011] [Indexed: 12/31/2022]
|
260
|
Wombacher R, Cornish VW. Chemical tags: applications in live cell fluorescence imaging. JOURNAL OF BIOPHOTONICS 2011; 4:391-402. [PMID: 21567974 DOI: 10.1002/jbio.201100018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 05/30/2023]
Abstract
Technologies to visualize cellular structures and dynamics enable cell biologists to gain insight into complex biological processes. Currently, fluorescent proteins are used routinely to investigate the behavior of proteins in live cells. Chemical biology techniques for selective labeling of proteins with fluorescent labels have become an attractive alternative to fluorescent protein labeling. In the last ten years the progress in the development of chemical tagging methods have been substantial offering a broad palette of applications for live cell fluorescent microscopy. Several methods for protein labeling have been established, using protein tags, peptide tags and enzyme mediated tagging. This review focuses on the different strategies to achieve the attachment of fluorophores to proteins in live cells and cast light on the advantages and disadvantages of each individual method. Selected experiments in which chemical tags have been successfully applied to live cell imaging will be discussed and evaluated.
Collapse
|
261
|
Sadhu KK, Mizukami S, Hori Y, Kikuchi K. Switching Modulation for Protein Labeling with Activatable Fluorescent Probes. Chembiochem 2011; 12:1299-308. [DOI: 10.1002/cbic.201100137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/14/2022]
|
262
|
Tomohiro T, Kato K, Masuda S, Kishi H, Hatanaka Y. Photochemical Construction of Coumarin Fluorophore on Affinity-Anchored Protein. Bioconjug Chem 2011; 22:315-8. [DOI: 10.1021/bc100598r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kenichi Kato
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Souta Masuda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Kishi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasumaru Hatanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
263
|
Liu Y, Chan YM, Wu J, Chen C, Benesi A, Hu J, Wang Y, Chen G. Chemical synthesis of a bisphosphorylated mannose-6-phosphate N-glycan and its facile monoconjugation with human carbonic anhydrase II for in vivo fluorescence imaging. Chembiochem 2011; 12:685-90. [PMID: 21404409 DOI: 10.1002/cbic.201000785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Yunpeng Liu
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Nakamura Y, Inomata S, Ebine M, Manabe Y, Iwakura I, Ueda M. “Click-made” biaryl-linker improving efficiency in proteinlabelling for the membrane target protein of a bioactive compound. Org Biomol Chem 2011; 9:83-5. [DOI: 10.1039/c0ob00843e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
265
|
Takaoka Y, Sun Y, Tsukiji S, Hamachi I. Mechanisms of chemical protein19F-labeling and NMR-based biosensor construction in vitro and in cells using self-assembling ligand-directed tosylate compounds. Chem Sci 2011. [DOI: 10.1039/c0sc00513d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
266
|
Plass T, Schultz C. Covalent Labeling of Biomolecules in Living Cells. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY III 2011. [DOI: 10.1007/978-3-642-18035-4_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
267
|
Nagatsugi F. Development of the Highly Selective Reactions to Target Gene for the Control of the Gene Expression in Cells. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
268
|
Labeling study of avidin by modular method for affinity labeling (MoAL). Bioorg Med Chem Lett 2010; 20:7050-3. [DOI: 10.1016/j.bmcl.2010.09.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
|
269
|
Sawada T, Fedorov DG, Kitaura K. Role of the Key Mutation in the Selective Binding of Avian and Human Influenza Hemagglutinin to Sialosides Revealed by Quantum-Mechanical Calculations. J Am Chem Soc 2010; 132:16862-72. [DOI: 10.1021/ja105051e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Toshihiko Sawada
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dmitri G. Fedorov
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuo Kitaura
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
270
|
Sawada T, Fedorov DG, Kitaura K. Binding of Influenza A Virus Hemagglutinin to the Sialoside Receptor Is Not Controlled by the Homotropic Allosteric Effect. J Phys Chem B 2010; 114:15700-5. [DOI: 10.1021/jp1068895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Toshihiko Sawada
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dmitri G. Fedorov
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuo Kitaura
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
271
|
Hinner MJ, Johnsson K. How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 2010; 21:766-76. [PMID: 21030243 DOI: 10.1016/j.copbio.2010.09.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
We review new and established methods for the chemical modification of proteins in living cells and highlight recent applications. The review focuses on tag-mediated protein labeling methods, such as the tetracysteine tag and SNAP-tag, and new developments in this field such as intracellular labeling with lipoic acid ligase. Recent promising advances in the incorporation of unnatural amino acids into proteins are also briefly discussed. We describe new tools using tag-mediated labeling methods including the super-resolution microscopy of tagged proteins, the study of the interactions of proteins and protein domains, the subcellular targeting of synthetic ion sensors, and the generation of new semisynthetic metabolite sensors. We conclude with a view on necessary future developments, with one example being the selective labeling of non-tagged, native proteins in complex protein mixtures.
Collapse
Affiliation(s)
- Marlon J Hinner
- Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
272
|
Lim RKV, Lin Q. Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. Chem Commun (Camb) 2010; 46:7993-5. [PMID: 20865197 DOI: 10.1039/c0cc02863k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a new bioorthogonal ligation reaction between p-nitrodiphenylazirine and dimethyl fumarate. This photoinduced azirine-alkene cycloaddition provides a rapid (~2 min) and highly selective route to protein conjugation at neutral pH and room temperature in biological medium.
Collapse
Affiliation(s)
- Reyna K V Lim
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
273
|
Orner B. The first Asian Chemical Biology conference meets at Seoul National University. ACS Chem Biol 2010; 5:725-7. [PMID: 20722456 DOI: 10.1021/cb100206k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brendan Orner
- Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
274
|
Boutureira O, D'Hooge F, Fernández-González M, Bernardes GJL, Sánchez-Navarro M, Koeppe JR, Davis BG. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chem Commun (Camb) 2010; 46:8142-4. [PMID: 20714547 DOI: 10.1039/c0cc01576h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tag-and-modify strategy allows the practical synthesis of homogenous fluorinated glyco-amino acids, peptides and proteins carrying a fluorine label in the sugar and allows access to first examples of directly radiolabelled ([(18)F]-glyco)proteins.
Collapse
Affiliation(s)
- Omar Boutureira
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
275
|
Baslé E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids. ACTA ACUST UNITED AC 2010; 17:213-27. [PMID: 20338513 DOI: 10.1016/j.chembiol.2010.02.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 12/15/2022]
Abstract
Chemical modification of protein is an arduous but fruitful task. Many chemical methods have been developed for such purpose by carefully balancing reactivity and selectivity. Now both chemists and biologists have in hand an arsenal of tools from which they can select a relevant reaction to tackle their problems. This review focuses on the various chemical transformations available for selective modification of proteins. It also provides a brief overview of some of their main applications, including detection of protein interactions, preparation of bioconjugates, and protein microarrays.
Collapse
Affiliation(s)
- Emmanuel Baslé
- Molecular Chemistry and Photonic, UMR 6510 CPM, Centre National de la Recherche Scientifique, Université de Rennes1, 263 Avenue du Général Leclerc, 35042 Rennes cedex, France
| | | | | |
Collapse
|
276
|
Tanaka K, Minami K, Tahara T, Siwu ERO, Koyama K, Nozaki S, Onoe H, Watanabe Y, Fukase K. A Combined 6π-Azaelectrocyclization/Staudinger Approach to Protein and Cell Engineering: Noninvasive Tumor Targeting byN-Glycan-Engineered Lymphocytes. J Carbohydr Chem 2010. [DOI: 10.1080/07328303.2010.483042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
277
|
Design strategies of fluorescent biosensors based on biological macromolecular receptors. SENSORS 2010; 10:1355-76. [PMID: 22205872 PMCID: PMC3244018 DOI: 10.3390/s100201355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.
Collapse
|
278
|
Yang H. Progress in single-molecule spectroscopy in cells. Curr Opin Chem Biol 2010; 14:3-9. [DOI: 10.1016/j.cbpa.2009.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 11/26/2022]
|
279
|
Lim RKV, Lin Q. Bioorthogonal chemistry: recent progress and future directions. Chem Commun (Camb) 2010; 46:1589-600. [PMID: 20177591 DOI: 10.1039/b925931g] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to use covalent chemistry to label biomolecules selectively in their native habitats has greatly enhanced our understanding of biomolecular dynamics and function beyond what is possible with genetic tools alone. To attain the exquisite selectivity that is essential in this covalent approach a "bottom-up" two-step strategy has achieved many successes recently. In this approach, a bioorthogonal chemical functionality is built into life's basic building blocks-amino acids, nucleosides, lipids, and sugars-as well as coenzymes; after the incorporation, an array of biophysical probes are selectively appended to the tagged biomolecules via a suitable bioorthogonal reaction. While much has been accomplished in the expansion of non-natural building blocks carrying unique chemical moieties, the dearth of robust bioorthogonal reactions has limited both the scope and utility of this promising approach. Here, we summarize the recent progress in the development of bioorthogonal reactions and their applications in various biological systems. A major emphasis has been placed on the mechanistic and kinetic studies of these reactions with the hope that continuous improvements can be made with each reaction in the future. In view of the gap between the capabilities of the current repertoire of bioorthogonal reactions and the unmet needs of outstanding biological problems, we also strive to project the future directions of this rapidly developing field.
Collapse
Affiliation(s)
- Reyna K V Lim
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| | | |
Collapse
|
280
|
Abstract
Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as "Cu-free click chemistry," for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac(4)ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse.
Collapse
|
281
|
Wang H, Nakata E, Hamachi I. Recent progress in strategies for the creation of protein-based fluorescent biosensors. Chembiochem 2010; 10:2560-77. [PMID: 19693761 DOI: 10.1002/cbic.200900249] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The creation of novel bioanalytical tools for the detection and monitoring of a range of important target substances and biological events in vivo and in vitro is a great challenge in chemical biology and biotechnology. Protein-based fluorescent biosensors--integrated devices that convert a molecular-recognition event to a fluorescent signal--have recently emerged as a powerful tool. As the recognition units various proteins that can specifically recognize and bind a variety of molecules of biological significance with high affinity are employed. For the transducer, fluorescent proteins, such as green fluorescent protein (GFP) or synthetic fluorophores, are mostly adopted. Recent progress in protein engineering and organic synthesis allows us to manipulate proteins genetically and/or chemically, and a library of such protein scaffolds has been significantly expanded by genome projects. In this review, we briefly describe the recent progress of protein-based fluorescent biosensors on the basis of their platform and construction strategy, which are primarily divided into the genetically encoded fluorescent biosensors and chemically constructed biosensors.
Collapse
Affiliation(s)
- Hangxiang Wang
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
282
|
Dalhoff C, Hüben M, Lenz T, Poot P, Nordhoff E, Köster H, Weinhold E. Synthesis of S-Adenosyl-L-homocysteine Capture Compounds for Selective Photoinduced Isolation of Methyltransferases. Chembiochem 2010; 11:256-65. [DOI: 10.1002/cbic.200900349] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
283
|
Nakazono M, Jinguji A, Nanbu S, Kuwano R, Zheng Z, Saita K, Oshikawa Y, Mikuni Y, Murakami T, Zhao Y, Sasaki S, Zaitsu K. Fluorescence and chemiluminescence properties of indolylmaleimides: experimental and theoretical studies. Phys Chem Chem Phys 2010; 12:9783-93. [DOI: 10.1039/c003021j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
284
|
La Clair JJ. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat Prod Rep 2010; 27:969-95. [DOI: 10.1039/b909989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
285
|
Manabe Y, Mukai M, Ito S, Kato N, Ueda M. FLAG tagging by CuAAC and nanogram-scale purification of the target protein for a bioactive metabolite involved in circadian rhythmic leaf movement in Leguminosae. Chem Commun (Camb) 2010; 46:469-71. [DOI: 10.1039/b915843j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
286
|
Tsukiji S, Wang H, Miyagawa M, Tamura T, Takaoka Y, Hamachi I. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors. J Am Chem Soc 2009; 131:9046-54. [PMID: 19499918 DOI: 10.1021/ja902486c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Semisynthetic fluorescent biosensors consisting of a protein framework and a synthetic fluorophore are powerful analytical tools for specific detection of biologically relevant molecules. We report herein a novel method that allows for the construction of turn-on fluorescent semisynthetic biosensors in a one-step manner. The strategy is based on the ligand-directed tosyl (LDT) chemistry, a new type of affinity-guided protein labeling scheme which can site-specifically introduce synthetic probes to the surface of proteins with concomitant release of the affinity ligands. Novel quenched ligand-directed tosylate (Q-LDT) reagents were designed by connecting an organic dye to a conjugate of a protein ligand and a fluorescence quencher through a tosyl linker. The Q-LDT-mediated labeling directly converts a natural protein to a fluorescently labeled protein that remains noncovalently complexed with the cleaved ligand-tethered quencher. The fluorescence of this labeled protein is initially quenched and only in the presence of specific analytes is the fluorescence enhanced (turned on) due to the expulsion of the ligand-quencher fragment. Using a single labeling step, this approach was successfully applied to carbonic anhydrase II (CAII) and a Src homology 2 (SH2) domain to generate turn-on fluorescent biosensors toward CAII inhibitors and phosphotyrosine peptides, respectively. Detailed investigations revealed that the obtained biosensors exhibit their natural ligand selectivity. The high target-specificity of the LDT chemistry also allowed us to prepare the SH2 domain-based biosensor not only in a purified form but also in a bacterial cell lysate. These results demonstrate the utility of the Q-LDT-based approach to expand the applications of semisynthetic biosensors.
Collapse
Affiliation(s)
- Shinya Tsukiji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
287
|
Holm L, Moody P, Howarth M. Electrophilic affibodies forming covalent bonds to protein targets. J Biol Chem 2009; 284:32906-13. [PMID: 19759009 DOI: 10.1074/jbc.m109.034322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody affinity limits sensitivity of detection in many areas of biology and medicine. High affinity usually depends on achieving the optimal combination of the natural 20 amino acids in the antibody binding site. Here, we investigate the effect on recognition of protein targets of placing an unnatural electrophile adjacent to the target binding site. We positioned a weak electrophile, acrylamide, near the binding site between an affibody, a non-immunoglobulin binding scaffold, and its protein target. The proximity between cysteine, lysine, or histidine on the target protein drove covalent bond formation to the electrophile on the affibody. Covalent bonds did not form to a non-interacting point mutant of the target, and there was minimal cross-reactivity with serum, cell lysate, or when imaging at the cell surface. Electrophilic affibodies showed more stable protein imaging at the surface of mammalian cells, and the sensitivity of protein detection in an immunoassay improved by two orders of magnitude. Thus electrophilic affibodies combined good specificity with improved detection of protein targets.
Collapse
Affiliation(s)
- Lotta Holm
- Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
288
|
Hughes CC, Yang YL, Liu WT, Dorrestein PC, La Clair JJ, Fenical W. Marinopyrrole A target elucidation by acyl dye transfer. J Am Chem Soc 2009; 131:12094-6. [PMID: 19673475 PMCID: PMC2769490 DOI: 10.1021/ja903149u] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The targeting of marinopyrrole A to actin was identified using a fluorescent dye transfer strategy. The process began by appending a carboxylic acid terminal tag to a phenol in the natural product. The resulting probe was then studied in live cells to verify that it maintained activity comparable to marinopyrrole A. Two-color fluorescence microscopy confirmed that both unlabeled and labeled materials share comparable uptake and subcellular localization in HCT-116 cells. Subsequent immunoprecipitation studies identified actin as a putative target in HCT-116 cells, a result that was validated by mass spectral, affinity, and activity analyses on purified samples of actin. Further data analyses indicated that the dye in the marinopyrrole probe was selectively transferred to a single residue K(115), an event that did not occur with related acyl phenols and reactive labels. In this study, the combination of cell, protein, and amino acid analysis arose from a single sample of material, thereby, suggesting a means to streamline and reduce material requirements involved in mode of action studies.
Collapse
Affiliation(s)
- Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego La Jolla, CA 92093-0204, USA
| | - Yu-Liang Yang
- Departments of Chemistry and Biochemistry, the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego La Jolla, CA 92093-0204, USA
| | - Wei-Ting Liu
- Departments of Chemistry and Biochemistry, the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego La Jolla, CA 92093-0204, USA
| | - Pieter C. Dorrestein
- Departments of Chemistry and Biochemistry, the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego La Jolla, CA 92093-0204, USA
| | - James J. La Clair
- Xenobe Research Institute, 3371 Adams Avenue, San Diego, CA 92164-4073
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego La Jolla, CA 92093-0204, USA
| |
Collapse
|
289
|
Weinstain R, Baran PS, Shabat D. Activity-Linked Labeling of Enzymes by Self-Immolative Polymers. Bioconjug Chem 2009; 20:1783-91. [DOI: 10.1021/bc9002037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roy Weinstain
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Phil S. Baran
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
290
|
|
291
|
Uchinomiya SH, Nonaka H, Fujishima SH, Tsukiji S, Ojida A, Hamachi I. Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(ii)–NTA probe. Chem Commun (Camb) 2009:5880-2. [DOI: 10.1039/b912025d] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
292
|
Kunishima M, Nakanishi S, Nishida J, Tanaka H, Morisaki D, Hioki K, Nomoto H. Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation. Chem Commun (Camb) 2009:5597-9. [DOI: 10.1039/b912908a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|