251
|
Elefteriou F, Exposito JY, Garrone R, Lethias C. Cell adhesion to tenascin-X mapping of cell adhesion sites and identification of integrin receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:840-8. [PMID: 10469149 DOI: 10.1046/j.1432-1327.1999.00563.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adhesive properties of tenascin-X (TN-X) were investigated using TN-X purified from bovine skin and recombinant proteins encompassing the RGD sequence located within the tenth fibronectin type-III domain, and the fibrinogen-like domain. Osteosarcoma (MG63) and bladder carcinoma cells (ECV304) cells were shown to adhere to purified TN-X, but did not spread and did not assemble actin stress fibers. Both cell types adhered to recombinant proteins harboring the contiguous fibronectin type-III domains 9 and 10 (FNX 9-10) but not to the FNX 10 domain alone. This adhesion to FNX 9-10 was shown to be mediated by alphavbeta3 integrin, was inhibited by RGD peptides and was strongly reduced in proteins mutated within the RGD site. As antibodies against alphavbeta3 integrin had no effects on cell adhesion to purified TN-X, we suggest that the RGD sequence is masked in intact TN-X. Cell attachment to the recombinant TN-X fibrinogen domain (FbgX) and to purified TN-X was greater for MG63 than for ECV304 cells. A beta1-containing integrin was shown to be involved in MG63 cell attachment to FbgX and to purified TN-X. Although the existence of other cell interaction sites is likely in this huge molecule, these similar patterns of adhesion and inhibition suggest that the fibrinogen domain might be a dominant site in the whole molecule.
Collapse
Affiliation(s)
- F Elefteriou
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Propre de Recherche 412, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
252
|
Colige A, Sieron AL, Li SW, Schwarze U, Petty E, Wertelecki W, Wilcox W, Krakow D, Cohn DH, Reardon W, Byers PH, Lapière CM, Prockop DJ, Nusgens BV. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 1999; 65:308-17. [PMID: 10417273 PMCID: PMC1377929 DOI: 10.1086/302504] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ehlers-Danlos syndrome (EDS) type VIIC is a recessively inherited connective-tissue disorder, characterized by extreme skin fragility, characteristic facies, joint laxity, droopy skin, umbilical hernia, and blue sclera. Like the animal model dermatosparaxis, EDS type VIIC results from the absence of activity of procollagen I N-proteinase (pNPI), the enzyme that excises the N-propeptide of type I and type II procollagens. The pNPI enzyme is a metalloproteinase containing properdin repeats and a cysteine-rich domain with similarities to the disintegrin domain of reprolysins. We used bovine cDNA to isolate human pNPI. The human enzyme exists in two forms: a long version similar to the bovine enzyme and a short version that contains the Zn++-binding catalytic site but lacks the entire C-terminal domain in which the properdin repeats are located. We have identified the mutations that cause EDS type VIIC in the six known affected human individuals and also in one strain of dermatosparactic calf. Five of the individuals with EDS type VIIC were homozygous for a C-->T transition that results in a premature termination codon, Q225X. Four of these five patients were homozygous at three downstream polymorphic sites. The sixth patient was homozygous for a different transition that results in a premature termination codon, W795X. In the dermatosparactic calf, the mutation is a 17-bp deletion that changes the reading frame of the message. These data provide direct evidence that EDS type VIIC and dermatosparaxis result from mutations in the pNPI gene.
Collapse
Affiliation(s)
- A Colige
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Jaatinen T, Ruuskanen O, Truedsson L, Lokki ML. Homozygous deletion of the CYP21A-TNXA-RP2-C4B gene region conferring C4B deficiency associated with recurrent respiratory infections. Hum Immunol 1999; 60:707-14. [PMID: 10439316 DOI: 10.1016/s0198-8859(99)00047-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The central class III region of the human major histocompatibility complex contains highly polymorphic genes that are associated with immune disorders and may serve as susceptibility factors for viral infections. Many HLA haplotype specific rearrangements, duplications, conversions and deletions, occur frequently in the C4 gene region. Genetic deficiencies of complement components are associated with recurrent occurrence of bacterial infections. We have studied the complement profile and the class III genes 5'-RP1-C4A-CYP21A-TNXA-RP2-C4B-CYP21B-TNXB -3' in a 4-year-old Caucasian patient. He has suffered from several pneumonias caused by respiratory viruses, eight acute otitis media, prolonged respiratory infections and urinary tract infection. Complement C4 was constantly low, but the other complement components, from C1 to C9, C1INH, factor B and properdin, were within normal limits. Immunological evaluation gave normal lymphocyte numbers and functions with the exception of subnormal T cell response to pokeweed mitogen. Molecular studies of the C4 gene region in the patient revealed homozygous deletion of CYP21A-TNXA-RP2-C4B generating total deficiency of C4B and the flanking 5' region up to C4A, and in the father a missing CYP21A gene. Further investigations are needed to elucidate the relationship between C4B deficiency and susceptibility to infections.
Collapse
Affiliation(s)
- T Jaatinen
- Tissue Typing Laboratory, Finnish Red Cross Blood Transfusion Service, Helsinki, Finland
| | | | | | | |
Collapse
|
254
|
Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 1999. [PMID: 10341229 DOI: 10.1523/jneurosci.19-11-04245.1999] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interacts in vitro with other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-R in vivo, we have generated mice deficient for TN-R by homologous recombination using embryonic stem cells. TN-R-deficient mice are viable and fertile. The anatomy of all major brain areas and the formation and structure of myelin appear normal. However, immunostaining for the chondroitin sulfate proteoglycan phosphacan, a high-affinity ligand for TN-R, is weak and diffuse in the mutant when compared with wild-type mice. Compound action potential recordings from optic nerves of mutant mice show a significant decrease in conduction velocity as compared with controls. However, at nodes of Ranvier there is no apparent change in expression and distribution of Na+ channels, which are thought to bind to TN-R via their beta2 subunit. The distribution of carbohydrate epitopes of perineuronal nets recognized by the lectin Wisteria floribunda or antibodies to the HNK-1 carbohydrate on somata and dendrites of cortical and hippocampal interneurons is abnormal. These observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve.
Collapse
|
255
|
Jiddou RR, Wei WL, Sane KS, Killeen AA. Single-Nucleotide Polymorphisms in Intron 2 of CYP21P: Evidence for a Higher Rate of Mutation at CpG Dinucleotides in the Functional Steroid 21-Hydroxylase Gene and Application to Segregation Analysis in Congenital Adrenal Hyperplasia. Clin Chem 1999. [DOI: 10.1093/clinchem/45.5.625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Background: Intron 2 of CYP21, the functional steroid 21-hydroxylase gene contains several single-nucleotide polymorphisms (SNPs). We tested the hypothesis that intron 2 of the pseudogene, CYP21P, might also be polymorphic and provide markers for segregation analysis of this region of the genome, including observable markers for segregation analysis of CYP21 gene deletions. A comparison of SNPs in both genes might provide insights into the rates of mutation in these duplicated genes.
Methods: After amplification with PCR, we examined restriction site polymorphisms in intron 2 of CYP21P in 24 members of the parental generation of the Centre d’Étude du Polymorphisme Humain families and selected offspring.
Results: Intron 2 of CYP21P contains frequent SNPs around nucleotide 398 and nucleotide 509, which can be typed by PCR/restriction enzyme digestion with HaeIII. Of the 48 CYP21P alleles examined, 44 could be characterized unambiguously. Of these 44 alleles, 4 were deleted, and the frequencies of restriction at the polymorphic HaeIII sites were 20 of 40 at nucleotide 398 and 30 of 40 at nucleotide 509. Both polymorphisms result from C→T transitions that occur at CpG dinucleotides. The frequencies of C at these nucleotides in CYP21P are significantly higher than at the corresponding nucleotides in CYP21 of the same individuals (P <0.01).
Conclusion: These data suggest that these CpG dinucleotides are more frequently mutated in CYP21 than in CYP21P, and that several mutations at CpG dinucleotides in the coding regions of CYP21 might result from CpG instability rather than the more usually proposed mechanism of gene conversion. These frequent SNPs provide useful markers for studying both allelic segregation of CYP21, particularly for chromosomes with known CYP21 deletions, and for investigating the origin of these polymorphisms.
Collapse
Affiliation(s)
- Renée R Jiddou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0602
| | - Wan-Li Wei
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0602
| | - Kumud S Sane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Anthony A Killeen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0602
| |
Collapse
|
256
|
Yang Z, Mendoza AR, Welch TR, Zipf WB, Yu CY. Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations. J Biol Chem 1999; 274:12147-56. [PMID: 10207042 DOI: 10.1074/jbc.274.17.12147] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The frequent variations of human complement component C4 gene size and gene numbers, plus the extensive polymorphism of the proteins, render C4 an excellent marker for major histocompatibility complex disease associations. As shown by definitive RFLPs, the tandemly arranged genes RP, C4, CYP21, and TNX are duplicated together as a discrete genetic unit termed the RCCX module. Duplications of the RCCX modules occurred by the addition of genomic fragments containing a long (L) or a short (S) C4 gene, a CYP21A or a CYP21B gene, and the gene fragments TNXA and RP2. Four major RCCX structures with bimodular L-L, bimodular L-S, monomodular L, and monomodular S are present in the Caucasian population. These modules are readily detectable by TaqI RFLPs. The RCCX modular variations appear to be a root cause for the acquisition of deleterious mutations from pseudogenes or gene segments in the RCCX to their corresponding functional genes. In a patient with congenital adrenal hyperplasia, we discovered a TNXB-TNXA recombinant with the deletion of RP2-C4B-CYP21B. Elucidation of the DNA sequence for the recombination breakpoint region and sequence analyses yielded definitive proof for an unequal crossover between TNXA from a bimodular chromosome and TNXB from a monomodular chromosome.
Collapse
Affiliation(s)
- Z Yang
- Children's Hospital Research Foundation, Columbus, Ohio 43205, USA
| | | | | | | | | |
Collapse
|
257
|
Tuori A, Uusitalo H, Thornell LE, Yoshida T, Virtanen I. The expression of tenascin-X in developing and adult rat and human eye. THE HISTOCHEMICAL JOURNAL 1999; 31:245-52. [PMID: 10447067 DOI: 10.1023/a:1003665712063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tenascin-X has been studied in developing and adult rat eye and in foetal and adult human eyes, using immunohistochemistry and frozen sections. The data were compared with the distribution of tenascin-C. The immunoreactivity for tenascin-X was seen in a basement membrane-like feature in different structures of embryonic (E) day 16-17 rat eyes. Postnatal (P) day 2 and older rat eyes showed immunoreactivity for tenascin-X in different connective tissues. In the epithelial basement membrane zone of the cornea, immunostaining was positive in P5 eyes, negative in P10 and P15 eyes and again positive in P30 and adult eyes. In the 20-week-old human foetus, immunoreactivity for the tenascin was seen in the posterior parts of the conjunctival stroma adjacent to the sclera and in a basement membrane-like fashion in anterior conjunctiva. In the adult human eye, immunoreactivity for tenascin-X was seen in the anterior one-third stroma of cornea as thin fibrils, in the stroma of the limbus and conjunctiva, and in blood vessels. Immunostaining for tenascin-C was seen in the posterior aspect of the further cornea, and in mesenchyme adjacent to cornea in E1617 rat eyes. Corneal keratocytes and Descemet's membrane showed immunoreactivity for tenascin-C in P2-P15 rat eyes. Sclera and the junction of the cornea, and sclera expressed tenascin-C in P2 and older rat eyes. In human foetal eyes, immunostaining for tenascin-C was seen in the anterior parts of the corneal stroma, in the basement membrane zone and Bowman's membrane of the corneal epithelium, in the posterior one-fifth of the corneal stroma and the sclera starting from the junction of the cornea and sclera. In normal human adult eyes, immunostaining for tenascin-X was seen in the anterior one-third stroma of cornea, in the stroma of limbus and conjunctiva, and in blood vessels. The association of tenascin-X and basement membranes in early development evokes a question of its potential function in the development of the basement membrane. The results also suggest the association of tenascin-X with connective tissue development as well as the association of tenascin-C with the migration of keratocytes during the development of the corneal stroma.
Collapse
Affiliation(s)
- A Tuori
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
258
|
Abstract
The identification and investigation of many inherited disorders has an importance out of proportion to their frequency because of the insights they provide into physiological, pathological and molecular mechanisms. This is true of the heritable disorders of connective tissue which are a diverse group of conditions involving cutaneous, musculoskeletal, cardiovascular, ocular, gastrointestinal and pulmonary systems. The Ehlers-Danlos syndrome (EDS), which shows great clinical variability and genetic heterogeneity, is one example which has particular relevance to the dermatologist and is the focus of this review.
Collapse
Affiliation(s)
- N P Burrows
- Department of Dermatology, Addenbrooke's NHS Trust, Cambridge, UK.
| |
Collapse
|
259
|
Richards AJ, Martin S, Nicholls AC, Harrison JB, Pope FM, Burrows NP. A single base mutation in COL5A2 causes Ehlers-Danlos syndrome type II. J Med Genet 1998; 35:846-8. [PMID: 9783710 PMCID: PMC1051462 DOI: 10.1136/jmg.35.10.846] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders. Recently mutations have been found in the genes for type V collagen in a small number of people with the most common forms of EDS, types I and II. Here we characterise a COL5A2 mutation in an EDS II family. Cultured dermal fibroblasts obtained from an affected subject synthesised abnormal type V collagen. Haplotype analysis excluded COL5A1 but was concordant with COL5A2 as the disease locus. The entire open reading frame of the COL5A2 cDNA was directly sequenced and a single base mutation detected. It substituted a glycine residue within the triple helical domain (G934R) of alpha2(V) collagen, typical of the dominant negative changes in other collagens, which cause various other inherited connective tissue disorders. All three affected family members possessed the single base change, which was absent in 50 normal chromosomes.
Collapse
Affiliation(s)
- A J Richards
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
260
|
Ikuta T, Sogawa N, Ariga H, Ikemura T, Matsumoto K. Structural analysis of mouse tenascin-X: evolutionary aspects of reduplication of FNIII repeats in the tenascin gene family. Gene X 1998; 217:1-13. [PMID: 9795100 DOI: 10.1016/s0378-1119(98)00355-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein involved in both primary structural functions and modulating cellular activities in multicellular organisms. We determined the 67977bp nucleotide sequence of the entire mouse tenascin-X (Tnx) gene, which also includes the last exon of Creb-rp and Cyp21. We compared it with the orthologous human locus. Conservation of both position and orientation of the three functionally unrelated genes at this position was found. Comparison also revealed that introns 1, 4 and 6 of Tnx are highly conserved between species. The sequence showed that mouse Tnx contains 43 exons separated by 42 introns. The deduced amino-acid sequence (4114 residues) revealed that mouse Tnx has a primary structure characteristic of tenascins, which consists of a signal peptide and four heptad repeats followed by 18.5 epidermal growth factor-like (EGF) repeats, 31 fibronectin type III-like (FNIII) repeats, and a region homologous to fibrinogen. cDNA clones generated by alternative splicing of eight consecutive FNIII repeats (M15-M22) as well as a proximal FNIII repeat (M3) were also identified. The FNIII motifs that were subject to alternative splicing were assigned to the group of recently reduplicated FNIII repeats because they have a high level of amino-acid sequence similarity. We also analyzed the evolution of FNIII repeats in TNX.
Collapse
Affiliation(s)
- T Ikuta
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | |
Collapse
|
261
|
Latijnhouwers MA, Pfundt R, de Jongh GJ, Schalkwijk J. Tenascin-C expression in human epidermal keratinocytes is regulated by inflammatory cytokines and a stress response pathway. Matrix Biol 1998; 17:305-16. [PMID: 9749946 DOI: 10.1016/s0945-053x(98)90083-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently we showed that human epidermal keratinocytes express the extracellular matrix protein tenascin-C (TN-C) during wound healing, but not in normal adult skin. To gain further insight into the regulation of epidermal TN-C expression, we tested the effect of various stimuli on TN-C expression by cultured keratinocytes. Our results indicate that IL-4 is a very strong inducer of TN-C protein and mRNA expression in normal keratinocytes. Furthermore, TNFalpha and IFNgamma moderately increased TN-C expression. No other cytokines and growth factors that we tested, including various factors that stimulate TN-C expression in mesenchymal cells, significantly affected TN-C secretion by cultured keratinocytes. The regulation of TN-C expression in keratinocytes is distinct from that of fibronectin, since IL-4 and IFNgamma did not affect fibronectin expression in our experiments, and TNFalpha only slightly increased fibronectin levels. To investigate the role of cellular stress response pathways that can be activated by TNFalpha in the regulation of TN-C expression, we tested the effect of different inhibitors and an activator of these intracellular signalling cascades. The results show that the p38 MAP-kinase pathway is not involved in TNFalpha-induced TN-C expression in cultured keratinocytes. Activation of the JNK/SAPK-1 pathway by the addition of sphingomyelinase resulted in a dose-dependent increase of TN-C expression. TN-C expression by squamous carcinoma cell lines was differentially affected by the cytokines that stimulated TN-C expression in normal keratinocytes: TNFalpha again increased TN-C secretion, but IL-4 and IFNgamma had little effect. We conclude that there are distinct regulation mechanisms for TN-C expression in normal keratinocytes, tumor-derived keratinocytes and mesenchymal cells. The observation that TN-C is abundant in inflamed skin is a strong indication that inflammatory cytokines such as IL-4, TNFalpha and IFNgamma could also be involved in the regulation of epidermal TN-C expression in vivo.
Collapse
Affiliation(s)
- M A Latijnhouwers
- Department of Dermatology, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
262
|
Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 1998; 141:1277-86. [PMID: 9606218 PMCID: PMC2137175 DOI: 10.1083/jcb.141.5.1277] [Citation(s) in RCA: 544] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1997] [Revised: 03/06/1998] [Indexed: 02/07/2023] Open
Abstract
Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defect in the homozygous mutants is deregulated growth of collagen fibrils with a significant proportion of abnormally thick collagen fibrils in the skin and cornea as indicated by transmission electron microscopy. A highly organized and regularly spaced collagen fibril matrix typical of the normal cornea is also missing in these mutant mice. This study establishes a crucial role for lumican in the regulation of collagen assembly into fibrils in various connective tissues. Most importantly, these results provide a definitive link between a necessity for lumican in the development of a highly organized collagenous matrix and corneal transparency.
Collapse
Affiliation(s)
- S Chakravarti
- Department of Medicine and Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4952, USA.
| | | | | | | | | | | |
Collapse
|
263
|
|