251
|
Shao A, Zheng L, Chen S, Gu H, Jing H. p21, p53, TP53BP1 and p73 polymorphisms and the risk of gastric cardia adenocarcinoma in a Chinese population. Biomarkers 2014; 20:109-15. [PMID: 25532599 DOI: 10.3109/1354750x.2014.996607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gastric cardia adenocarcinoma (GCA) is one of the most common malignant tumors and among the leading causes of cancer-related death. Genetic factors might play an important role in GCA carcinogenesis. Here, we performed a hospital-based case-control study to evaluate the effect of functional p21, p53, TP53BP1 and p73 single nucleotide polymorphisms (SNPs) on the risk of GCA. The study included 330 GCA cases and 608 controls. Genotypes were determined using the ligation detection reaction (LDR) method. The p21 rs1059234 TT, p21 rs3176352 GC/CC, p21 rs762623 GA and TP53BP1 rs560191 CC genotypes were associated with the risk of GCA, and a genotype combination effect was observed. After Bonferroni correction, the association remained significant for TP53BP1 rs560191 G > C, whereas the remaining four SNPs showed no association between the polymorphisms and GCA risk in all comparison models. Further large replication studies are needed to confirm the present findings.
Collapse
Affiliation(s)
- Aizhong Shao
- Medical School of Nanjing University , Nanjing, Jiangsu , China
| | | | | | | | | |
Collapse
|
252
|
Adduri RSR, Katamoni R, Pandilla R, Madana SN, Paripati AK, Kotapalli V, Bashyam MD. TP53 Pro72 allele is enriched in oral tongue cancer and frequently mutated in esophageal cancer in India. PLoS One 2014; 9:e114002. [PMID: 25436609 PMCID: PMC4250174 DOI: 10.1371/journal.pone.0114002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022] Open
Abstract
Purpose The tumor suppressor p53 is known to be inactivated frequently in various cancers. In addition, germline polymorphisms in TP53 are known to affect protein function and influence risk of developing different types of cancers. In this study, we analyzed the association of TP53 Pro72Arg polymorphism with squamous cell carcinoma of oral tongue (SCCOT) and esophagus (ESCC) in India. Methods We assessed the distribution of TP53 Pro72Arg polymorphism in one hundred and fifteen and eighty two SCCOT and ESCC patients, respectively, with respect to one hundred and ten healthy controls from the same population. In addition, we analyzed association of the polymorphism with several clinico-pathological and molecular parameters. Results Pro72 allele was significantly enriched in SCCOT patients compared to the healthy control group but neither allele was enriched in ESCC. Interestingly, Pro72 allele was preferentially mutated in ESCC which was confirmed by analysis of samples heterozygous for Pro72Arg. Conclusions Our study revealed the association of Pro72 allele with SCCOT suggesting the effect of this polymorphism on SCCOT risk. Preferential mutation of Pro72 allele exclusively in ESCC indicates the need for further studies to understand the tissue specific effect of p53 polymorphism.
Collapse
Affiliation(s)
- Raju S. R. Adduri
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Rajender Katamoni
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Ramaswamy Pandilla
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Sandeep N. Madana
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Arun Kumar Paripati
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
- * E-mail:
| |
Collapse
|
253
|
Mechanistic elucidation of apoptosis and cell cycle arrest induced by 5-hydroxymethylfurfural, the important role of ROS-mediated signaling pathways. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.08.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
254
|
Dehghan R, Hosseinpour Feizi MA, Pouladi N, Babaei E, Montazeri V, Fakhrjoo A, Sedaei A, Azarfam P, Nemati M. Association of p53 (-16ins-pro) haplotype with the decreased risk of differentiated thyroid carcinoma in Iranian-Azeri patients. Pathol Oncol Res 2014; 21:449-54. [PMID: 25410025 DOI: 10.1007/s12253-014-9846-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Association of P53 polymorphisms with the increased risk of various cancers has been investigated in numerous studies. However, the results were conflicting and no polymorphism has been determined as a definite risk factor. It is likely that the study of P53 combined genotypes and haplotypes may be more useful than individual polymorphisms. Thus, in this study, we analyzed the associations of intron 3 Ins16bp and exon 4 Arg72Pro polymorphisms, as well as their combined genotypes and haplotypes with the risk of differentiated thyroid carcinoma in Iranian-Azeri patients. This case-control study was performed on 84 Iranian Azeri patients with differentiated thyroid carcinoma and 150 healthy subjects. Intron 3 genotype was determined using PCR products analysis on polyacrylamide gels and AS-PCR was used for genotyping Arg72Pro polymorphism. The javastat online statistics package software and SHEsis program were applied for data analysis. There was no significant difference in genotype frequencies of both two polymorphisms between cases and controls. However, the (-16 ins/-16 ins) (Arg/Pro) genotype combination had a noticeable but not significant association with decreased risk of thyroid cancer development (OR = 0.497 95%CI: 0.209-1.168 P = 0.080) and also the frequency of (-16 ins-Pro) haplotype was significantly higher in controls rather than patients (OR = 0.543 95%CI: 0.326-0.903 P = 0.018). In our study, there was association between (-16 ins-Pro) haplotype with decreased risk of differentiated thyroid carcinoma development in Iranian-Azeri patients.
Collapse
|
255
|
Wohak LE, Krais AM, Kucab JE, Stertmann J, Øvrebø S, Seidel A, Phillips DH, Arlt VM. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol 2014; 90:291-304. [PMID: 25398514 PMCID: PMC4748000 DOI: 10.1007/s00204-014-1409-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
The tumour suppressor gene TP53 is mutated in more than 50 % of human tumours, making it one of the most important cancer genes. We have investigated the role of TP53 in cytochrome P450 (CYP)-mediated metabolic activation of three polycyclic aromatic hydrocarbons (PAHs) in a panel of isogenic colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/−), TP53(−/−), TP53(R248W/+) or TP53(R248W/−) were treated with benzo[a]pyrene (BaP), dibenz[a,h]anthracene and dibenzo[a,l]pyrene, and the formation of DNA adducts was measured by 32P-postlabelling analysis. Each PAH formed significantly higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. There were also significantly lower levels of PAH metabolites in the culture media of these other cell lines. Bypass of the need for metabolic activation by treating cells with the corresponding reactive PAH-diol-epoxide metabolites resulted in similar adduct levels in all cell lines, which confirms that the influence of p53 is on the metabolism of the parent PAHs. Western blotting showed that CYP1A1 protein expression was induced to much greater extent in TP53(+/+) cells than in the other cell lines. CYP1A1 is inducible via the aryl hydrocarbon receptor (AHR), but we did not find that expression of AHR was dependent on p53; rather, we found that BaP-induced CYP1A1 expression was regulated through p53 binding to a p53 response element in the CYP1A1 promoter region, thereby enhancing its transcription. This study demonstrates a new pathway for CYP1A1 induction by environmental PAHs and reveals an emerging role for p53 in xenobiotic metabolism.
Collapse
Affiliation(s)
- Laura E Wohak
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.,Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, UK
| | - Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julia Stertmann
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Steinar Øvrebø
- Department of Biological and Chemical Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, Grosshansdorf, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
256
|
Cytoplasmic parafibromin/hCdc73 targets and destabilizes p53 mRNA to control p53-mediated apoptosis. Nat Commun 2014; 5:5433. [DOI: 10.1038/ncomms6433] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023] Open
|
257
|
Zhang D, Ding Y, Wang Z, Wang Y, Zhao G. Impact of MDM2 gene polymorphism on sarcoma risk. Tumour Biol 2014; 36:1791-5. [PMID: 25366142 DOI: 10.1007/s13277-014-2781-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/27/2014] [Indexed: 12/25/2022] Open
Abstract
A T>G single nucleotide polymorphism (SNP, rs2279744) of the MDM2 gene has been investigated in sarcoma community, but the findings are conflicting. This study was designed to well define the relationship between SNP rs2279744 and sarcoma risk. We did a systematic computerized search of the PubMed, Web of Science, and Science Direct databases to identify the human case-control studies investigating the relationship between SNP rs2279744 and sarcoma risk with complete genetic data. Pooled odds ratios (ORs) were calculated with the Mantel-Haenszel fixed-effect model or the DerSimonian and Laird random effects model to estimate the risk of sarcoma. Overall analysis included five independent studies. On the whole, the T/G genotype or the combined G/G and T/G genotypes appeared to be associated with approximately 1.40-fold higher risk of sarcoma relative to the T/T genotype (T/G vs. T/T: OR 1.33, 95% CI 1.00-1.77; G/G + T/G vs. T/T: OR 1.42, 95% CI 1.08-1.85). We noted that the Caucasian populations showed a similarly increased risk of sarcoma ascribed to the carriage of the same genotypes (T/G vs. T/T: OR 1.41, 95% CI 1.05-1.90; G/G + T/G vs. T/T: OR 1.49, 95% CI 1.13-1.97). This meta-analysis provides evidence that MDM2 SNP rs2279744 may be significantly associated with increased risk of sarcoma in Caucasian individuals.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Orthopedics, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | |
Collapse
|
258
|
Kaur S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR, Singh G, Singh H. Analysis of TP53 polymorphisms in North Indian sporadic esophageal cancer patients. Asian Pac J Cancer Prev 2014; 15:8413-22. [PMID: 25339039 DOI: 10.7314/apjcp.2014.15.19.8413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the relationship of five TP53 polymorphisms (p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a) with the esophageal cancer (EC) risk in North Indians. MATERIALS AND METHODS Genotyping of p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a polymorphisms of TP53 in 136 sporadic EC patients and 136 controls using polymerase chain reaction and PCR-RFLP. RESULTS The frequencies of genotype RR, RP and PP of p.R72P polymorphism were 16.91 vs 26.47%, 58.82 vs 49.27% and 24.27 vs 24.27% among patients and controls respectively. We observed significantly increased frequency of RP genotype in cases as compared to controls (OR=1.87, 95% CI, 1.01-3.46, p=0.05). The frequencies of genotype A1A1, A1A2 and A2A2 of PIN3 ins16bp polymorphism were 69.12 vs 70.59%, 27.20 vs 25% and 3.68 vs 4.41% among patients and controls. There was no significant difference among genotype and allele distribution between patients and controls. The frequencies of genotype GG, GA and AA of r.13494g>a polymorphism were 62.50 vs 64.70%, 34.56 vs 30.15% and 2.94 vs 5.15% among patients and controls respectively. No significant difference between genotype and allele frequency was observed in the patients and controls. For p.P47S and p.R213R polymorphisms, all the cases and controls had homozygous wild type genotype. The RP-A1A1-GG genotype combination shows significant risk for EC (OR=2.01, 95%CI: 1.01-3.99, p=0.05). CONCLUSIONS Among the five TP53 polymorphisms investigated, only p.R72P polymorphism may contributes to EC susceptibility.
Collapse
Affiliation(s)
- Sukhpreet Kaur
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Serda M, Kalinowski DS, Rasko N, Potůčková E, Mrozek-Wilczkiewicz A, Musiol R, Małecki JG, Sajewicz M, Ratuszna A, Muchowicz A, Gołąb J, Šimůnek T, Richardson DR, Polanski J. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One 2014; 9:e110291. [PMID: 25329549 PMCID: PMC4199632 DOI: 10.1371/journal.pone.0110291] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023] Open
Abstract
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Danuta S. Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nathalie Rasko
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Eliška Potůčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Anna Mrozek-Wilczkiewicz
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Jan G. Małecki
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | | | - Alicja Ratuszna
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Mazovia, Poland
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Des R. Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JP); (DRR)
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- * E-mail: (JP); (DRR)
| |
Collapse
|
260
|
Combination of doxorubicin-based chemotherapy and polyethylenimine/p53 gene therapy for the treatment of lung cancer using porous PLGA microparticles. Colloids Surf B Biointerfaces 2014; 122:498-504. [DOI: 10.1016/j.colsurfb.2014.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023]
|
261
|
Perriaud L, Marcel V, Sagne C, Favaudon V, Guédin A, De Rache A, Guetta C, Hamon F, Teulade-Fichou MP, Hainaut P, Mergny JL, Hall J. Impact of G-quadruplex structures and intronic polymorphisms rs17878362 and rs1642785 on basal and ionizing radiation-induced expression of alternative p53 transcripts. Carcinogenesis 2014; 35:2706-15. [PMID: 25269805 DOI: 10.1093/carcin/bgu206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
G-quadruplex (G4) structures in intron 3 of the p53 pre-mRNA modulate intron 2 splicing, altering the balance between the fully spliced p53 transcript (FSp53, encoding full-length p53) and an incompletely spliced transcript retaining intron 2 (p53I2 encoding the N-terminally truncated Δ40p53 isoform). The nucleotides forming G4s overlap the polymorphism rs17878362 (A1 wild-type allele, A2 16-base pair insertion) which is in linkage disequilibrium with rs1642785 in intron 2 (c.74+38 G>C). Biophysical and biochemical analyses show rs17878362 A2 alleles form similar G4 structures as A1 alleles although their position is shifted with respect to the intron 2 splice acceptor site. In addition basal FSp53 and p53I2 levels showed allele specific differences in both p53-null cells transfected with reporter constructs or lymphoblastoid cell lines. The highest FSp53 and p53I2 levels were associated with combined rs1642785-GG/rs17878362-A1A1 alleles, whereas the presence of rs1642785-C with either rs17878362 allele was associated with lower p53 pre-mRNA, total TP53, FSp53 and p53I2 levels, due to the lower stability of transcripts containing rs1642785-C. Treatment of lymphoblastoid cell with the G4 binding ligands 360A or PhenDC3 or with ionizing radiation increased FSp53 levels only in cells with rs17878362 A1 alleles, suggesting that under this G4 configuration full splicing is favoured. These results demonstrate the complex effects of intronic TP53 polymorphisms on G4 formation and identify a new role for rs1642785 on mRNA splicing and stability, and thus on the differential expression of isoform-specific transcripts of the TP53 gene.
Collapse
Affiliation(s)
- Laury Perriaud
- Institut Curie, Centre de Recherche and Inserm, U612, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Virginie Marcel
- Institut Curie, Centre de Recherche and Inserm, U612, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Charlotte Sagne
- Institut Curie, Centre de Recherche and Inserm, U612, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Vincent Favaudon
- Institut Curie, Centre de Recherche and Inserm, U612, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Aurore Guédin
- Inserm U869, Institut Européen de Chimie et Biologie, Pessac F-33607, France, Univ. Bordeaux, ARNA Laboratory, Bordeaux F-33000, France
| | - Aurore De Rache
- Inserm U869, Institut Européen de Chimie et Biologie, Pessac F-33607, France, Univ. Bordeaux, ARNA Laboratory, Bordeaux F-33000, France
| | - Corinne Guetta
- Institut Curie, Centre de Recherche and CNRS, UMR176, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Florian Hamon
- Institut Curie, Centre de Recherche and CNRS, UMR176, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Centre de Recherche and CNRS, UMR176, Bât. 110-112, Centre Universitaire, Orsay F-91405, France
| | - Pierre Hainaut
- International Prevention Research Institute, University of Strathclyde School of Global Public Health at iPRI, Lyon F-69006, France
| | - Jean-Louis Mergny
- Inserm U869, Institut Européen de Chimie et Biologie, Pessac F-33607, France, Univ. Bordeaux, ARNA Laboratory, Bordeaux F-33000, France
| | - Janet Hall
- Institut Curie, Centre de Recherche and Inserm, U612, Bât. 110-112, Centre Universitaire, Orsay F-91405, France,
| |
Collapse
|
262
|
Marouf C, Tazzite A, Diakité B, Jouhadi H, Benider A, Nadifi S. Association of TP53 PIN3 polymorphism with breast cancer in Moroccan population. Tumour Biol 2014; 35:12403-8. [PMID: 25201062 DOI: 10.1007/s13277-014-2556-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/26/2014] [Indexed: 01/25/2023] Open
Abstract
TP53 is a tumor suppressor gene involved in cell cycle progression control, DNA damage repair, genomic stability, and apoptosis. Some polymorphisms in this gene have been associated with the development of a number of cancers including breast carcinoma. PIN3 Ins16bp polymorphism has been widely studied in different populations for an association with breast cancer risk. In most case-control studies, a duplicated allele has been more frequent in cases rather than controls but there are also inconsistent results. The present study aimed to assess the association of PIN3 Ins16bp polymorphism of p53 with breast cancer risk in Moroccan population. This case-control study was performed on 105 female patients with confirmed breast cancer and 114 healthy controls. The genotype frequency was 69.5 % (A1A1), 26.7 % (A1A2), and 3.8 % (A2A2) in patients and 68.4 % (A1A1), 24.6 % (A1A2), and 7 % (A2A2) in controls. No statistically significant association was observed between PIN3 Ins16bp polymorphism and breast cancer risk with odds ratio of 1.07 (confidence interval (CI) = 0.58-1.97, p = 0.83) for the heterozygous A1A2 and 0.53 (CI = 0.15-1.85, p = 0.32) for mutated homozygous A2A2.According to our preliminary genetic analysis, PIN3 Ins16pb polymorphism could not be assessed as a marker of risk factor for predisposition to breast cancer in Moroccan population. However, a high frequency of A2 allele (19.3 %) in our population suggested that PIN3 Ins16pb polymorphism may be a valuable marker for study in other cancers with larger groups.
Collapse
Affiliation(s)
- Chaymaa Marouf
- Genetics and Molecular Pathology Laboratory, Medical School of Casablanca, University Hassan II, Casablanca, Morocco,
| | | | | | | | | | | |
Collapse
|
263
|
Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. Eur J Cancer 2014; 50:2489-507. [PMID: 25047426 DOI: 10.1016/j.ejca.2014.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/17/2014] [Accepted: 06/16/2014] [Indexed: 12/11/2022]
Abstract
Abnormalities in the homeostasis mechanisms involved in cell survival and apoptosis are contributing factors for colon carcinogenesis. Interventions of these mechanisms by pharmacologically safer agents gain predominance in colon cancer prevention. We previously reported the chemopreventive efficacy of hesperidin against colon carcinogenesis. In the present study, we aimed at investigating the potential of hesperidin over the abrogated Aurora-A coupled pro-survival phosphoinositide-3-kinase (PI3K)/Akt signalling cascades. Further, the role of hesperidin over apoptosis and mammalian target of rapamycin (mTOR) mediated autophagic responses were studied. Azoxymethane (AOM) induced mouse model of colon carcinogenesis was involved in this study. Hesperidin treatment was provided either in initiation/post-initiation mode respectively. Hesperidin significantly altered AOM mediated anti-apoptotic scenario by modulating Bax/Bcl-2 ratio together with enhanced cytochrome-c release and caspase-3, 9 activations. In addition, hesperidin enhanced p53-p21 axis with concomitant decrease in cell cycle regulator. Hesperidin treatment caused significant up-regulation of tumour suppressor phosphatase and tensin homologue (PTEN) with a reduction in the expression of AOM mediated p-PI3K and p-Akt. Additionally, hesperidin administration exhibited inhibition against p-mTOR expression which in turn led to stimulation of autophagic markers Beclin-1 and LC3-II. Aurora-A an upstream regulator of PI3K/Akt pathway was significantly inhibited by hesperidin. Furthermore, hesperidin administration restored glycogen synthase kinase-3 beta (GSK-3β) activity which in turn prevented the accumulation of oncoproteins β-catenin, c-jun and c-myc. Taken together, hesperidin supplementation initiated apoptosis via targeted inhibition of constitutively activated Aurora-A mediated PI3K/Akt/GSK-3β and mTOR pathways coupled with autophagic stimulation against AOM induced colon carcinogenesis.
Collapse
|
264
|
Lung cancer risk in relation to TP53 codon 47 and codon 72 polymorphism in Bangladeshi population. Tumour Biol 2014; 35:10309-17. [DOI: 10.1007/s13277-014-2285-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022] Open
|
265
|
Association of EGF and p53 gene polymorphisms and colorectal cancer risk in the Slovak population. Open Med (Wars) 2014. [DOI: 10.2478/s11536-013-0300-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractDuring the transformation process single nucleotide polymorphisms (SNPs) of key genes, such as p53 Arg72Pro or EGF A61G, may mediate various cellular processes. These variants may be associated with colorectal cancer risk (CRC), but conflicting findings have been reported. The purpose of this study was to determine the association of the SNPs in 5′ UTR of EGF A61G and p53 Arg72Pro and CRC in the Slovak population. The present case-control study was carried out in 173 confirmed CRC patients and 303 healthy subjects. Genotyping was performed by PCR-RFLP methods. Significant association was observed between age and CRC risk (p=0.001). Lower CRC risk was seen in younger patients carrying genotype p53 Arg72Pro (0.14; 95% CI 0.02–0.99, p=0.049). Gender-stratified analysis showed a significant inverse association of the polymorphism EGF G61G with CRC risk (0.48; 95% CI 0.2–0.9, p=0.04) only in male patients. Tumour site genotype distribution revealed that female patients with localized colon cancer were significantly associated with p53 Pro72Pro genotype (4.0; 95% CI 1.27–12.7, p=0.04) whereas the cancer of rectosigmoid junction was associated with the EGF G61G genotype (4.5; 95% CI 1.2–16.97, p=0.02). Combination of p53 Arg72Pro or EGF A61G polymorphisms were not associated with CRC risk by using logistic regression.
Collapse
|
266
|
Deng Q, Becker L, Ma X, Zhong X, Young K, Ramos K, Li Y. The dichotomy of p53 regulation by noncoding RNAs. J Mol Cell Biol 2014; 6:198-205. [PMID: 24706938 PMCID: PMC4034729 DOI: 10.1093/jmcb/mju017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor gene is the most frequently mutated gene in cancer. Significant progress has been made to discern the importance of p53 in coordinating cellular responses to DNA damage, oncogene activation, and other stresses. Noncoding RNAs are RNA molecules functioning without being translated into proteins. In this work, we discuss the dichotomy of p53 regulation by noncoding RNAs with four unconventional questions. First, is overexpression of microRNAs responsible for p53 inactivation in the absence of p53 mutation? Second, are there somatic mutations in the noncoding regions of the p53 gene? Third, is there a germline mutant in the noncoding regions of the p53 gene that predisposes carriers to cancer? Fourth, can p53 activation mediated by a noncoding RNA mutation cause cancer? This work highlights the prominence of noncoding RNAs in p53 dysregulation and tumorigenesis.
Collapse
Affiliation(s)
- Qipan Deng
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Lindsey Becker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Xiaodong Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Ken Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth Ramos
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
267
|
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu Y, Li C, Su L, Zhu Z, Xiang M, Liu B, Yang Q. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer 2014; 41:373-85. [PMID: 24886316 DOI: 10.1007/s11033-013-2871-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 11/06/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND microRNAs are small noncoding RNAs that modulate a variety of cellular processes by regulating multiple targets, which can promote or inhibit the development of malignant behaviors. Accumulating evidence suggests miR-24 plays important roles in human carcinogenesis. However, its precise biological role remains largely elusive. This study examined the role of miR-24 in gastric cancer (GC). METHODS The expression of miR-24 in GC tissues compared with matched non-tumor tissues and GC cells was detected by qRT-PCR. Synthetic short single or double stranded RNA oligonucleotides and lentiviral vectors were used to regulate miR-24 expression in GC cells to investigate its function in vitro and in vivo. RESULTS miR-24 was significantly downregulated in GC tissues compared with matched non-tumor tissues and was associated with tumor differentiation. Ectopic expression of miR-24 in SGC-7901 GC cells suppressed cell proliferation, migration and invasion in vitro as well as tumorigenicity in vivo by inducing cell cycle arrest in G0/G1 phase and promoting cell apoptosis. Furthermore, we identified RegIV as a target of miR-24 and demonstrated that miR-24 regulated RegIV expression via binding its 3' untranslated region. CONCLUSIONS miR-24 functions as a novel tumor suppressor in GC and the anti-oncogenic activity may involve its inhibition of the target gene RegIV. These findings suggest the possibility for miR-24 as a therapeutic target in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Ruijin er Road, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
268
|
Saleem S, Abbasi ZA, Hameed A, Qureshi NR, Khan MA, Azhar A. Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol 2014; 35:7945-50. [PMID: 24833091 DOI: 10.1007/s13277-014-2062-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/06/2014] [Indexed: 01/23/2023] Open
Abstract
Chewing habits of tobacco, betel quid (paan), and betel nut (chhaliya) are common traditions in Pakistan. Different other preparations and combination of flavors with tobacco, paan, and chhaliya ingredients are commonly available in the market and have received considerable attention as sources of carcinogens that promote OSCC. Mutagens can damage DNA and generate promutagenic lesions. The germ line mutation/polymorphism of p53 gene has been reported to be involved in multiple steps of carcinogenesis. This study aims to find out the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco-related ingredients.Tissue and blood specimens from 260 OSCC patients were collected and compared with blood samples of 260 age- and sex-matched controls. Mutations in exons 2-11 of p53 gene were examined by PCR-SSCP and directly sequenced.A novel mutation was found in exon 7 of p53 gene. This mutation was observed in the tumors of the OSCC patients. The blood samples of the patients and the controls did not show the nucleotide change in this region. The "AGT" to "ACT" missense mutation was identified at position 719 at TP53. This results in the substitution of amino acid serine with threonine at codon 240 of p53 protein.This novel missence mutation in the DNA-binding domain indicated that the DNA structure may be damaged by the use of exogenous DNA-damaging agents, including tobacco-related carcinogens present in gutka, niswar, and manpuri, which may result in the loss of p53 protein function.
Collapse
Affiliation(s)
- S Saleem
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan,
| | | | | | | | | | | |
Collapse
|
269
|
Zheng L, Tang W, Shi Y, Chen S, Wang X, Wang L, Shao A, Ding G, Liu C, Liu R, Yin J, Gu H. p21 rs3176352 G>C and p73 rs1801173 C>T polymorphisms are associated with an increased risk of esophageal cancer in a Chinese population. PLoS One 2014; 9:e96958. [PMID: 24820515 PMCID: PMC4018405 DOI: 10.1371/journal.pone.0096958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/12/2014] [Indexed: 01/15/2023] Open
Abstract
Objective Esophageal cancer was the fifth most commonly diagnosed cancer and the fourth leading cause of cancer-related death in China in 2009. Genetic factors might play an important role in esophageal squamous cell carcinoma (ESCC) carcinogenesis. Designs and Methods To evaluate the effect p21, p53, TP53BP1 and p73 single nucleotide polymorphisms (SNPs) on the risk of ESCC, we conducted a hospital based case–control study. A total of 629 ESCC cases and 686 controls were recruited. Their genotypes were determined using ligation detection reaction (LDR) method. Results When the p21 rs3176352 GG homozygote genotype was used as the reference group, the CC genotype was associated with a significantly increased risk of ESCC. When the p73 rs1801173 CC homozygote genotype was used as the reference group, the CT genotype was associated with a significantly increased risk of ESCC. After Bonferroni correction, for p21 rs3176352 G>C, the pcorrect was still significant. For the other six SNPs, in all comparison models, no association between the polymorphisms and ESCC risk was observed. Conclusions p21 rs3176352 G>C and p73 rs1801173 C>T SNPs are associated with increased risk of ESCC. To confirm the current findings, additional, larger studies and tissue-specific biological characterization are required.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Cardiothoracic Surgery, The First People's Hospital of Changzhou and The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yijun Shi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Suocheng Chen
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xu Wang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Liming Wang
- Cancer institute, Department of chemotherapy, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Aizhong Shao
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruiping Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, China
| | - Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- * E-mail: (JY); (HG)
| | - Haiyong Gu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- * E-mail: (JY); (HG)
| |
Collapse
|
270
|
Pineda S, Milne RL, Calle ML, Rothman N, López de Maturana E, Herranz J, Kogevinas M, Chanock SJ, Tardón A, Márquez M, Guey LT, García-Closas M, Lloreta J, Baum E, González-Neira A, Carrato A, Navarro A, Silverman DT, Real FX, Malats N. Genetic variation in the TP53 pathway and bladder cancer risk. a comprehensive analysis. PLoS One 2014; 9:e89952. [PMID: 24818791 PMCID: PMC4018346 DOI: 10.1371/journal.pone.0089952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/24/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. MATERIAL AND METHODS We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998-2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. RESULTS Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value≤0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value≥0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05-1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. DISCUSSION We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.
Collapse
Affiliation(s)
- Silvia Pineda
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Roger L. Milne
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - M. Luz Calle
- Systems Biology Department, University of Vic, Vic, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | | | - Jesús Herranz
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Institut Municipal d'Investigació Mèdica – Hospital del Mar, Barcelona, Spain
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Adonina Tardón
- Department of Preventive Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Mirari Márquez
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lin T. Guey
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Josep Lloreta
- Institut Municipal d'Investigació Mèdica – Hospital del Mar, Barcelona, Spain
- Departament de Patologia, Hospital del Mar – IMAS, Barcelona, Spain
| | - Erin Baum
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Alfredo Carrato
- Servicio de Oncología, Hospital Universitario de Elche, Elche, Spain
- Servicio de Oncología, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Arcadi Navarro
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Instituto Nacional de Bioinformática, Barcelona, Spain
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Francisco X. Real
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Malats
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
271
|
Soussi T, Leroy B, Taschner PEM. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum Mutat 2014; 35:766-78. [PMID: 24729566 DOI: 10.1002/humu.22561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/02/2014] [Indexed: 12/27/2022]
Abstract
The architecture of TP53, the most frequently mutated gene in human cancer, is more complex than previously thought. Using TP53 variants as clinical biomarkers to predict response to treatment or patient outcome requires an unequivocal and standardized procedure toward a definitive strategy for the clinical evaluation of variants to provide maximum diagnostic sensitivity and specificity. An intronic promoter and two novel exons have been identified resulting in the expression of multiple transcripts and protein isoforms. These regions are additional targets for mutation events impairing the tumor suppressive activity of TP53. Reassessment of variants located in these regions is needed to refine their prognostic value in many malignancies. We recommend using the stable Locus Reference Genomic reference sequence for detailed and unequivocal reports and annotations of germ line and somatic alterations on all TP53 transcripts and protein isoforms according to the recommendations of the Human Genome Variation Society. This novel and comprehensive description framework will generate standardized data that are easy to understand, analyze, and exchange across various cancer variant databases. Based on the statistical analysis of more than 45,000 variants in the latest version of the UMD TP53 database, we also provide a classification of their functional effects ("pathogenicity").
Collapse
Affiliation(s)
- Thierry Soussi
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institute, Stockholm, Sweden; Université Pierre et Marie Curie-Paris 6, Paris, 75005, France
| | | | | |
Collapse
|
272
|
Heinze B, Herrmann LJM, Fassnacht M, Ronchi CL, Willenberg HS, Quinkler M, Reisch N, Zink M, Allolio B, Hahner S. Less common genotype variants of TP53 polymorphisms are associated with poor outcome in adult patients with adrenocortical carcinoma. Eur J Endocrinol 2014; 170:707-17. [PMID: 24566897 DOI: 10.1530/eje-13-0788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT The Li-Fraumeni tumor syndrome is strongly associated with adrenocortical carcinoma (ACC) and is caused by germline mutations in TP53 in 70% of cases. Also, TP53 polymorphisms have been shown to influence both cancer risk and clinical outcome in several tumor entities. We, therefore, investigated TP53 polymorphisms in a cohort of adult patients with ACC. OBJECTIVE Evaluation of the role of TP53 polymorphisms in adult patients with ACC. SUBJECTS AND METHODS Peripheral blood for DNA extraction was collected from 72 ACC patients. Polymorphism analysis was carried out by amplification and sequencing of exons and adjacent intron sections of TP53. Results were correlated with clinical data and the distribution of the polymorphisms was compared with published Caucasian control groups. RESULTS Compared with control groups, genotype frequencies of analyzed TP53 polymorphisms among ACC patients were significantly different in three out of four polymorphisms: IVS2+38G>C (G/G, P=0.0248), IVS3ins16 (NoIns/NoIns, P<0.0001; NoIns/Ins, P<0.0001), and IVS6+62A>G (G/G, P<0.0001; G/A, P<0.0001). Overall, the survival of ACC patients, which harbored at least one of the less frequent genotype variants of four analyzed polymorphisms (n=23), was significantly inferior (median survival: 81.0 months in patients with the common homozygous genotypes vs 20.0 months in patients with the less frequent genotypes, HR 2.56, 95% CI 1.66-7.07; P=0.001). These results were confirmed by multivariable regression analysis (HR 2.84, 95% CI 1.52-7.17; P=0.037). CONCLUSION Some TP53 polymorphisms seem to influence overall survival in ACC patients. This effect was observed for a combination of polymorphic changes rather than for single polymorphisms.
Collapse
Affiliation(s)
- Britta Heinze
- Endocrinology and Diabetes Unit, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Oberduerrbacher Strasse 6, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Alqumber MAA, Akhter N, Haque S, Panda AK, Mandal RK. Evaluating the association between p53 codon 72 Arg>pro polymorphism and risk of ovary cancer: a meta-analysis. PLoS One 2014; 9:e94874. [PMID: 24747975 PMCID: PMC3991634 DOI: 10.1371/journal.pone.0094874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022] Open
Abstract
Aim Allelic polymorphism in codon 72 of the p53 tumor suppressor gene causes imbalance of p53 protein expression. Earlier studies have shown association between allelic polymorphism in codon 72 of the p53 gene with risk of ovary cancer (OC); however the results are inconclusive and conflicting. Therefore, we performed this meta-analysis to investigate the relation between p53 codon 72 Arg>Pro polymorphism and overall OC susceptibility. Methods We searched all eligible published studies based on the association between codon 72 of the p53 Arg>Pro polymorphism and risk of OC. Data were pooled together from individual studies and meta-analysis was performed. Pooled odds ratios (ORs) and 95% CI were calculated for allele contrast, homozygous, heterozygous, dominant and recessive genetic models. Results A total of twelve studies comprising of 993 OC cases and 1264 healthy controls were included in this meta-analysis. Overall, no significant association was detected for Pro allele carrier (Pro vs. Arg: p = 0.916; OR = 0.980, 95% CI = 0.677 to 1.419), homozygous (Pro/Pro vs. Arg/Arg: p = 0.419; OR = 0.731, 95% CI = 0.341 to 1.564), heterozygous (Arg/Pro vs. Arg/Arg: p = 0.248; OR = 1.237, 95% CI = 0.862 to 1.773), dominant (Pro/Pro+Arg/Pro vsArg/Arg: p = 0.699; OR = 1.089, 95% CI = 0.706 to 1.681), and recessive (Pro/Pro vs Arg/Arg+Arg/Pro: p = 0.329; OR = 0.754, 95% CI = 0.428 to 1.329) genetic models, respectively. Also, in the stratified analysis by ethnicity, no significant association of this polymorphism with risk of OC was found in the Caucasian population. Conclusions This meta-analysis suggested that codon 72 of the p53 Arg>Pro polymorphism may not significantly contribute in ovary cancer susceptibility. However, future large studies with gene-gene and gene-environment interactions are needed to validate these findings.
Collapse
Affiliation(s)
- Mohammed A. A. Alqumber
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Aditya K. Panda
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Raju K. Mandal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
274
|
Petkova R, Chelenkova P, Georgieva E, Chakarov S. What's Your Poison? Impact of Individual Repair Capacity on the Outcomes of Genotoxic Therapies in Cancer. Part I—Role of Individual Repair Capacity in the Constitution of Risk for Late-Onset Multifactorial Disease. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
275
|
Bodian DL, McCutcheon JN, Kothiyal P, Huddleston KC, Iyer RK, Vockley JG, Niederhuber JE. Germline variation in cancer-susceptibility genes in a healthy, ancestrally diverse cohort: implications for individual genome sequencing. PLoS One 2014; 9:e94554. [PMID: 24728327 PMCID: PMC3984285 DOI: 10.1371/journal.pone.0094554] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/17/2014] [Indexed: 01/05/2023] Open
Abstract
Technological advances coupled with decreasing costs are bringing whole genome and whole exome sequencing closer to routine clinical use. One of the hurdles to clinical implementation is the high number of variants of unknown significance. For cancer-susceptibility genes, the difficulty in interpreting the clinical relevance of the genomic variants is compounded by the fact that most of what is known about these variants comes from the study of highly selected populations, such as cancer patients or individuals with a family history of cancer. The genetic variation in known cancer-susceptibility genes in the general population has not been well characterized to date. To address this gap, we profiled the nonsynonymous genomic variation in 158 genes causally implicated in carcinogenesis using high-quality whole genome sequences from an ancestrally diverse cohort of 681 healthy individuals. We found that all individuals carry multiple variants that may impact cancer susceptibility, with an average of 68 variants per individual. Of the 2,688 allelic variants identified within the cohort, most are very rare, with 75% found in only 1 or 2 individuals in our population. Allele frequencies vary between ancestral groups, and there are 21 variants for which the minor allele in one population is the major allele in another. Detailed analysis of a selected subset of 5 clinically important cancer genes, BRCA1, BRCA2, KRAS, TP53, and PTEN, highlights differences between germline variants and reported somatic mutations. The dataset can serve a resource of genetic variation in cancer-susceptibility genes in 6 ancestry groups, an important foundation for the interpretation of cancer risk from personal genome sequences.
Collapse
Affiliation(s)
- Dale L. Bodian
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| | - Justine N. McCutcheon
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| | - Prachi Kothiyal
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| | - Kathi C. Huddleston
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| | - Ramaswamy K. Iyer
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| | - Joseph G. Vockley
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
- * E-mail:
| | - John E. Niederhuber
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America
| |
Collapse
|
276
|
Gai PP, Meese S, Bedu-Addo G, Gahutu JB, Mockenhaupt FP. No association of the p53 codon 72 polymorphism with malaria in Ghanaian primiparae and Rwandan children. Am J Trop Med Hyg 2014; 90:1133-4. [PMID: 24710610 DOI: 10.4269/ajtmh.14-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The p53 protein is a key cell-signaling mediator integrating host responses to various types of stress. A common polymorphism of the encoding TP53 gene (codon 72, Pro > Arg, rs1042522) is associated with susceptibility to virus-related and other cancers. The p53 has also been shown to be central for successful Plasmodium liver stage infection. We examined whether the polymorphism is associated with P. falciparum infection in Ghanaian primiparae and Rwandan children. The allele frequency of TP53 codon 72 Arg was 0.30 among 314 Ghanaian primiparae and 0.31 among 545 Rwandan children, respectively, and it was not associated with infection prevalence or parasite density. This does not exclude p53 to be of pathophysiological relevance in malaria but argues against a major respective role of the TP53 codon 72 polymorphism.
Collapse
Affiliation(s)
- Prabhanjan P Gai
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medicine, Komfo Anoyke Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; University Teaching Hospital of Butare, School of Medicine, University of Rwanda, Huye, Rwanda
| | - Stefanie Meese
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medicine, Komfo Anoyke Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; University Teaching Hospital of Butare, School of Medicine, University of Rwanda, Huye, Rwanda
| | - George Bedu-Addo
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medicine, Komfo Anoyke Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; University Teaching Hospital of Butare, School of Medicine, University of Rwanda, Huye, Rwanda
| | - Jean Bosco Gahutu
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medicine, Komfo Anoyke Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; University Teaching Hospital of Butare, School of Medicine, University of Rwanda, Huye, Rwanda
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medicine, Komfo Anoyke Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; University Teaching Hospital of Butare, School of Medicine, University of Rwanda, Huye, Rwanda
| |
Collapse
|
277
|
Imielinski M, Hammerman PS, Thomas R, Meyerson M. Somatic Genome Alterations in Human Lung Cancers. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
278
|
Zhang Y, Zheng S, Zheng JS, Wong KH, Huang Z, Ngai SM, Zheng W, Wong YS, Chen T. Synergistic Induction of Apoptosis by Methylseleninic Acid and Cisplatin, The Role of ROS-ERK/AKT-p53 Pathway. Mol Pharm 2014; 11:1282-93. [DOI: 10.1021/mp400749f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yibo Zhang
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shanyuan Zheng
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jun-Sheng Zheng
- The Third Affiliated
Hospital, Sun-Yat-Sen University, Guangzhou, China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhi Huang
- Department of Biology, Jinan University, Guangzhou 510632, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenjie Zheng
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yum-Shing Wong
- School of Life Sciences and State Key Laboratory
of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tianfeng Chen
- Department
of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
279
|
Endo F, Nishizuka SS, Kume K, Ishida K, Katagiri H, Ishida K, Sato K, Iwaya T, Koeda K, Wakabayashi G. A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines. PLoS One 2014; 9:e90155. [PMID: 24587255 PMCID: PMC3937424 DOI: 10.1371/journal.pone.0090155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Despite of remarkable improvement of postoperative 5-FU–based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU–based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.
Collapse
Affiliation(s)
- Fumitaka Endo
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Satoshi S. Nishizuka
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology) project, Iwate Medical University, Morioka, Japan
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
- * E-mail:
| | - Kohei Kume
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology) project, Iwate Medical University, Morioka, Japan
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Kazushige Ishida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hirokatsu Katagiri
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kaoru Ishida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kei Sato
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takeshi Iwaya
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Go Wakabayashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
280
|
Loginov VI, Atkarskaya MV, Burdennyy AM, Zavarykina TM, Kazubskaya TP, Nosikov VV, Braga EA, Zhizhina GP. Association of Arg72Pro of TP53 and T309G of MDM2 genes polymorphisms with non-small-cell lung cancer in Russians of the Moscow region. Mol Biol 2014. [DOI: 10.1134/s0026893314010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
281
|
Sun Y, Myers CJ, Dicker AP, Lu B. A novel radiation-induced p53 mutation is not implicated in radiation resistance via a dominant-negative effect. PLoS One 2014; 9:e87492. [PMID: 24558369 PMCID: PMC3928108 DOI: 10.1371/journal.pone.0087492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del) at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent) line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance.
Collapse
Affiliation(s)
- Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carey Jeanne Myers
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Adam Paul Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
282
|
Ó hAinmhire E, Quartuccio SM, Cheng W, Ahmed RA, King SM, Burdette JE. Mutation or loss of p53 differentially modifies TGFβ action in ovarian cancer. PLoS One 2014; 9:e89553. [PMID: 24586866 PMCID: PMC3930740 DOI: 10.1371/journal.pone.0089553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological disease affecting women in the US. The Cancer Genome Atlas Network identified p53 mutations in 96% of high-grade serous ovarian carcinomas, demonstrating its critical role. Additionally, the Transforming Growth Factor Beta (TGFβ) pathway is dysfunctional in various malignancies, including ovarian cancer. This study investigated how expression of wild-type, mutant, or the absence of p53 alters ovarian cancer cell response to TGFβ signaling, as well as the response of the ovarian surface epithelium and the fallopian tube epithelium to TGFβ. Only ovarian cancer cells expressing wild-type p53 were growth inhibited by TGFβ, while ovarian cancer cells that were mutant or null p53 were not. TGFβ induced migration in p53 null SKOV3 cells, which was not observed in SKOV3 cells with stable expression of mutant p53 R273H. Knockdown of wild-type p53 in the OVCA 420 ovarian cancer cells enhanced cell migration in response to TGFβ. Increased protein expression of DKK1 and TMEPAI, two pro-invasive genes with enhanced expression in late stage metastatic ovarian cancer, was observed in p53 knockdown and null cells, while cells stably expressing mutant p53 demonstrated lower DKK1 and TMEPAI induction. Expression of mutant p53 or loss of p53 permit continued proliferation of ovarian cancer cell lines in the presence of TGFβ; however, cells expressing mutant p53 exhibit reduced migration and decreased protein levels of DKK1 and TMEPAI.
Collapse
Affiliation(s)
- Eoghainín Ó hAinmhire
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Suzanne M. Quartuccio
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Whay Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roshan A. Ahmed
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shelby M. King
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
283
|
Reiling E, Speksnijder EN, Pronk ACM, van den Berg SAA, Neggers SJW, Rietbroek I, van Steeg H, Dollé MET. Human TP53 polymorphism (rs1042522) modelled in mouse does not affect glucose metabolism and body composition. Sci Rep 2014; 4:4091. [PMID: 24522546 PMCID: PMC3923217 DOI: 10.1038/srep04091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022] Open
Abstract
Variation in TP53 has been associated with cancer. The pro-allele of a TP53 polymorphism in codon 72 (rs1042522) has been associated with longevity. Recently, we showed that the same allele might be involved in preservation of glucose metabolism, body composition and blood pressure during ageing. Here, we assessed glucose tolerance and body composition in mice carrying the human polymorphism. Our data do not support the previous findings in humans, suggesting that this polymorphism does not play a major role in development of glucose metabolism and body composition during ageing. Alternatively, the mouse model may not be suitable to validate these rs1042522-associated traits up to the age tested.
Collapse
Affiliation(s)
- Erwin Reiling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ewoud N Speksnijder
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | - Amanda C M Pronk
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sjoerd A A van den Berg
- 1] Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands [2] Amphia Hospital, Breda, The Netherlands
| | - Silvia J W Neggers
- Leiden University Medical Center, Central Animal Facility, Leiden, The Netherlands
| | - Ilma Rietbroek
- Leiden University Medical Center, Central Animal Facility, Leiden, The Netherlands
| | - Harry van Steeg
- 1] National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands [2] Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | - Martijn E T Dollé
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
284
|
Association of p53 codon 72 polymorphism with prostate cancer: an update meta-analysis. Tumour Biol 2014; 35:3997-4005. [PMID: 24488627 DOI: 10.1007/s13277-014-1657-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Many studies have been conducted to explore the association between p53 codon 72 polymorphism and prostate cancer (PCa). However, the results remain inconsistent. Therefore, we performed a large meta-analysis of relevant studies to determine a more precise estimation of this relationship. Systematic searches of the electronic databases PubMed, EMBASE, Cochrane Library, and China National Knowledge Infrastructure (CNKI) up to October 2013 were performed. Fixed or random-effects meta-analytical models were used to calculate the summary odds ratio (OR) and corresponding 95% confidence intervals (CIs). Meta-regression, Galbraith plots, subgroup analysis, and sensitivity analysis were also performed. The study included 17 case-control studies involving 2,371 PCa cases and 2,854 controls. Our results showed that the p53 codon 72 polymorphism was not associated with PCa risk in all genetic models in the overall populations. When limiting the meta-analysis to the studies conforming to Hardy-Weinberg equilibrium, the pooled analyses showed a significant association between p53 codon 72 polymorphism and PCa in a Caucasian population in co-dominant model Pro/Pro vs. Arg/Arg (OR = 1.57, 95% CI = 1.08-2.28, P = 0.017) and recessive model Pro/Pro vs. (Arg/Pro + Arg/Arg) (OR = 1.60, 95% CI = 1.12-2.27, P = 0.009). In subgroup analysis stratified by PCa stages and Gleason grades, a slight but significant association was found when advanced PCa was compared with localized PCa only in recessive model Pro/Pro vs. (Arg/Pro + Arg/Arg) (OR = 1.51, 95% CI = 1.02-2.23, P = 0.039). This meta-analysis suggested that the Pro/Pro genotype of p53 codon 72 polymorphism was associated with increased prostate cancer risk, especially among Caucasians.
Collapse
|
285
|
Association between p53 codon 72 polymorphism and sarcoma risk among Caucasians. Tumour Biol 2014; 35:4807-12. [DOI: 10.1007/s13277-014-1631-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022] Open
|
286
|
Oliveira C, Lourenço GJ, Rinck-Junior JA, Cintra ML, Moraes AM, Lima CSP. Association between genetic polymorphisms in apoptosis-related genes and risk of cutaneous melanoma in women and men. J Dermatol Sci 2014; 74:135-41. [PMID: 24461648 DOI: 10.1016/j.jdermsci.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/20/2013] [Accepted: 12/25/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The P53 Arg72Pro, MDM2 c.+309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms have variable roles in the apoptosis pathways. OBJECTIVE To clarify the roles of these polymorphisms in the risk for cutaneous melanoma (CM). METHODS Genomic DNA of 200 CM patients and 215 controls was analyzed by PCR-RFLP. RESULTS In women, the frequencies of BAX GG (83.0% vs. 71.0%, P=0.04), BCL2 AA (32.0% vs. 15.0%, P=0.003), P53 ArgArg plus BAX GG (84.9% vs. 63.2%, P=0.01), P53 ArgArg plus BCL2 AA (37.0% vs. 13.1%, P=0.003), BAX GG plus BCL2 AA (70.3% vs. 33.3%, P=0.001), MDM2 GG plus BAX GG plus BCL2 AA (27.3% vs. 3.7%, P=0.03), and P53 ArgArg plus MDM2 GG plus BAX GG plus BCL2 AA (33.3% vs. 5.6%, P=0.04) genotypes were higher in patients than in controls. Female carriers of the respective genotypes were under 1.98 (95% CI: 1.01-3.91), 2.87 (95% CI: 1.43-5.77), 3.48 (95% CI: 1.34-9.04), 4.23 (95% CI: 1.63-10.96), 6.04 (95% CI: 2.10-17.37), 25.61 (95% CI: 1.29-507.24), and 25.69 (95% CI: 1.11-593.59)-fold increased risks for CM than others, respectively. In men, the frequencies of BCL2 CA+AA (83.0% vs. 67.6%, P=0.01) and MDM2 TG+GG plus BCL2 CA+AA (94.2% vs. 68.3%, P=0.003) genotypes were higher in patients than in controls. Male carriers of the respective genotypes were under 2.43 (95% CI: 1.23-4.82) and 9.22 (95% CI: 2.16-39.31)-fold increased CM risks than others, respectively. CONCLUSION The data suggest for the first time that P53 Arg72Pro, MDM2 c.+309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms, enrolled in apoptosis pathways, constitute distinct determinants of CM in women and men.
Collapse
Affiliation(s)
- Cristiane Oliveira
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José Augusto Rinck-Junior
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Letícia Cintra
- Pathology Dermatology Service, Faculty of Medical Sciences, Department of Anatomical Pathology, University of Campinas, Campinas, São Paulo, Brazil
| | - Aparecida Machado Moraes
- Dermatology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
287
|
Zhang Y, Zheng S, Ngai SM, Zheng W, Li J, Chen T, Zhong X. A Novel Selenadiazole Derivative Induces Apoptosis in Human Glioma Cells by Dephosphorylation of AKT. Chem Pharm Bull (Tokyo) 2014; 62:994-9. [DOI: 10.1248/cpb.c14-00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yikai Zhang
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Department of Pathology, Jinan University
| | - Shanyuan Zheng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong
| | | | - Jinying Li
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Department of Pathology, Jinan University
| | | | - Xueyun Zhong
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Department of Pathology, Jinan University
| |
Collapse
|
288
|
Kumbhare RM, Dadmal TL, Devi TA, Kumar D, Kosurkar UB, Chowdhury D, Appalanaidu K, Rao YK, Ramaiah MJ, Bhadra MP. Isoxazole derivatives of 6-fluoro-N-(6-methoxybenzo[d]thiazol-2-yl)benzo[d]thiazol-2-amine and N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine: regulation of cell cycle and apoptosis by p53 activation via mitochondrial-dependent pathways. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00279b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compounds depicted were shown to induce DNA damage and activate p53, which in turn activates Bax and decreases Bcl2 levels. This resulted in apoptosis in Colo205 cells.
Collapse
Affiliation(s)
| | - Tulshiram L. Dadmal
- Fluoroorganic Division
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - T. Anjana Devi
- Centre for Chemical Biology
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - Dinesh Kumar
- Centre for Chemical Biology
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - Umesh B. Kosurkar
- Fluoroorganic Division
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - Debabrata Chowdhury
- Centre for Chemical Biology
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - K. Appalanaidu
- Fluoroorganic Division
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - Y. Khageswara Rao
- Fluoroorganic Division
- Indian Institute of Chemical Technology
- Hyderabad, India
| | - M. Janaki Ramaiah
- School of Chemical and Biotechnology
- Sastra University
- Thanjavur-613401, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology
- Indian Institute of Chemical Technology
- Hyderabad, India
| |
Collapse
|
289
|
Li Y, Chang SC, Niu R, Liu L, Crabtree-Ide CR, Zhao B, Shi J, Han X, Li J, Su J, Cai L, Yu S, Zhang ZF, Mu L. TP53 genetic polymorphisms, interactions with lifestyle factors and lung cancer risk: a case control study in a Chinese population. BMC Cancer 2013; 13:607. [PMID: 24369748 PMCID: PMC3877976 DOI: 10.1186/1471-2407-13-607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A pathway-based genotyping analysis suggested rs2078486 was a novel TP53 SNP, but very few studies replicate this association. TP53 rs1042522 is the most commonly studied SNP, but very few studies examined its potential interaction with environmental factors in relation to lung cancer risk. This study aims to examine associations between two TP53 single-nucleotide polymorphisms (SNPs) (rs2078486, rs1042522), their potential interaction with environmental factors and risk of lung cancer. METHODS A case-control study was conducted in Taiyuan, China. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Multiplicative and additive interactions between TP53 SNPs and lifestyle factors were evaluated. RESULTS Variant TP53 rs2078486 SNP was significantly associated with elevated lung cancer risk among smokers (OR: 1.70, 95% CI: 1.08 - 2.67) and individuals with high indoor air pollution exposure (OR: 1.51, 95% CI: 1.00-2.30). Significant or borderline significant multiplicative and additive interactions were found between TP53 rs2078486 polymorphism with smoking and indoor air pollution exposure. The variant genotype of TP53 SNP rs1042522 significantly increased lung cancer risk in the total population (OR: 1.57, 95% CI: 1.11-2.21), but there was no evidence of heterogeneity among individuals with different lifestyle factors. CONCLUSIONS This study confirmed that TP53 rs2078486 SNP is potentially a novel TP53 SNP that may affect lung cancer risk. Our study also suggested potential synergetic effects of TP53 rs2078486 SNP with smoking and indoor air pollution exposure on lung cancer risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lina Mu
- Department of Social and Preventive Medicine, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, 273A Farber Hall, Buffalo, New York 14214-8001, USA.
| |
Collapse
|
290
|
Brunotto M, Zarate AM, Bono A, Barra JL, Berra S. Risk genes in head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol 2013; 50:178-88. [PMID: 24370206 DOI: 10.1016/j.oraloncology.2013.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 02/03/2023]
Abstract
The aim of this work was to identify risk genes related to the development and progression of squamous cell carcinoma head and neck (SCCHN) and do a meta-analysis of available estimates. Eligible gene/polymorphism studies were identified by electronic searches. Individual participant data of 8540 patients with HNC and 9844 controls from 19 genetic studies were analyzed, yielding adjusted (tobacco, gender, age and alcohol) odds ratios (OR) and 95% confidence intervals (CIs) comparing cases with controls. A meta-analysis was done on the studies that applied fixed and random models. People have an increase of polymorphism expression related to inflammation (NFKB1-294-ATTG, TNFα308-A2A2/A2A1, and TNFβ252- B2B2/B2B1) or carcinogenic metabolism (GSTM1 null, and CYP1A1 m1/m1), representative of malignancy development. Furthermore, the increased expression of genes associated with the stabilization and repair of the cellular (OGG1-Asp267Asn, Ser279Gly Ile253Phe, 1578A>T, 1582C>T Ala399Glu (1542C>A) 1582insG 1543_1544delCT), and genes associated with the regulation of proliferation, apoptosis or tumor survival (miRNA499-CT/CC, CRYABC802G-CG/GG) are considered as risk factors. In this scheme, only the polymorphisms of ADH7A92G-GG and DEC1606-T/C genes are protective against malignancy transformation. The TP53, GSTM1 and CYPA1genes have been evaluated in more than one study and analyzed for homogeneity in each genotype. The meta-analysis showed no significant association between different allelic variants of Arg72Pro rs1042522 and SCCHN risk. In a model of tumorigenesis, an increased risk of SCCHN is associated with DNA repair and DNA stabilization genes. In addition, the polymorphisms involved in inflammation and carcinogenic metabolism processes represent an increased risk of SCCHN.
Collapse
Affiliation(s)
- M Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina.
| | - A M Zarate
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - A Bono
- Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - J L Barra
- CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - S Berra
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
291
|
DNA-damage-induced apoptosis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
292
|
Di Marzo D, Forte IM, Indovina P, Di Gennaro E, Rizzo V, Giorgi F, Mattioli E, Iannuzzi CA, Budillon A, Giordano A, Pentimalli F. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma. Cell Cycle 2013; 13:652-65. [PMID: 24345738 DOI: 10.4161/cc.27546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma, a very aggressive tumor associated to asbestos exposure, is expected to increase in incidence, and unfortunately, no curative modality exists. Reactivation of p53 is a new attractive antitumoral strategy. p53 is rarely mutated in mesothelioma, but it is inactivated in most tumors by the lack of p14(ARF). Here, we evaluated the feasibility of this approach in pleural mesothelioma by testing RITA and nutlin-3, two molecules able to restore p53 function through a different mechanism, on a panel of mesothelioma cell lines representing the epithelioid (NCI-H28, NCI-H2452, IST-MES 2), biphasic (MSTO-211H), and sarcomatoid (NCI-H2052) histotypes compared with the normal mesothelial HMC-hTERT. RITA triggered robust caspase-dependent apoptosis specifically in epithelioid and biphasic mesothelioma cell lines, both through wild-type and mutant p53, concomitant to p21 downregulation. Conversely, nutlin-3 induced a p21-dependent growth arrest, rather than apoptosis, and was slightly toxic on HMC-hTERT. Interestingly, we identified a previously undetected point mutation of p53 (p.Arg249Ser) in IST-MES 2, and showed that RITA is also able to reactivate this p53 mutant protein and its apoptotic function. RITA reduced tumor growth in a MSTO-211H-derived xenograft model of mesothelioma and synergized with cisplatin, which is the mainstay of treatment for this tumor. Our data indicate that reactivation of p53 and concomitant p21 downregulation effectively induce cell death in mesothelioma, a tumor characterized by a high intrinsic resistance to apoptosis. Altogether, our findings provide the preclinical framework supporting the use of p53-reactivating agents alone, or in combination regimens, to improve the outcome of patients with mesothelioma.
Collapse
Affiliation(s)
- Domenico Di Marzo
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy
| | - Paola Indovina
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| | - Elena Di Gennaro
- Experimental Pharmacology Unit; Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" - IRCCS; Naples, Italy
| | - Valeria Rizzo
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy
| | - Francesca Giorgi
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy
| | - Eliseo Mattioli
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy; National Cancer Research Centre; Istituto Tumori "Giovanni Paolo II"; Bari, Italy
| | - Carmelina Antonella Iannuzzi
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy; Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy
| | - Alfredo Budillon
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy; Experimental Pharmacology Unit; Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" - IRCCS; Naples, Italy
| | - Antonio Giordano
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy; Department of Medicine, Surgery and Neuroscience; University of Siena; Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale"; IRCCS; Italy
| |
Collapse
|
293
|
Hu S, Zhao L, Yang J, Hu M. The association between polymorphism of P53 Codon72 Arg/Pro and hepatocellular carcinoma susceptibility: evidence from a meta-analysis of 15 studies with 3,704 cases. Tumour Biol 2013; 35:3647-56. [PMID: 24326769 DOI: 10.1007/s13277-013-1483-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has shown that p53gene participates in human carcinogenesis as tumor suppressors. Polymorphism of p53 gene codon72 arginine (Arg)/proline (Pro) (rs1042522) may influence the function of p53 protein and then affect the processing of carcinogenesis. It has been suggested that p53 codon72 Arg/Pro polymorphism is associated with susceptibility to hepatocellular carcinoma (HCC). However, published results are inconsistent and inconclusive. To examine the validity of the association between the polymorphism and HCC risk, we performed this meta-analysis. We have conducted a search of case-control studies on the associations of p53 codon72 polymorphism with susceptibility to HCC in PubMed, ScienceDirect, BioMed central, Springer, EBSCO, Wanfang databases, and Chinese National Knowledge Infrastructure databases. A total of 15 studies were identified with 3,704 cases and 4,559 controls for codon72 Arg/Pro polymorphism. The result did support a significant genetic association between Pro allele and susceptibility to HCC in all the genetic models. Similarly, subgroup analysis showed significant associations between the Arg/Pro polymorphism and susceptibility to HCC when stratifying by race, gender, source of controls, and hepatitis virus infection status. This meta-analysis suggests that p53 codon72 Arg/Pro polymorphism may be associated with the risk of HCC, especially in subgroup analysis of Asian and Caucasian population, hospital-based population, the female, and the individuals infected with hepatitis virus. However, well-designed studies based on different ethnic groups with larger sample size and more detailed data are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Surong Hu
- Department of Geriatrics, Changzhou NO 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, Jiangsu Province, China
| | | | | | | |
Collapse
|
294
|
Hagemann IS, Cottrell CE, Lockwood CM. Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Cancer Genet 2013; 206:420-31. [DOI: 10.1016/j.cancergen.2013.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/15/2022]
|
295
|
Rajendran R, Krstic-Demonacos M, Demonacos C. Regulation of the cell fate by DNA damage and hypoxia. World J Med Genet 2013; 3:34-40. [DOI: 10.5496/wjmg.v3.i4.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells. Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation, development, immune responses, cell-cycle arrest, DNA damage repair, apoptosis, autophagy, energy metabolism, and senescence. It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies. Transcription is a crucial cellular process that regulates a multitude of physiological functions, which are essential in disease progression and cellular response to therapy. Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α (HIF-α) are key players in carcinogenesis and cellular response to cancer therapies. Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation, in some cases cooperating towards producing the same outcome and in some others mediating opposing effects. It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens, in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance. Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex. In particular, there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 and HIF-1α under diverse types of stress conditions differentially regulate the expression of distinct subsets of p53 and HIF-1α target genes involved in processes such as cell cycle arrest, apoptosis, chronic inflammation, and cellular energy metabolism thereby determining the cellular fate under particular types of micro-environmental stress.
Collapse
|
296
|
Wee EJH, Rauf S, Koo KM, Shiddiky MJA, Trau M. μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines. LAB ON A CHIP 2013; 13:4385-91. [PMID: 24061339 DOI: 10.1039/c3lc50528f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfabricated devices for the electrochemical detection of single DNA base changes in cancer cell lines are highly desirable due to the inherent advantages such as portability, simplicity, and the rapid and inexpensive nature of electrochemical readout methods. Moreover, molecular sensors that use microscale-footprint working electrodes have shown high signal-to-noise ratio. Herein we report a microdevice-based electrochemical assay (μ-eLCR) measuring ligase chain reaction (LCR)-amplified long and short "knife" motifs which reflect the presence or absence of a DNA base change of interest in a target sequence. This μ-eLCR approach has higher sensitivity (4.4 to 10 fold improvement over macrodisk electrodes) and good reproducibility (%RSD 6.5%, n = 12) for the detection of LCR-amplified DNA bases. The devices also exhibited excellent sensitivity for the detection of DNA methylation (C to T base change in a locus associated with cancer metastasis) in two cell lines and serum derived DNA samples. We believe that the μ-eLCR device may be a useful diagnostic tool for inexpensive and rapid detection of single DNA base change applications such as DNA methylation and single nucleotide polymorphism (SNP) detection.
Collapse
Affiliation(s)
- Eugene J H Wee
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology (AIBN), Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
297
|
Hu S, Zhao L, Yang J, Hu M. The association between polymorphism of P53 codon 72 Arg/Pro and hepatocellular carcinoma susceptibility: evidence from a meta-analysis of 15 studies with 3704 cases. Meta Gene 2013; 1:126-37. [PMID: 25606382 PMCID: PMC4205030 DOI: 10.1016/j.mgene.2013.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence has shown that p53gene participates in human carcinogenesis as tumor suppressors. Polymorphism of p53 gene codon 72 Arg/Pro (rs1042522) may influence the function of p53 protein and then affect the processing of carcinogenesis. It has been suggested that p53 codon 72 Arg/Pro polymorphism is associated with susceptibility to hepatocellular carcinoma (HCC). However, published results are inconsistent and inconclusive. To examine the validity of the association between the polymorphism and HCC risk, we performed this meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS We have conducted a search of case-control studies on the associations of p53 codon 72 polymorphism with susceptibility to HCC in PubMed, ScienceDirect, Bio-Med central, Springer-link, EBSCO, Wanfang databases and Chinese National Knowledge Infrastructure (CNKI) databases. A total of 15 studies were identified with 3704 cases and 4559 controls for codon 72 Arg/Pro polymorphism. The result did support a significant genetic association between Pro allele and susceptibility to HCC in all the genetic models. Similarly, subgroup analysis showed significant associations between the Arg/Pro polymorphism and susceptibility to HCC when stratifying by race, gender, source of controls and hepatitis virus infection status. CONCLUSIONS/SIGNIFICANCE This meta-analysis suggests that p53 codon 72 Arg/Pro polymorphism may be associated with the risk of HCC, especially in subgroup analysis of Asian and Caucasian population, hospital-based population, the female, and the individuals infected with hepatitis virus. However, well-designed studies based on different ethnic groups with larger sample size and more detailed data are needed to confirm these conclusions.
Collapse
Key Words
- AFB1, aflatoxin B1
- CIs, confidence intervals
- CNKI, Chinese National Knowledge Infrastructure
- HBV, hepatitis B virus
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HWE, Hardy–Weinberg equilibrium
- Hepatocellular carcinoma
- PCR–ASP, polymerase chain reaction–allele specific polymerase chain reaction
- PCR–RFLP, polymerase chain reaction–restriction fragment length polymorphism
- PCR–SSCP, polymerase chain reaction–Single strand conformation polymorphism analysis
- PH, between-study heterogeneity
- codon 72
- p53
- rs1042522
Collapse
Affiliation(s)
- Surong Hu
- Department of Geriatrics, Changzhou NO 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Lianying Zhao
- Kunshan Agency for Public Health Inspection, Soochow, China
| | - Jingting Yang
- Department of Geriatrics, Changzhou NO 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Miao Hu
- Department of Geriatrics, Changzhou NO 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
298
|
TP53 alterations and colorectal cancer predisposition in south Indian population: A case-control study. Tumour Biol 2013; 35:2303-11. [DOI: 10.1007/s13277-013-1305-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022] Open
|
299
|
Gomes CC, Fonseca-Silva T, Diniz MG, Orsine LA, Gomez RS. TP53 single nucleotide polymorphism rs1042522 in salivary gland neoplasms. Head Neck 2013; 36:1685-8. [PMID: 24115240 DOI: 10.1002/hed.23513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The TP53 single nucleotide polymorphism (SNP) rs1042522 encodes arginine (Arg) or proline (Pro). The Arg variant is more effective at inducing apoptosis than the Pro. METHODS We assessed this SNP through direct sequencing of benign and malignant salivary neoplasms of Brazilian patients and compared the results with healthy controls' data. BAX, BCL-2, and CASPASE-3 mRNA levels were assessed by quantitative polymerase chain reaction (qPCR) in a set of salivary tumors, and the results were correlated with the tumor genotype. RESULTS We found a higher frequency of the Arg/Arg genotype in the malignant group. However, the SNP did not influence the age of onset in either benign or malignant tumors. The SNP was not associated with the transcription levels of apoptotic/antiapoptotic genes. CONCLUSION Malignant salivary neoplasms showed a higher frequency of the allele encoding Arg and a higher frequency of the Arg/Arg genotype. However, the different genotypes did not impact the transcription of genes involved in apoptosis.
Collapse
Affiliation(s)
- Carolina C Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
300
|
Mapping the p53 transcriptome universe using p53 natural polymorphs. Cell Death Differ 2013; 21:521-32. [PMID: 24076587 DOI: 10.1038/cdd.2013.132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022] Open
Abstract
The tumor suppressor p53 has defined roles in varied cellular processes including apoptosis and DNA repair. While conventional genomic approaches have suggested a large number of p53 targets, there is a need for a systematic approach to validate these putative genes. We developed a method to identify and validate p53's transcriptional behavior by utilizing 16 non-synonymous p53 single-nucleotide polymorphism (SNP) variants. Five SNPs located within the DNA-binding domain of p53 were found to be functionally null, whereas the other 11 SNPs were p53WT-like in behavior. By integrating p53 ChIP-seq analysis with transcriptome data from the p53 SNP variants, 592 genes were identified as novel p53 targets. Many of these genes mapped to previously less well-characterized aspects of p53 function, such as cell signalling, metabolism, central nervous system, and immune system. These data provide pivotal insights into the involvement of p53 in diverse pathways of normal physiological processes and open new avenues for investigation of p53 function.
Collapse
|