251
|
De Cecco L, Berardi M, Sommariva M, Cataldo A, Canevari S, Mezzanzanica D, Iorio MV, Tagliabue E, Balsari A. Increased sensitivity to chemotherapy induced by CpG-ODN treatment is mediated by microRNA modulation. PLoS One 2013; 8:e58849. [PMID: 23484053 PMCID: PMC3590172 DOI: 10.1371/journal.pone.0058849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/07/2013] [Indexed: 12/12/2022] Open
Abstract
We recently reported that peritumoral CpG-ODN treatment, activating TLR-9 expressing cells in tumor microenvironment, induces modulation of genes involved in DNA repair and sensitizes cancer cells to DNA-damaging cisplatin treatment. Here, we investigated whether this treatment induces modulation of miRNAs in tumor cells and their relevance to chemotherapy response. Array analysis identified 20 differentially expressed miRNAs in human IGROV-1 ovarian tumor cells from CpG-ODN-treated mice versus controls (16 down- and 4 up-regulated). Evaluation of the role of the 3 most differentially expressed miRNAs on sensitivity to cisplatin of IGROV-1 cells revealed significantly increased cisplatin cytotoxicity upon ectopic expression of hsa-miR-302b (up-modulated in our array), but no increased effect upon reduced expression of hsa-miR-424 or hsa-miR-340 (down-modulated in our array). Accordingly, hsa-miR-302b expression was significantly associated with time to relapse or overall survival in two data sets of platinum-treated ovarian cancer patients. Use of bio-informatics tools identified 19 mRNAs potentially targeted by hsa-miR-302b, including HDAC4 gene, which has been reported to mediate cisplatin sensitivity in ovarian cancer. Both HDAC4 mRNA and protein levels were significantly reduced in IGROV-1 cells overexpressing hsa-miR-302b. Altogether, these findings indicate that hsa-miR-302b acts as a “chemosensitizer” in human ovarian carcinoma cells and may represent a biomarker able to predict response to cisplatin treatment. Moreover, the identification of miRNAs that improve sensitivity to chemotherapy provides the experimental underpinning for their possible future clinical use.
Collapse
Affiliation(s)
- Loris De Cecco
- Functional Genomics Core Facility, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Martina Berardi
- Molecular Targeting Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Molecular Targeting Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alessandra Cataldo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvana Canevari
- Molecular Therapies Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Molecular Therapies Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena V. Iorio
- Start Up Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Balsari
- Molecular Targeting Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
252
|
Abstract
The chronic myeloproliferative neoplasms (MPN), including polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), are clonal stem cell disorders characterized by dysregulated haematopoietic stem cell expansion and production of red cells, white cells and platelets alone or in combination. An acquired mutation JAK2(V617F) can be found in all three disorders and shows many of the phenotypic abnormalities of the diseases in murine models. The disease phenotype is also influenced by other unknown genetic or epigenetic factors. MicroRNAs (miRNA) are 18-24 nucleotide single-stranded non-protein-coding RNAs that function primarily as gene repressors by binding to their target messenger RNAs. There is growing evidence that miRNAs regulate haematopoiesis in both haematopoietic stem cells and committed progenitor cells. Here, we review the field of miRNA biology and its regulatory roles in normal haematopoiesis with an emphasis on miRNA deregulations in MPNs. Continued research into how miRNAs impact JAK2(V617F) clonal expansion, differential haematopoiesis among different MPNs, disease progression and leukaemia transformation will lead to a better understanding of the development of these disorders, their clinical manifestations, and their treatment.
Collapse
Affiliation(s)
- Huichun Zhan
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
253
|
Liu RF, Xu X, Huang J, Fei QL, Chen F, Li YD, Han ZG. Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett 2013; 329:164-73. [DOI: 10.1016/j.canlet.2012.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/15/2012] [Accepted: 10/27/2012] [Indexed: 01/07/2023]
|
254
|
Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 2013; 25:215-21. [PMID: 23374323 DOI: 10.1016/j.ceb.2012.12.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 01/21/2023]
Abstract
Mammalian neural development has been traditionally studied in the context of evolutionarily conserved signaling pathways and neurogenic transcription factors. Recent studies suggest that microRNAs, a group of highly conserved noncoding regulatory small RNAs also play essential roles in neural development and neuronal function. A part of their action in the developing nervous system is to regulate subunit compositions of BAF complexes (ATP-dependent chromatin remodeling complexes), which appear to have dedicated functions during neural development. Intriguingly, ectopic expression of a set of brain-enriched microRNAs, miR-9/9* and miR-124 that promote the assembly of neuron-specific BAF complexes, converts the nonneuronal fate of human dermal fibroblasts towards postmitotic neurons, thereby revealing a previously unappreciated instructive role of these microRNAs. In addition to these global effects, accumulating evidence indicates that many microRNAs could also function locally, such as at the growth cone or at synapses modulating synaptic activity and neuronal connectivity. Here we discuss some of the recent findings about microRNAs' activity in regulating various developmental stages of neurons.
Collapse
Affiliation(s)
- Alfred X Sun
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
255
|
Hassan T, Smith SGJ, Gaughan K, Oglesby IK, O'Neill S, McElvaney NG, Greene CM. Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. Nucleic Acids Res 2013; 41:e71. [PMID: 23325846 PMCID: PMC3616726 DOI: 10.1093/nar/gks1466] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression by translational repression or messenger RNA (mRNA) degradation. Although numerous bioinformatic prediction models exist to identify miRNA–mRNA interactions, experimental validation of bona fide interactions can be difficult and laborious. Few methods can comprehensively identify miRNAs that target a single mRNA. We have developed an experimental approach to search for miRNAs targeting any mRNA using a capture affinity assay involving a biotinylated DNA anti-sense oligonucleotide. This method identifies miRNAs targeting the full length of the mRNA. The method was tested using three separate mRNA targets: alpha-1 antitrypsin (AAT) mRNA, interleukin-8 mRNA and secretory leucoprotease inhibitor mRNA. AAT mRNA-specific and total miRNAs from three different cell lines (monocytic THP-1, bronchial epithelial 16HBE14o− and liver HepG2 cells) were profiled, and validation studies revealed that AAT mRNA-specific miRNAs functionally target the AAT mRNA in a cell-specific manner, providing the first evidence of innate miRNAs selectively targeting and modulating AAT mRNA expression. Interleukin-8 and secretory leucoprotease inhibitor mRNAs and their cognate miRNAs were also successfully captured using this approach. This is a simple and an efficient method to potentially identify miRNAs targeting sequences within the full length of a given mRNA transcript.
Collapse
Affiliation(s)
- Tidi Hassan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Republic of Ireland
| | | | | | | | | | | | | |
Collapse
|
256
|
Friedman Y, Balaga O, Linial M. Working together: combinatorial regulation by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:317-37. [PMID: 23377980 DOI: 10.1007/978-94-007-5590-1_16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) negatively regulate gene expression level of mRNA post-transcriptionally. Deep sequencing and large-scale screening methods have yielded about 1,500 miRNA sequences in human. Each miRNA contains a seed sequence that is required, but not sufficient, for the correct matching with its targets. Recent technological advances make it possible to capture the miRNAs with their cognate mRNAs at the RISC complex. These experiments have revealed thousands of validated mRNA-miRNA pairing events. In the context of human stem cells, 90% of the identified transcripts appear to be paired with at least two different miRNAs.In this chapter, we present a comprehensive outline for a combinatorial regulation mode by miRNAs. Initially, we summarize the computational and experimental evidence that support a combined effect of multiple miRNAs. Then, we describe miRror2.0, a platform specifically convened to consider the likelihood of miRNAs cooperativity in view of the targets, tissues and cell lines. We show that results from miRror2.0 can be further refined by an iterative procedure, calls Psi-miRror that gauges the robustness of the regulation. We illustrate the combinatorial regulation projected onto graphs of human pathways and show that these pathways are amenable to disruption by a small set of miRNAs. Finally, we propose that miRNA combinatorial regulation is an attractive regulatory strategy not only at the level of single target, but also at the level of pathways and cellular homeostasis. The joint operation of miRNAs is a powerful means to overcome the low specificity inherent in each individual miRNA.
Collapse
Affiliation(s)
- Yitzhak Friedman
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
257
|
Abstract
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20-23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the translation and stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is initiated through specific base-pairing interactions between the 5' end ("seed" region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3' UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer, we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition, examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers.
Collapse
|
258
|
MicroRNA-Regulated Networks: The Perfect Storm for Classical Molecular Biology, the Ideal Scenario for Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:55-76. [DOI: 10.1007/978-94-007-5590-1_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
259
|
Maurel M, Jalvy S, Ladeiro Y, Combe C, Vachet L, Sagliocco F, Bioulac-Sage P, Pitard V, Jacquemin-Sablon H, Zucman-Rossi J, Laloo B, Grosset CF. A functional screening identifies five microRNAs controlling glypican-3: role of miR-1271 down-regulation in hepatocellular carcinoma. Hepatology 2013; 57:195-204. [PMID: 22865282 DOI: 10.1002/hep.25994] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/25/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the major primary liver cancer. Glypican-3 (GPC3), one of the most abnormally expressed genes in HCC, participates in liver carcinogenesis. Based on data showing that GPC3 expression is posttranscriptionally altered in HCC cells compared to primary hepatocytes, we investigated the implication of microRNAs (miRNAs) in GPC3 overexpression and HCC. To identify GPC3-regulating miRNAs, we developed a dual-fluorescence FunREG (functional, integrated, and quantitative method to measure posttranscriptional regulations) system that allowed us to screen a library of 876 individual miRNAs. Expression of candidate miRNAs and that of GPC3 messenger RNA (mRNA) was measured in 21 nontumoral liver and 112 HCC samples. We then characterized the phenotypic consequences of modulating expression of one candidate miRNA in HuH7 cells and deciphered the molecular mechanism by which this miRNA controls the posttranscriptional regulation of GPC3. We identified five miRNAs targeting GPC3 3'-untranslated region (UTR) and regulating its expression about the 876 tested. Whereas miR-96 and its paralog miR-1271 repressed GPC3 expression, miR-129-1-3p, miR-1291, and miR-1303 had an inducible effect. We report that miR-1271 expression is down-regulated in HCC tumor samples and inversely correlates with GPC3 mRNA expression in a particular subgroup of HCC. We also report that miR-1271 inhibits the growth of HCC cells in a GPC3-dependent manner and induces cell death. CONCLUSION Using a functional screen, we found that miR-96, miR-129-1-3p, miR-1271, miR-1291, and miR-1303 differentially control GPC3 expression in HCC cells. In a subgroup of HCC, the up-regulation of GPC3 was associated with a concomitant down-regulation of its repressor miR-1271. Therefore, we propose that GPC3 overexpression and its associated oncogenic effects are linked to the down-regulation of miR-1271 in HCC.
Collapse
Affiliation(s)
- Marion Maurel
- University Bordeaux, Physiopathologie du cancer du foie, U1053, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 2012; 7:e51111. [PMID: 23236440 PMCID: PMC3517581 DOI: 10.1371/journal.pone.0051111] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/29/2012] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at post-translational regulation points by Keap1. Importantly, post-transcriptional/translational based regulation of Nrf2 is less understood and to date there are no reports on such mechanisms in neuronal systems. In this context, studies involving the role of microRNAs (miRs) which are normally considered as fine tuning regulators of protein production through translation repression and/or post-transcriptional alterations, are in place. In the current study, based on in-silico analysis followed by immunoblotting and real time analysis, we have identified and validated for the first time that human NFE2L2 could be targeted by miR153/miR27a/miR142-5p/miR144 in neuronal, SH-SY5Y cells. Co-transfection studies with individual miR mimics along with either WT 3′ UTR of human Nrf2 or mutated miRNA targeting seed sequence within Nrf2 3′ UTR, demonstrated that Nrf2 is a direct regulatory target of these miRs. In addition, ectopic expression of miR153/miR27a/miR142-5p/miR144 affected Nrf2 mRNA abundance and nucleo-cytoplasmic concentration of Nrf2 in a Keap1 independent manner resulting in inefficient transactivating ability of Nrf2. Furthermore, forced expression of miRs diminished GCLC and GSR expression resulting in alteration of Nrf2 dependent redox homeostasis. Finally, bioinformatics based miRNA-disease network analysis (MDN) along with extended computational network analysis of Nrf2 associated pathologic processes suggests that if in a particular cellular scenario where any of these miR153/miR27a/miR142-5p/miR144 either individually or as a group is altered, it could affect Nrf2 thus triggering and/or determining the fate of wide range of disease outcomes.
Collapse
|
261
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
262
|
Clarke C, Henry M, Doolan P, Kelly S, Aherne S, Sanchez N, Kelly P, Kinsella P, Breen L, Madden SF, Zhang L, Leonard M, Clynes M, Meleady P, Barron N. Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics 2012; 13:656. [PMID: 23170974 PMCID: PMC3544584 DOI: 10.1186/1471-2164-13-656] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background To study the role of microRNA (miRNA) in the regulation of Chinese hamster ovary (CHO) cell growth, qPCR, microarray and quantitative LC-MS/MS analysis were utilised for simultaneous expression profiling of miRNA, mRNA and protein. The sample set under investigation consisted of clones with variable cellular growth rates derived from the same population. In addition to providing a systems level perspective on cell growth, the integration of multiple profiling datasets can facilitate the identification of non-seed miRNA targets, complement computational prediction tools and reduce false positive and false negative rates. Results 51 miRNAs were associated with increased growth rate (35 miRNAs upregulated and 16 miRNAs downregulated). Gene ontology (GO) analysis of genes (n=432) and proteins (n=285) found to be differentially expressed (DE) identified biological processes driving proliferation including mRNA processing and translation. To investigate the influence of miRNA on these processes we combined the proteomic and transcriptomic data into two groups. The first set contained candidates where evidence of translational repression was observed (n=158). The second group was a mixture of proteins and mRNAs where evidence of translational repression was less clear (n=515). The TargetScan algorithm was utilised to predict potential targets within these two groups for anti-correlated DE miRNAs. Conclusions The evidence presented in this study indicates that biological processes such as mRNA processing and protein synthesis are correlated with growth rate in CHO cells. Through the integration of expression data from multiple levels of the biological system a number of proteins central to these processes including several hnRNPs and components of the ribosome were found to be post-transcriptionally regulated. We utilised the expression data in conjunction with in-silico tools to identify potential miRNA-mediated regulation of mRNA/proteins involved in CHO cell growth rate. These data have allowed us to prioritise candidates for cell engineering and/or biomarkers relevant to industrial cell culture. We also expect the knowledge gained from this study to be applicable to other fields investigating the role of miRNAs in mammalian cell growth.
Collapse
Affiliation(s)
- Colin Clarke
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Kim BC, Lee HC, Lee JJ, Choi CM, Kim DK, Lee JC, Ko YG, Lee JS. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J 2012; 31:4289-303. [PMID: 23085987 DOI: 10.1038/emboj.2012.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.
Collapse
Affiliation(s)
- Bong Cho Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
265
|
Budd WT, Weaver DE, Anderson J, Zehner ZE. microRNA dysregulation in prostate cancer: network analysis reveals preferential regulation of highly connected nodes. Chem Biodivers 2012; 9:857-67. [PMID: 22589088 DOI: 10.1002/cbdv.201100386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
microRNAs (miRNAs) are small RNAs shown to contribute to a number of cellular processes including cell growth, differentiation, and apoptosis. MiRNAs regulate gene expression of their targets post-transcriptionally by binding to messenger RNA (mRNA), causing translational inhibition or mRNA degradation. Dysregulation of miRNA expression can promote cancer formation and progression. Research has largely focused on the function and expression of single miRNAs. However, complex physiological processes require the interaction, regulation and coordination of many molecules including miRNAs and proteins. Highly connected molecules often serve important roles in the cell. A protein-protein interaction network of established miRNA targets confirmed these proteins to be highly connected and essential to the cell, affecting tumorigenesis, cell growth/proliferation, cellular death, cell assembly, and maintenance pathways. This analysis showed that miRNAs contribute to the overall health of the prostate, and their aberrant expression destabilized homeostatic balance. This integrative network approach can reveal important miRNAs and proteins in prostate cancer that will be useful to identify specific disease biomarkers, which may be used as targets for therapeutics or drugs in themselves.
Collapse
Affiliation(s)
- William T Budd
- Doctoral Program in Integrative Life Science, Virginia Commonwealth University, P.O. Box 842030, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|
266
|
Li W, Saraiya AA, Wang CC. The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cell Microbiol 2012; 14:1455-73. [PMID: 22568619 PMCID: PMC3422372 DOI: 10.1111/j.1462-5822.2012.01811.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
Abstract
In the current investigation, we analysed all the known small nucleolar RNAs (snoRNAs) in the deeply branching protozoan parasite Giardia lamblia for potential microRNAs (miRNAs) that might be derived from them. Two putative miRNAs have since been identified by Northern blot, primer extension, 3' RACE and co-immunoprecipitation with Giardia Argonaute (GlAgo), and designated miR6 and miR10. Giardia Dicer (GlDcr) is capable of processing the snoRNAs into the corresponding miRNAs in vitro. Potential miR6 and miR10 binding sites in Giardia genome were predicted bio-informatically. A miR6 binding site was found at the 3' untranslated regions (UTR) of 44 variant surface protein (vsp) genes, whereas a miR10 binding site was identified at the 3' end of 159 vsp open-reading frames. Thirty-three of these vsp genes turned out to contain binding sites for both miR6 and miR10. A reporter mRNA tagged with the 3' end of vsp1267, which contains the target sites for both miRNAs, was translationally repressed by both miRNAs in Giardia. Episomal expression of an N-terminal c-myc tagged VSP1267 was found significantly repressed by introducing either miR6 or miR10 into the cells and the repressive effects were additive. When the 2'-O-methyl antisense oligos (ASOs) of either miR6 or miR10 was introduced, however, there was an enhancement of tagged VSP1267 expression suggesting an inhibition of the repressive effects of endogenous miR6 or miR10 by the ASOs. Of the total 220 vsp genes in Giardia, we have now found 178 of them carrying putative binding sites for all the miRNAs that have been currently identified, suggesting that miRNAs are likely the regulators of VSP expression in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| |
Collapse
|
267
|
Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett 2012; 4:1037-1042. [PMID: 23162647 DOI: 10.3892/ol.2012.866] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/06/2012] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, particularly in adolescents and young adults. Early diagnosis remains a significant problem in the clinical treatment of OS as we remain far from a comprehensive understanding of the molecular genetic mechanisms and the biology involved. In addition, microRNAs (miRNAs or miRs), a large family of small non-coding RNAs, may provide a greater understanding of OS as they play a complex role in gene expression regulation in vitro and in vivo. In the current study, the differential expression profiles of miRNAs between OS and osteoblast cell lines were investigated by miRNA microarrays and real-time quantitative PCR (RT-qPCR). A total of 268 miRNAs were identified that were significantly dysregulated in OS compared with the osteoblast cell line, including miR-9, miR-99, miR-195, miR-148a and miR-181a, which had been validated as overexpressed, and miR-143, miR-145, miR-335 and miR-539, which were confirmed to be downregulated. This differential expression may aid future OS diagnosis and prognosis prediction and illustration of the potential mechanisms in the oncogenesis, development and metastasis of OS. Bioinformatic research on these differentially expressed miRNAs suggests that they are able to regulate the biological behaviors of OS in a complex and effective manner. Further study on the function of these miRNAs is likely to provide new insights into OS biology and treatment.
Collapse
Affiliation(s)
- Hao Hu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Command; ; Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, P.R. China
| | | | | | | | | |
Collapse
|
268
|
Balaga O, Friedman Y, Linial M. Toward a combinatorial nature of microRNA regulation in human cells. Nucleic Acids Res 2012; 40:9404-16. [PMID: 22904063 PMCID: PMC3479204 DOI: 10.1093/nar/gks759] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) negatively regulate the levels of messenger RNA (mRNA) post-transcriptionally. Recent advances in CLIP (cross-linking immunoprecipitation) technology allowed capturing miRNAs with their cognate mRNAs. Consequently, thousands of validated mRNA–miRNA pairs have been revealed. Herein, we present a comprehensive outline for the combinatorial regulation by miRNAs. We implemented combinatorial and statistical constraints in the miRror2.0 algorithm. miRror estimates the likelihood of combinatorial miRNA activity in explaining the observed data. We tested the success of miRror in recovering the correct miRNA from 30 transcriptomic profiles of cells overexpressing a miRNA, and to identify hundreds of genes from miRNA sets, which are observed in CLIP experiments. We show that the success of miRror in recovering the miRNA regulation from overexpression experiments and CLIP data is superior in respect to a dozen leading miRNA-target prediction algorithms. We further described the balance between alternative modes of joint regulation that are executed by pairs of miRNAs. Finally, manipulated cells were tested for the possible involvement of miRNA in shaping their transcriptomes. We identified instances in which the observed transcriptome can be explained by a combinatorial regulation of miRNA pairs. We conclude that the joint operation of miRNAs is an attractive strategy to maintain cell homeostasis and overcoming the low specificity inherent in individual miRNA–mRNA interaction.
Collapse
Affiliation(s)
- Ohad Balaga
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | |
Collapse
|
269
|
Zhao L, Sun Y, Hou Y, Peng Q, Wang L, Luo H, Tang X, Zeng Z, Liu M. MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer. Int J Biochem Cell Biol 2012; 44:2051-9. [PMID: 22964023 DOI: 10.1016/j.biocel.2012.08.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Cancer-associated fibroblasts (CAFs) promote tumorigenesis, growth, invasion and metastasis of cancer, whereas normal fibroblasts (NFs) are thought to suppress tumor progression. Little is known about miRNAs expression differences between CAFs and NFs or the patient-to-patient variability in miRNAs expression in breast cancer. We established primary cultures of CAFs and paired NFs from six resected breast tumor tissues that had not previously received radiotherapy or chemotherapy treatment and analyzed with miRNAs microarrays. The array data were analyzed using paired SAM t-test and filtered according to α and q values. Pathway analysis was conducted using DAVID v6.7. We identified 11 dysregulated miRNAs in CAFs: three were up-regulated (miR-221-5p, miR-31-3p, miR-221-3p), while eight were down-regulated (miR-205, miR-200b, miR-200c, miR-141, miR-101, miR-342-3p, let-7g, miR-26b). Their target genes are known to affect cell differentiation, adhesion, migration, proliferation, secretion and cell-cell interaction. By our knowledge it is firstly identify the expression profiles of miRNAs between CAFs and NFs and revealed their regulation on the associated signaling pathways.
Collapse
Affiliation(s)
- Liuyang Zhao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Cheung TH, Man KNM, Yu MY, Yim SF, Siu NSS, Lo KWK, Doran G, Wong RRY, Wang VW, Smith DI, Worley MJ, Berkowitz RS, Chung TKH, Wong YF. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle 2012; 11:2876-84. [PMID: 22801550 DOI: 10.4161/cc.21278] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in a variety of physiological as well as pathophysiological processes, including carcinogenesis. The aim of this study is to identify a distinct miRNA expression signature for cervical intraepithelial neoplasia (CIN) and to unveil individual miRNAs that may be involved in the development of cervical carcinoma. Expression profiling using quantitative real-time RT-PCR of 202 miRNAs was performed on micro-dissected high-grade CIN (CIN 2/3) tissues and compared to normal cervical epithelium. Unsupervised hierarchical clustering of the miRNA expression pattern displayed a distinct separation between the CIN and normal cervical epithelium samples. Supervised analysis identified 12 highly differentially regulated miRNAs, including miR-518a, miR-34b, miR-34c, miR-20b, miR-338, miR-9, miR-512-5p, miR-424, miR-345, miR-10a, miR-193b and miR-203, which distinguished the high-grade CIN specimens from normal cervical epithelium. This miRNA signature was further validated by an independent set of high-grade CIN cases. The same characteristic signature can also be used to distinguish cervical squamous cell carcinoma from normal controls. Target prediction analysis revealed that these dysregulated miRNAs mainly control apoptosis signaling pathways and cell cycle regulation. These findings contribute to understanding the role of microRNAs in the pathogenesis and progression of cervical neoplasm at the molecular level.
Collapse
Affiliation(s)
- Tak-hong Cheung
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Gombar S, Jung HJ, Dong F, Calder B, Atzmon G, Barzilai N, Tian XL, Pothof J, Hoeijmakers JHJ, Campisi J, Vijg J, Suh Y. Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics 2012; 13:353. [PMID: 22846614 PMCID: PMC3563618 DOI: 10.1186/1471-2164-13-353] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/16/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and play a critical role in development, homeostasis, and disease. Despite their demonstrated roles in age-associated pathologies, little is known about the role of miRNAs in human aging and longevity. RESULTS We employed massively parallel sequencing technology to identify miRNAs expressed in B-cells from Ashkenazi Jewish centenarians, i.e., those living to a hundred and a human model of exceptional longevity, and younger controls without a family history of longevity. With data from 26.7 million reads comprising 9.4 × 108 bp from 3 centenarian and 3 control individuals, we discovered a total of 276 known miRNAs and 8 unknown miRNAs ranging several orders of magnitude in expression levels, a typical characteristics of saturated miRNA-sequencing. A total of 22 miRNAs were found to be significantly upregulated, with only 2 miRNAs downregulated, in centenarians as compared to controls. Gene Ontology analysis of the predicted and validated targets of the 24 differentially expressed miRNAs indicated enrichment of functional pathways involved in cell metabolism, cell cycle, cell signaling, and cell differentiation. A cross sectional expression analysis of the differentially expressed miRNAs in B-cells from Ashkenazi Jewish individuals between the 50th and 100th years of age indicated that expression levels of miR-363* declined significantly with age. Centenarians, however, maintained the youthful expression level. This result suggests that miR-363* may be a candidate longevity-associated miRNA. CONCLUSION Our comprehensive miRNA data provide a resource for further studies to identify genetic pathways associated with aging and longevity in humans.
Collapse
Affiliation(s)
- Saurabh Gombar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hwa Jin Jung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Feng Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brent Calder
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiao-Li Tian
- Department of Human Population Genetics, Peking University, Beijing 100871, China
| | - Joris Pothof
- Department of Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan HJ Hoeijmakers
- Department of Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute of Aging Research, Guangdong Medical College, Dongguan 523808, China
| |
Collapse
|
272
|
Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL, Zhao ZH, Zheng XF, Yang X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res 2012; 40:9286-97. [PMID: 22821565 PMCID: PMC3467063 DOI: 10.1093/nar/gks667] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3'-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Hematopoiesis is a dynamic and highly complex developmental process that gives rise to a multitude of the cell types that circulate in the blood of multicellular organisms. These cells provide tissues with oxygen, guard against infection, prevent bleeding by clotting, and mediate inflammatory reactions. Because the hematopoietic system plays such a central role in human diseases such as infections, cancer, autoimmunity, and anemia, it has been intensely studied for more than a century. This scrutiny has helped to shape many of the developmental paradigms that exist today and has identified specific protein factors that serve as master regulators of blood cell lineage specification. Despite this progress, many aspects of blood cell development remain obscure, suggesting that novel layers of regulation must exist. Consequently, the emergence of regulatory noncoding RNAs, such as the microRNAs (miRNAs), is beginning to provide new insights into the molecular control networks underlying hematopoiesis and diseases that stem from aberrations in this process. This review will discuss how miRNAs fit into our current understanding of hematopoietic development in mammals and how breakdowns in these pathways can trigger disease.
Collapse
Affiliation(s)
- Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
274
|
Lai X, Schmitz U, Gupta SK, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J. Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 2012; 40:8818-34. [PMID: 22798498 PMCID: PMC3467055 DOI: 10.1093/nar/gks657] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) target hubs are genes that can be simultaneously targeted by a comparatively large number of miRNAs, a class of non-coding RNAs that mediate post-transcriptional gene repression. Although the details of target hub regulation remain poorly understood, recent experiments suggest that pairs of miRNAs can cooperate if their binding sites reside in close proximity. To test this and other hypotheses, we established a novel approach to investigate mechanisms of collective miRNA repression. The approach presented here combines miRNA target prediction and transcription factor prediction with data from the literature and databases to generate a regulatory map for a chosen target hub. We then show how a kinetic model can be derived from the regulatory map. To validate our approach, we present a case study for p21, one of the first experimentally proved miRNA target hubs. Our analysis indicates that distinctive expression patterns for miRNAs, some of which interact cooperatively, fine-tune the features of transient and long-term regulation of target genes. With respect to p21, our model successfully predicts its protein levels for nine different cellular functions. In addition, we find that high abundance of miRNAs, in combination with cooperativity, can enhance noise buffering for the transcription of target hubs.
Collapse
Affiliation(s)
- Xin Lai
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
275
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that control the expression of around 60% of the human protein-coding genes. In the past decade, deregulation of miRNAs (by expression and/or function) has been associated with the pathogenesis, progression and prognosis of different diseases, including leukemia. The number of discovered genes encoding miRNAs has risen exponentially in this period, but the numbers of miRNA-target genes discovered and validated lag far behind. Scientists have gained more in-depth knowledge of the basic mechanism of action of miRNAs, but the main challenge still remaining is the identification of direct targets of these important 'micro-players', to understand how they fine-tune so many biological processes in both healthy and diseased tissue. Many technologies have been developed in the past few years, some with more potential than others, but all with their own pros and cons. Here, we review the most common and most potent computational and experimental approaches for miRNA-target gene discovery and discuss how the hunting of targets is challenging but possible by taking the experimental limitations in consideration and choosing the correct cellular context for identifying relevant target genes.
Collapse
|
276
|
Baker C, Jia T, Kulkarni RV. Stochastic modeling of regulation of gene expression by multiple small RNAs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061915. [PMID: 23005135 DOI: 10.1103/physreve.85.061915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/02/2012] [Indexed: 06/01/2023]
Abstract
A wealth of new research has highlighted the critical roles of small noncoding RNAs (sRNAs) in diverse processes, such as quorum sensing and cellular responses to stress. The pathways controlling these processes often have a central motif composed of a master regulator protein whose expression is controlled by multiple sRNAs. However, the stochastic gene expression of a single target gene regulated by multiple sRNAs is currently not well understood. To address this issue, we analyze a stochastic model of regulation of gene expression by multiple sRNAs. For this model, we derive exact analytic results for the regulated protein distribution, including compact expressions for its mean and variance. The derived results provide insights into the roles of multiple sRNAs in fine-tuning the noise in gene expression. In particular, we show that, in contrast to regulation by a single sRNA, multiple sRNAs provide a mechanism for independently controlling the mean and variance of the regulated protein distribution.
Collapse
Affiliation(s)
- Charles Baker
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | |
Collapse
|
277
|
Chang LJ, Eastman A. Decreased translation of p21waf1 mRNA causes attenuated p53 signaling in some p53 wild-type tumors. Cell Cycle 2012; 11:1818-26. [PMID: 22510560 DOI: 10.4161/cc.20208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21(waf1) protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21(waf1) induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21(waf1) protein induction. We find that neither the induction of p21(waf1) mRNA nor protein half-life is sufficient to explain the low p21(waf1) protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21(waf1) mRNA translation. This represents a novel mechanism for disruption of the p53-p21(waf1) pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21(waf1) expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.
Collapse
Affiliation(s)
- Li-Ju Chang
- Department of Pharmacology and Toxicology, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
278
|
Flor I, Bullerdiek J. The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 2012; 227:270-4. [PMID: 22374805 DOI: 10.1002/path.4014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 02/07/2012] [Accepted: 02/21/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs are a class of macromolecules of rapidly emerging significance for the pathogenesis of numerous human diseases, including cancer. Moreover, many of them hold great promise as valid biomarkers because of their high extracellular stability. Chromosome 19 harbours the largest cluster of microRNA genes known so far, which has developed in a very short time during mammalian evolution. Thus, in terms of evolution, gain of this cluster is an apparent success story. Nevertheless, we know very little about how functions of its microRNAs have contributed to this success and apparently, at least some of them can turn from Jekyll into Hyde and contribute to tumourigenesis. Recent work published in the Journal of Pathology by Fornari and colleagues, addressed here, reveals how members of that cluster are involved in the molecular pathogenesis of hepatocellular carcinomas.
Collapse
|
279
|
Liu T, Chen Q, Huang Y, Huang Q, Jiang L, Guo L. Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:197-206. [PMID: 22285730 DOI: 10.1093/abbs/gmr127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells, and may be generated from patient- or disease-specific sources, which makes them attractive for personalized medicine, drug screens, or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, as they express endogenous leukemia inhibitory factor (LIF) at high levels. Here, we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs, and in turn on human iPS cell pluripotency. We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels, allowing iPS to maintain a high level of alkaline phosphatase activity in long-term culture and form teratomas in severe combined immunodeficient mice. The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant, compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts. Taken together, these results suggested that LIF expression might be regulated by microRNA-199a, and LIF was a crucial component in feeder cells, and also was required for maintenance of human iPS cells in an undifferentiated, proliferative state capable of self-renewal.
Collapse
Affiliation(s)
- Te Liu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
280
|
Affiliation(s)
- Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
281
|
Girardi C, De Pittà C, Casara S, Sales G, Lanfranchi G, Celotti L, Mognato M. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One 2012; 7:e31293. [PMID: 22347458 PMCID: PMC3276573 DOI: 10.1371/journal.pone.0031293] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.
Collapse
Affiliation(s)
- Cristina Girardi
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Silvia Casara
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | - Lucia Celotti
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- Laboratori Nazionali di Legnaro, INFN, Padova, Italy
| | - Maddalena Mognato
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
282
|
Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinsky E, Jones GDD, Roninson IB, Macip S. Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 2012; 287:9845-9854. [PMID: 22311974 DOI: 10.1074/jbc.m111.250357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.
Collapse
Affiliation(s)
- Ionica Masgras
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Samantha Carrera
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Petra J de Verdier
- Department of Molecular Medicine and Surgery, Urology Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Paul Brennan
- Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom, and
| | - Aneela Majid
- Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wan Makhtar
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Igor B Roninson
- Translational Cancer Therapeutics Program Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Salvador Macip
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
283
|
Zhang Y, Hou ZC, Chen ZX, Zheng JX, Chen SR, Qu LJ, Li JY, Xu GY, Yang N. Low-density lipoprotein receptor-related protein 2 gene is associated with egg-quality traits in dwarf layers. Poult Sci 2012; 90:2718-22. [PMID: 22080009 DOI: 10.3382/ps.2011-01751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some members of the low-density lipoprotein receptor (LDLR) family play important roles in the regulation of lipoprotein metabolism and egg quality traits. Low-density lipoprotein receptor-related protein 2 (LRP2) gene belongs to the LDLR super family, and widely expresses in many tissues. This work identified and genotyped 1 single-nucleotide polymorphism (SNP), T14347C, at 3'-UTR of the LRP2 using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), and analyzed the effects of the SNP (T14347C) on egg-quality traits in 544 dwarf hens from 44 sire families. Frequencies of this SNP in the studied population did not agree with the Hardy-Weinberg equilibrium (P < 0.0001). Egg weight, albumen weight, albumen height, and albumen ratio of the TT genotype were significantly higher than those of the CC genotype (P < 0.05), whereas eggshell ratio of the TT genotype was significantly lower than that of the CC genotype (P < 0.05). The relative expression level of the LRP2 gene in the magnum was determined by real-time quantitative PCR. The gene expression of genotype CC individuals was significantly higher than that of TT and CT birds (P < 0.05). By combining both genetic effects and expression analyses results, we propose that the LRP2 gene is a good candidate gene, exhibiting a key role in albumen formation processes.
Collapse
Affiliation(s)
- Y Zhang
- China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 2012; 31:4421-33. [PMID: 22249270 DOI: 10.1038/onc.2011.629] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) may function as either oncogenes or tumor suppressors in the malignant progression of different tumor types. MiR-663 was recently reported to be decreased and identified as a tumor suppressor in gastric cancer. We also verified its role in repressing cell proliferation of a gastric cancer cell line. In this study, however, miR-663 was found to be upregulated in nasopharyngeal carcinoma (NPC) cells compared with human immortalized nasopharyngeal epithelium cells, using a miRNA microarray, and this higher expression was confirmed in NPC tissue samples. Indeed, inhibition of miR-663 impaired the proliferation of NPC cells in vitro and the NPC tumor growth of xenografts in nude mice. Mechanistically, miR-663 directly targeted p21(WAF1/CIP1) to promote the cellular G1/S transition, as the inhibitory effects of miR-663 on the G1/S transition could be rescued by p21(WAF1/CIP1) silencing. Our results imply that miR-663 may act as an oncogene in NPC. The newly identified miR-663/p21(WAF1/CIP1) axis clarifies the molecular mechanism of NPC cell proliferation and represents a novel strategy for the diagnosis and treatment of patients with NPC.
Collapse
|
285
|
Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res 2011; 318:424-34. [PMID: 22200372 DOI: 10.1016/j.yexcr.2011.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal.
Collapse
|
286
|
Guerau-de-Arellano M, Smith KM, Godlewski J, Liu Y, Winger R, Lawler SE, Whitacre CC, Racke MK, Lovett-Racke AE. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. ACTA ACUST UNITED AC 2011; 134:3578-89. [PMID: 22088562 DOI: 10.1093/brain/awr262] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4(+) T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.
Collapse
|
287
|
Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy. Acta Pharmacol Sin 2011; 32:1311-20. [PMID: 21909123 DOI: 10.1038/aps.2011.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell cycle, which is precisely controlled by a number of regulators, including cyclins and cyclin-dependent kinases (CDKs), is crucial for the life cycle of mammals. Cell cycle dysregulation is implicated in many diseases, including cancer. Recently, compelling evidence has been found that microRNAs play important roles in the regulation of cell cycle progression by modulating the expression of cyclins, CDKs and other cell cycle regulators. Herein, the recent findings on the regulation of the cell cycle by microRNAs are summarized, and the potential implications of miRNAs in anti-cancer therapies are discussed.
Collapse
|
288
|
Tirabassi R, Hook L, Landais I, Grey F, Meyers H, Hewitt H, Nelson J. Human cytomegalovirus US7 is regulated synergistically by two virally encoded microRNAs and by two distinct mechanisms. J Virol 2011; 85:11938-44. [PMID: 21900172 PMCID: PMC3209316 DOI: 10.1128/jvi.05443-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes at least 14 microRNAs (miRNAs) that act posttranscriptionally to repress gene expression. Although several HCMV miRNA targets of both cellular and viral origin have been identified, our knowledge of their function remains limited. HCMV miRNA targets, as well as phenotypes associated with HCMV miRNA mutants, have been difficult to identify since the downregulation of targets by a single miRNA is often less than 2-fold. Several factors can contribute to the strength of repression, including the mechanism of translational inhibition, the degree of complementarity between the miRNA and target mRNA, the number of binding sites for one miRNA, and cooperativity or antagonism between miRNAs. To determine the effect of multiple miRNAs on one gene, we examined the repression of a viral gene, US7. Here we demonstrate that the HCMV-encoded miRNAs miR-US5-1 and miR-US5-2 function in a highly synergistic manner to regulate US7, even at very low miRNA concentrations. Regulation of US7 involves three functional miRNA binding sites: two that are completely complementary to the 3' untranslated region (3'UTR) and one that is imperfectly matched. Surprisingly, we observed equal contributions to inhibition from both complete and partially complementary sites, and repression was not completely abrogated until all three sites were mutated simultaneously. We also observed that the miRNA binding sites did not follow the spacing constraints for corepressive miRNAs observed in earlier reports. These results underscore the importance of evaluating the contribution of multiple miRNAs on gene regulation and shed new insight into miRNA:mRNA interactions.
Collapse
Affiliation(s)
- Rebecca Tirabassi
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
289
|
Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C, Darfeuille F. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. SILENCE 2011; 2:7. [PMID: 22027184 PMCID: PMC3212895 DOI: 10.1186/1758-907x-2-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/25/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. RESULTS Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. CONCLUSIONS These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections.
Collapse
Affiliation(s)
- Cédric Belair
- Univ, Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
290
|
Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 2011; 5:e1338. [PMID: 22028939 PMCID: PMC3196473 DOI: 10.1371/journal.pntd.0001338] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
291
|
Mitra R, Bandyopadhyay S. MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One 2011; 6:e24583. [PMID: 21949731 PMCID: PMC3174180 DOI: 10.1371/journal.pone.0024583] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
Background Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. Methodology/Principal Finding In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA) and SVM. Conclusions/Significance MultiMiTar is found to achieve much higher Matthew’s correlation coefficient (MCC) of 0.583 and average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from −0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now available as an online tool at www.isical.ac.in/~bioinfo_miu/multimitar.htm. MultiMiTar software can be downloaded from www.isical.ac.in/~bioinfo_miu/multimitar-download.htm.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
292
|
Serva A, Claas C, Starkuviene V. A Potential of microRNAs for High-Content Screening. J Nucleic Acids 2011; 2011:870903. [PMID: 21922044 PMCID: PMC3172976 DOI: 10.4061/2011/870903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 05/15/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022] Open
Abstract
In the last years miRNAs have increasingly been recognised as potent posttranscriptional regulators of gene expression. Possibly, miRNAs exert their action on virtually any biological process by simultaneous regulation of numerous genes. The importance of miRNA-based regulation in health and disease has inspired research to investigate diverse aspects of miRNA origin, biogenesis, and function. Despite the recent rapid accumulation of experimental data, and the emergence of functional models, the complexity of miRNA-based regulation is still far from being well understood. In particular, we lack comprehensive knowledge as to which cellular processes are regulated by which miRNAs, and, furthermore, how temporal and spatial interactions of miRNAs to their targets occur. Results from large-scale functional analyses have immense potential to address these questions. In this review, we discuss the latest progress in application of high-content and high-throughput functional analysis for the systematic elucidation of the biological roles of miRNAs.
Collapse
Affiliation(s)
- Andrius Serva
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
293
|
Wan G, Mathur R, Hu X, Zhang X, Lu X. miRNA response to DNA damage. Trends Biochem Sci 2011; 36:478-84. [PMID: 21741842 PMCID: PMC3532742 DOI: 10.1016/j.tibs.2011.06.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.
Collapse
Affiliation(s)
- Guohui Wan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
294
|
Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal Chem 2011; 83:5949-56. [PMID: 21711056 PMCID: PMC3146633 DOI: 10.1021/ac201340s] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, we present a method for the sensitive detection of microRNAs (miRNAs) utilizing an antibody that specifically recognizes DNA:RNA heteroduplexes and a silicon photonic microring resonator array transduction platform. Microring resonator arrays are covalently functionalized with DNA capture probes that are complementary to solution phase miRNA targets. Following hybridization on the sensor, the anti-DNA:RNA antibody is introduced and binds selectively to the heteroduplexes, giving a larger signal than the original miRNA hybridization due to the increased mass of the antibody, as compared to the 22-mer oligoribonucleotide. Furthermore, the secondary recognition step is performed in neat buffer solution and at relatively higher antibody concentrations, facilitating the detection of miRNAs of interest. The intrinsic sensitivity of the microring resonator platform coupled with the amplification provided by the anti-DNA:RNA antibodies allows for the detection of microRNAs at concentrations as low as 10 pM (350 amol). The simplicity and sequence generality of this amplification method position it as a promising tool for high-throughput, multiplexed miRNA analysis as well as a range of other RNA based detection applications.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Illinois, 61801
| | - Jared T. Kindt
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Illinois, 61801
| | - Martin A. Gleeson
- Genalyte, Inc., 11099 North Torrey Pines Road, Suite 170, La Jolla, California, 92037
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Illinois, 61801
| |
Collapse
|
295
|
Leal JA, Feliciano A, Lleonart ME. Stem cell microRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev 2011; 33:112-38. [PMID: 21793013 DOI: 10.1002/med.20246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular etiology of malignancy remains one of the most challenging disease processes under scientific investigation; therefore, improved approaches for their treatment are urgently needed. MicroRNAs are highly conserved nonprotein-coding RNAs that regulate gene expression. They are involved in important homeostatic processes, such as cellular proliferation, cell death and development, and affect many diseases, including cancer. High-throughput screenings based on microRNAs related to senescence/immortalization are potential tools for identifying novel proliferative microRNAs that might be involved in carcinogenesis. Recently, a subgroup of highly proliferative microRNAs, which belong to a cluster expressed exclusively in embryonic stem cells and their malignant derivatives (embryonic carcinoma cells), was revealed to play a role in senescence bypass, thereby providing immortalization to human cells. This finding supports the cancer stem cell theory and the relevance of microRNAs in human tumors. This article recapitulates the role of microRNAs that are associated with stem cell properties and their possible link in common pathways related to immortalization and cancer. Ultimately, cancer therapy that is based on the induction of a senescence response is proposed to be highly associated with the loss of stemness properties. Thus, it would be possible to "kill two birds with one stone": along with the inhibition of stemness properties in cancer stem cells, the senescence response could be induced to destroy the cancer stem cell population within a tumor.
Collapse
Affiliation(s)
- Jose A Leal
- Pathology Department, Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | |
Collapse
|
296
|
Witkos TM, Koscianska E, Krzyzosiak WJ. Practical Aspects of microRNA Target Prediction. Curr Mol Med 2011; 11:93-109. [PMID: 21342132 PMCID: PMC3182075 DOI: 10.2174/156652411794859250] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/27/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1).
Collapse
Affiliation(s)
- T M Witkos
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str. 61-704 Poznan, Poland
| | | | | |
Collapse
|
297
|
Abstract
Since the discovery of microRNAs (miRNAs), the study of these small noncoding RNAs has steadily increased and more than 10,000 papers have already been published. The great interest in miRNAs reflects their central role in gene-expression regulation and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, immune-related and other diseases. Another avenue of current research is the study of circulating miRNAs in serum, plasma, and other body fluids--miRNAs may act not only within cells, but also at other sites within the body. The presence of miRNAs in body fluids may represent a gold mine of noninvasive biomarkers in cancer. Since deregulated miRNA expression is an early event in tumorigenesis, measuring circulating miRNA levels may also be useful for early cancer detection, which can contribute greatly to the success of treatment. In this Review, we discuss the role of fluid-expressed miRNAs as reliable cancer biomarkers and treatment-response predictors as well as potential new patient selection criteria for clinical trials. In addition, we explore the concept that miRNAs could function as hormones.
Collapse
|
298
|
Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 2011; 39:6845-53. [PMID: 21652644 PMCID: PMC3167600 DOI: 10.1093/nar/gkr330] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression in most biological processes. They act by guiding the RNAi-induced silencing complex (RISC) to partially complementary sequences in target mRNAs to suppress gene expression by a combination of translation inhibition and mRNA decay. The commonly accepted mechanism of miRNA targeting in animals involves an interaction between the 5'-end of the miRNA called the 'seed region' and the 3' untranslated region (3'-UTR) of the mRNA. Many target prediction algorithms are based around such a model, though increasing evidence demonstrates that targeting can also be mediated through sites other than the 3'-UTR and that seed region base pairing is not always required. The power and validity of such in silico data can be therefore hindered by the simplified rules used to represent targeting interactions. Experimentation is essential to identify genuine miRNA targets, however many experimental modalities exist and their limitations need to be understood. This review summarizes and critiques the existing experimental techniques for miRNA target identification.
Collapse
Affiliation(s)
- Daniel W Thomson
- Centre for Cancer Biology, SA Pathology, Frome Road Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
299
|
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:592-601. [PMID: 21315819 DOI: 10.1016/j.bbadis.2011.02.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/11/2022]
Abstract
The control of cell proliferation by microRNAs (miRNAs) is well established and the alteration of these small, non-coding RNAs may contribute to tumor development by perturbing critical cell cycle regulators. Oncogenic miRNAs may facilitate cell cycle entry and progression by targeting CDK inhibitors or transcriptional repressors of the retinoblastoma family. On the other hand, tumor suppressor miRNAs induce cell cycle arrest by downregulating multiple components of the cell cycle machinery. Recent data also suggest that miRNAs act co-ordinately with transcriptional factors involved in cell cycle regulation such as c-MYC, E2F or p53. These miRNAs not only can potentiate the function of these factors but they may also limit the excessive translation of cell cycle proteins upon mitogenic or oncogenic stimuli to protect cells from replicative stress. The implications of these regulatory networks in cell proliferation and human disease are discussed.
Collapse
Affiliation(s)
- María José Bueno
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | |
Collapse
|
300
|
Hansen TB, Kjems J, Bramsen JB. Enhancing miRNA annotation confidence in miRBase by continuous cross dataset analysis. RNA Biol 2011; 8:378-83. [PMID: 21558790 DOI: 10.4161/rna.8.3.14333] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immaculate annotation of all microRNAs (miRNAs) is a prerequisite to study their biological function on a genome-wide scale. However, the original criteria for proper miRNA annotation seem unsuited for the automated analysis of the immense number of small RNA reads available in next generation sequencing (NGS) datasets. Here we analyze the confidence of past miRNA annotation in miRBase by cross-analyzing publicly available NGS datasets using strengthened annotation requirements. Our analysis highlights that a large number of annotated human miRNAs in miRBase seems to require more experimental validation to be confidently annotated. Notably, our dataset analysis also identified almost 300 currently non-annotated miRNA*s and 28 novel miRNAs. These observations hereby greatly increase the confidence of past miRNA annotation in miRBase but also illustrate the usefulness of continuous re-evaluating NGS datasets in the identification of novel miRNAs.
Collapse
Affiliation(s)
- Thomas B Hansen
- Department of Molecular Biology, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|