251
|
Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model. Acta Pharmacol Sin 2017; 38:223-232. [PMID: 27917873 DOI: 10.1038/aps.2016.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Thioredoxin reductase (TrxR) is a component of several redox-sensitive signaling cascades that mediate important biological processes such as cell survival, maturation, growth, migration and inhibition of apoptosis. The expression levels of TrxR1 in some human carcinoma cell lines are nearly 10 times higher than those in normal cells. Ethaselen is a novel antitumor candidate that exerts potent inhibition on non-small cell lung cancer (NSCLC) by targeting TrxR. In this study we explored the relationship between the ethaselen dose and TrxR activity level and the relationship between TrxR degradation and tumor apoptosis in a human lung carcinoma A549 xenograft model. BALB/c nude mice implanted with human NSCLC cell line A54 were administered ethaselen (36, 72, 108 mg·kg-1·d-1, ig) or vehicle for 10 d. The tumor size and TrxR activity levels in tumor tissues were daily recorded and detected. Based on the experimental data, NONMEM 7.2 was used to develop an integrated dose-biomarker-response model for describing the quantitative relationship between ethaselen dose and tumor eradication effects. The time course of TrxR activity levels was modeled using an indirect response model (IDR model), in which the influence of the tumor growth rates on Kin with the linear correction factor γ1 (0.021 d/mm). The drug binding-inhibition effects on Kout was described using a sigmoidal Emax model with Smax (5.95), SC50 (136 mg/kg) and Hill's coefficient γ2 (2.29). The influence of TrxR activity inhibition on tumor eradication was characterized by an Emax model with an Emax (130 mm3/d) and EC50 (0.0676). This model was further validated using a visual predictive check (VPC) and was used to predict the efficacy of different doses. In conclusion, the properties and characteristics of ethaselen acting on TrxR degradation and subsequently resulting in tumor apoptosis are characterized by the IDR model and integrated dose-biomarker-response model with high goodness-of-fit and great predicative ability. This approach shed new light on the detailed processes and mechanism of ethaselen action and may offer a valuable reference for an appropriate dosing regimen for use in further clinical applications.
Collapse
|
252
|
Pai CC, Kearsey SE. A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes (Basel) 2017; 8:genes8020057. [PMID: 28146119 PMCID: PMC5333046 DOI: 10.3390/genes8020057] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
253
|
Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. eLife 2016; 5. [PMID: 27995898 PMCID: PMC5173324 DOI: 10.7554/elife.19896] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.
Collapse
Affiliation(s)
- Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| |
Collapse
|
254
|
Parvez S, Long MJC, Lin HY, Zhao Y, Haegele JA, Pham VN, Lee DK, Aye Y. T-REX on-demand redox targeting in live cells. Nat Protoc 2016; 11:2328-2356. [PMID: 27809314 PMCID: PMC5260244 DOI: 10.1038/nprot.2016.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Marcus J C Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hong-Yu Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Joseph A Haegele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Vanha N Pham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Dustin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
255
|
Suzuki M, Kobayashi M, Ohno T, Kanamori S, Tateishi S, Murai A, Horio F. Genetic dissection of the fatty liver QTL Fl1sa by using congenic mice and identification of candidate genes in the liver and epididymal fat. BMC Genet 2016; 17:145. [PMID: 27855657 PMCID: PMC5114839 DOI: 10.1186/s12863-016-0453-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a multifactorial disease caused by interactions between environmental and genetic factors. The SMXA-5 mouse is a high-fat diet-induced fatty liver model established from SM/J and A/J strains. We have previously identified Fl1sa, a quantitative trait locus (QTL) for fatty liver on chromosome 12 (centromere-53.06 Mb) of SMXA-5 mice. However, the chromosomal region containing Fl1sa was too broad. The aim of this study was to narrow the Fl1sa region by genetic dissection using novel congenic mice and to identify candidate genes within the narrowed Fl1sa region. RESULTS We established two congenic strains, R2 and R3, from parental A/J-12SM and A/J strains. R2 and R3 strains have genomic intervals of centromere-29.20 Mb and 29.20-46.75 Mb of chromosome 12 derived from SM/J, respectively. Liver triglyceride content in R2 and R3 mice was significantly lower than that in A/J mice fed with a high-fat diet for 7 weeks. This result suggests that at least one of the genes responsible for fatty liver exists within the two chromosomal regions centromere-29.20 Mb (R2) and 29.20-46.75 Mb (R3). We found that liver triglyceride accumulation is inversely correlated with epididymal fat weight among the parental and congenic strains. Therefore, the ectopic fat accumulation in the liver may be due to organ-organ interactions between the liver and epididymal fat. To identify candidate genes in Fl1sa, we performed a DNA microarray analysis using the liver and epididymal fat in A/J and A/J-12SM mice fed with a high-fat diet for 7 weeks. In epididymal fat, mRNA levels of Zfp125 (in R2) and Nrcam (in R3) were significantly different in A/J-12SM mice from those in A/J mice. In the liver, mRNA levels of Iah1 (in R2) and Rrm2 (in R2) were significantly different in A/J-12SM mice from those in A/J mice. CONCLUSIONS In this study, using congenic mice analysis, we narrowed the chromosomal region containing Fl1sa to two regions of mouse chromosome 12. We then identified 4 candidate genes in Fl1sa: Iah1 and Rrm2 from the liver and Zfp125 and Nrcam from epididymal fat.
Collapse
Affiliation(s)
- Miyako Suzuki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Misato Kobayashi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Tamio Ohno
- Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Shinsaku Kanamori
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Soushi Tateishi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Atsushi Murai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Fumihiko Horio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
256
|
Anacker DC, Aloor HL, Shepard CN, Lenzi GM, Johnson BA, Kim B, Moody CA. HPV31 utilizes the ATR-Chk1 pathway to maintain elevated RRM2 levels and a replication-competent environment in differentiating Keratinocytes. Virology 2016; 499:383-396. [PMID: 27764728 DOI: 10.1016/j.virol.2016.09.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 01/19/2023]
Abstract
Productive replication of human papillomaviruses (HPV) is restricted to the uppermost layers of the differentiating epithelia. How HPV ensures an adequate supply of cellular substrates for viral DNA synthesis in a differentiating environment is unclear. Here, we demonstrate that HPV31 positive cells exhibit increased dNTP pools and levels of RRM2, a component of the ribonucleotide reductase (RNR) complex, which is required for de novo synthesis of dNTPs. RRM2 depletion blocks productive replication, suggesting RRM2 provides dNTPs for viral DNA synthesis in differentiating cells. We demonstrate that HPV31 regulates RRM2 levels through expression of E7 and activation of the ATR-Chk1-E2F1 DNA damage response, which is essential to combat replication stress upon entry into S-phase, as well as for productive replication. Our findings suggest a novel way in which viral DNA synthesis is regulated through activation of ATR and Chk1 and highlight an intriguing new virus/host interaction utilized for viral replication.
Collapse
Affiliation(s)
- Daniel C Anacker
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Heather L Aloor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Caitlin N Shepard
- The Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gina M Lenzi
- The Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Baek Kim
- The Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, USA
| | - Cary A Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA.
| |
Collapse
|
257
|
Low GM, Thylur DS, Yamamoto V, Sinha UK. The effect of human papillomavirus on DNA repair in head and neck squamous cell carcinoma. Oral Oncol 2016; 61:27-30. [PMID: 27688101 DOI: 10.1016/j.oraloncology.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Much of the current literature regarding the molecular pathophysiology of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) has focused on the virus's effect on cell cycle modulation and cell proliferation. A second mechanism of pathogenicity employed by HPV, dysregulation of cellular DNA repair processes, has been more sparsely studied. The purpose of this review is to describe current understanding about the effect of HPV on DNA repair in HNSCC, taking cues from cervical cancer literature. HPV affects DNA-damage response pathways by interacting with many proteins, including ATM, ATR, MRN, γ-H2AX, Chk1, Chk2, p53, BRCA1, BRCA2, RAD51, Rb-related proteins 107 and 130, Tip60, and p16INK4A. Further elucidation of these pathways could lead to development of targeted therapies and improvement of current treatment protocols.
Collapse
Affiliation(s)
- Garren M Low
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Vicky Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
258
|
Crona M, Codó P, Jonna VR, Hofer A, Fernandes AP, Tholander F. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity. Mol Oncol 2016; 10:1375-1386. [PMID: 27511871 DOI: 10.1016/j.molonc.2016.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.
Collapse
Affiliation(s)
- Mikael Crona
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Paula Codó
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Aristi P Fernandes
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
259
|
Chen CW, Tsao N, Huang LY, Yen Y, Liu X, Lehman C, Wang YH, Tseng MC, Chen YJ, Ho YC, Chen CF, Chang ZF. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells. Cell Rep 2016; 16:1287-1299. [PMID: 27452458 DOI: 10.1016/j.celrep.2016.06.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase) and ribonucleotide reductase (RNR) in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in colorectal and breast cancer patients. Furthermore, overexpression of R2 in non-tumorigenic cells progressively increases genome stress, promoting transformation. These cells display alterations in replication fork progression, elevated genomic uracil, and breaks at AT-rich common fragile sites. Consistently, overexpression of dUTPase abolishes R2-induced genome instability. Thus, the expression level of dUTPase determines the role of high R2 in driving genome instability in cancer cells.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ning Tsao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lin-Yi Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA; Taipei Medical University, Taipei 110, Taiwan
| | - Xiyong Liu
- Taipei Medical University, Taipei 110, Taiwan; California Cancer Institute, Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Christine Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan; Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yi-Chi Ho
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
260
|
Wisitpitthaya S, Zhao Y, Long MJC, Li M, Fletcher EA, Blessing WA, Weiss RS, Aye Y. Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition. ACS Chem Biol 2016; 11:2021-32. [PMID: 27159113 DOI: 10.1021/acschembio.6b00303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The enzyme ribonucleotide reductase (RNR) is a major target of anticancer drugs. Until recently, suicide inactivation in which synthetic substrate analogs (nucleoside diphosphates) irreversibly inactivate the RNR-α2β2 heterodimeric complex was the only clinically proven inhibition pathway. For instance, this mechanism is deployed by the multifactorial anticancer agent gemcitabine diphosphate. Recently reversible targeting of RNR-α-alone coupled with ligand-induced RNR-α-persistent hexamerization has emerged to be of clinical significance. To date, clofarabine nucleotides are the only known example of this mechanism. Herein, chemoenzymatic syntheses of the active forms of two other drugs, phosphorylated cladribine (ClA) and fludarabine (FlU), allow us to establish that reversible inhibition is common to numerous drugs in clinical use. Enzyme inhibition and fluorescence anisotropy assays show that the di- and triphosphates of the two nucleosides function as reversible (i.e., nonmechanism-based) inhibitors of RNR and interact with the catalytic (C site) and the allosteric activity (A site) sites of RNR-α, respectively. Gel filtration, protease digestion, and FRET assays demonstrate that inhibition is coupled with formation of conformationally diverse hexamers. Studies in 293T cells capable of selectively inducing either wild-type or oligomerization-defective mutant RNR-α overexpression delineate the central role of RNR-α oligomerization in drug activity, and highlight a potential resistance mechanism to these drugs. These data set the stage for new interventions targeting RNR oligomeric regulation.
Collapse
Affiliation(s)
- Somsinee Wisitpitthaya
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Zhao
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marcus J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Minxing Li
- Department
of Biomedical Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Elaine A. Fletcher
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - William A. Blessing
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert S. Weiss
- Department
of Biomedical Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
261
|
Fatkhutdinov N, Sproesser K, Krepler C, Liu Q, Brafford PA, Herlyn M, Aird KM, Zhang R. Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res 2016; 14:767-75. [PMID: 27297629 DOI: 10.1158/1541-7786.mcr-16-0099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The majority of patients with melanoma harbor mutations in the BRAF oncogene, thus making it a clinically relevant target. However, response to mutant BRAF inhibitors (BRAFi) is relatively short-lived with progression-free survival of only 6 to 7 months. Previously, we reported high expression of ribonucleotide reductase M2 (RRM2), which is rate-limiting for de novo dNTP synthesis, as a poor prognostic factor in patients with mutant BRAF melanoma. In this study, the notion that targeting de novo dNTP synthesis through knockdown of RRM2 could prolong the response of melanoma cells to BRAFi was investigated. Knockdown of RRM2 in combination with the mutant BRAFi PLX4720 (an analog of the FDA-approved drug vemurafenib) inhibited melanoma cell proliferation to a greater extent than either treatment alone. This occurred in vitro in multiple mutant BRAF cell lines and in a novel patient-derived xenograft (PDX) model system. Mechanistically, the combination increased DNA damage accumulation, which correlated with a global decrease in DNA damage repair (DDR) gene expression and increased apoptotic markers. After discontinuing PLX4720 treatment, cells showed marked recurrence. However, knockdown of RRM2 attenuated this rebound growth both in vitro and in vivo, which correlated with maintenance of the senescence-associated cell-cycle arrest. IMPLICATIONS Inhibition of RRM2 converts the transient response of melanoma cells to BRAFi to a stable response and may be a novel combinatorial strategy to prolong therapeutic response of patients with melanoma. Mol Cancer Res; 14(9); 767-75. ©2016 AACR.
Collapse
Affiliation(s)
- Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania. Kazan Federal University, Kazan, Russia
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia A Brafford
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
262
|
Beckford FA, Brock A, Gonzalez-Sarrías A, Seeram NP. Cytotoxic gallium complexes containing thiosemicarbazones derived from 9-anthraldehyde: Molecular docking with biomolecules. J Mol Struct 2016; 1121:156-166. [PMID: 27980346 DOI: 10.1016/j.molstruc.2016.05.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have synthesized a trio of gallium complexes bearing 9-anthraldehyde thiosemicarbazones. The complexes were assessed for their anticancer activity and their biophysical reactivity was also investigated. The three complexes displayed good cytotoxic profiles against two human colon cancer cell lines, HCT-116 and Caco-2. The IC50 ranged from 4.7 - 44.1 μM with the complex having an unsubstituted amino group on the thiosemicarbazone being the most active. This particular complex also showed a high therapeutic index. All three complexes bind strongly to DNA via intercalation with binding constants ranging from 7.46 × 104 M-1 to 3.25 × 105 M-1. The strength of the binding cannot be directly related to the level of anticancer activity. The complexes also bind strongly to human serum albumin with binding constants on the order of 104 - 105 M-1 as well. The complexes act as chemical nucleases as evidenced by their ability to cleave pBR322 plasmid DNA. The binding constants along with the cleavage results may suggest that the extent of DNA interaction is not directly correlated with anticancer activity. The results of docking studies with DNA, ribonucleotide reductase and human serum albumin, however showed that the complex with the best biological activity had the largest binding constant to DNA.
Collapse
Affiliation(s)
| | - Alyssa Brock
- Science Division, Lyon College, Batesville, AR 72501, USA
| | - Antonio Gonzalez-Sarrías
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
263
|
The direct interaction of NME3 with Tip60 in DNA repair. Biochem J 2016; 473:1237-45. [DOI: 10.1042/bcj20160122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/04/2016] [Indexed: 11/17/2022]
Abstract
Cellular supply of dNTPs via RNR (ribonucleotide reductase) is crucial for DNA replication and repair. It has been shown that DNA-damage-site-specific recruitment of RNR is critical for DNA repair efficiency in quiescent cells. The catalytic function of RNR produces dNDPs. The subsequent step of dNTP formation requires the function of NDP kinase. There are ten isoforms of NDP kinase in human cells. In the present study, we identified NME3 as one specific NDP kinase that interacts directly with Tip60, a histone acetyltransferase, to form a complex with RNR. Our data reveal that NME3 recruitment to DNA damage sites depends on this interaction. Disruption of interaction of NME3 with Tip60 suppressed DNA repair in serum-deprived cells. Thus Tip60 interacts with RNR and NME3 to provide site-specific synthesis of dNTP for facilitating DNA repair in serum-deprived cells which contain low levels of dNTPs.
Collapse
|
264
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
265
|
Watt DL, Buckland RJ, Lujan SA, Kunkel TA, Chabes A. Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Res 2016; 44:1669-80. [PMID: 26609135 PMCID: PMC4770217 DOI: 10.1093/nar/gkv1298] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/07/2023] Open
Abstract
The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.
Collapse
Affiliation(s)
- Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Robert J Buckland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
266
|
Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126:1-15. [PMID: 26797216 DOI: 10.1007/s00412-016-0573-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
267
|
Liu X, Xu Z, Hou C, Wang M, Chen X, Lin Q, Song R, Lou M, Zhu L, Qiu Y, Chen Z, Yang C, Zhu W, Shao J. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochem Pharmacol 2016; 103:118-28. [PMID: 26774458 DOI: 10.1016/j.bcp.2016.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a key factor for hepatocellular carcinoma worldwide. Ribonucleotide reductase (RR) regulates the deoxyribonucleoside triphosphates biosynthesis and serves as a target for anti-cancer therapy. Here, we demonstrate that RR is essential for HBV replication and the viral covalently-closed-circular DNA (cccDNA) synthesis in host liver cells. By performing computer-assisted virtual screening against the crystal structure of RR small subunit M2 (RRM2), osalmid, was identified as a potential RRM2-targeting compound. Osalmid was shown to be 10-fold more active in inhibiting RR activity than hydroxyurea, and significantly inhibited HBV DNA and cccDNA synthesis in HepG2.2.15 cells. In contrast, hydroxyurea and the RR large subunit (RRM1)-inhibitory drug gemcitabine showed little selective activity against HBV replication. In addition, osalmid also was shown to possess potent activity against a 3TC-resistant HBV strain, suggesting utility in treating drug-resistant HBV infections. Interestingly, osalmid showed synergistic effects with lamivudine (3TC) in vitro and in vivo without significant toxicity, and was shown to inhibit RR activity in vivo, thus verifying its in vivo function. Furthermore, 4-cyclopropyl-2-fluoro-N-(4-hydroxyphenyl) benzamide (YZ51), a novel derivative of osalmid, showed higher efficacy than osalmid with more potent RR inhibitory activity. These results suggest that RRM2 might be targeted for HBV inhibition, and the RRM2-targeting compound osalmid and its derivative YZ51 could be a novel class of anti-HBV candidates with potential use for hepatitis B and HBV-related HCC treatment.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China; Central Laboratory, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijian Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuanwei Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinhuan Chen
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology and Pathophysiology, Zhengzhou University School of Medicine, Zhengzhou 450001, China
| | - Qinghui Lin
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Song
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meng Lou
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chunhao Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
268
|
Ando N, Li H, Brignole EJ, Thompson S, McLaughlin MI, Page JE, Asturias FJ, Stubbe J, Drennan CL. Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer. Biochemistry 2016; 55:373-81. [PMID: 26727048 PMCID: PMC4722859 DOI: 10.1021/acs.biochem.5b01207] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ribonucleotide
reductases (RNRs) are responsible for all de novo
biosynthesis of DNA precursors in nature by catalyzing the conversion
of ribonucleotides to deoxyribonucleotides. Because of its essential
role in cell division, human RNR is a target for a number of anticancer
drugs in clinical use. Like other class Ia RNRs, human RNR requires
both a radical-generation subunit (β) and nucleotide-binding
subunit (α) for activity. Because of their complex dependence
on allosteric effectors, however, the active and inactive quaternary
forms of many class Ia RNRs have remained in question. Here, we present
an X-ray crystal structure of the human α subunit in the presence
of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly,
our small-angle X-ray scattering (SAXS) results indicate that human
α forms a similar hexamer in the presence of ATP, an activating
effector. In both cases, α6 is assembled from dimers
(α2) without a previously proposed tetramer intermediate
(α4). However, we show with SAXS and electron microscopy
that at millimolar ATP, the ATP-induced α6 can further
interconvert with higher-order filaments. Differences in the dATP-
and ATP-induced α6 were further examined by SAXS
in the presence of the β subunit and by activity assays as a
function of ATP or dATP. Together, these results suggest that dATP-induced
α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration
provides a mechanism to prevent access of the β subunit to the
active site of α.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francisco J Asturias
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | |
Collapse
|
269
|
Kalanaky S, Hafizi M, Fakharzadeh S, Vasei M, Langroudi L, Janzamin E, Hashemi SM, Khayamzadeh M, Soleimani M, Akbari ME, Nazaran MH. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:59-70. [PMID: 26766901 PMCID: PMC4699513 DOI: 10.2147/dddt.s89694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology. Methods Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated. Results BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice. Conclusion These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies.
Collapse
Affiliation(s)
- Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Stem Cell Technology Research Center, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mohammad Vasei
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Langroudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Janzamin
- Department of Haematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khayamzadeh
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Haematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
270
|
Rampazzo C, Tozzi MG, Dumontet C, Jordheim LP. The druggability of intracellular nucleotide-degrading enzymes. Cancer Chemother Pharmacol 2015; 77:883-93. [PMID: 26614508 DOI: 10.1007/s00280-015-2921-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10-15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.
Collapse
Affiliation(s)
- Chiara Rampazzo
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France.,Université de Lyon 1, 69622, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Centre Léon Bérard, 69008, Lyon, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lars Petter Jordheim
- Université de Lyon, 69000, Lyon, France. .,Université de Lyon 1, 69622, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France. .,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Centre Léon Bérard, 69008, Lyon, France. .,Equipe Anticorps-Anticancer, INSERM U1052 - CNRS UMR 5286, Faculté Rockefeller, Centre de Recherche en Cancérologie de Lyon, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
271
|
Caron JM, Caron JM. Methyl Sulfone Blocked Multiple Hypoxia- and Non-Hypoxia-Induced Metastatic Targets in Breast Cancer Cells and Melanoma Cells. PLoS One 2015; 10:e0141565. [PMID: 26536104 PMCID: PMC4633041 DOI: 10.1371/journal.pone.0141565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022] Open
Abstract
Metastatic cancer causes 90% of cancer deaths. Unlike many primary tumors, metastatic tumors cannot be cured by surgery alone. Metastatic cancer requires chemotherapy. However, metastatic cells are not easily killed by chemotherapy. These problems with chemotherapy are caused in part by the metastatic cell niche: hypoxia. Here we show that the molecule, methyl sulfone, normalized metastatic metabolism of hypoxic breast cancer and melanoma cells by altering several metabolic functions of the cells. Under hypoxia, methyl sulfone decreased expression of the master regulator of hypoxia, HIF-1α, and reduced levels of the glycolytic enzymes, PKM2, LDHA, GLUT1, the pro-angiogenic protein, VEGF, and the iron-sulfur metabolism molecules, miR-210 and transferrin, all of which promote metastasis. Conversely, methyl sulfone increased levels of ISCU1/2 and ferroportin, proteins associated with iron-sulfur cluster biogenesis and iron homeostasis in normal cells. These data identify methyl sulfone as a multi-targeting molecule that blocks the survival/proliferative effect of hypoxia on metastatic cells and brings normality back to cellular metabolism.
Collapse
|
272
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
273
|
Fang Z, Song R, Gong C, Zhang X, Ren G, Li J, Chen Y, Qiu L, Mei L, Zhang R, Xiang X, Chen X, Shao J. Ribonucleotide reductase large subunit M1 plays a different role in the invasion and metastasis of papillary thyroid carcinoma and undifferentiated thyroid carcinoma. Tumour Biol 2015; 37:3515-26. [DOI: 10.1007/s13277-015-4175-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/28/2015] [Indexed: 01/11/2023] Open
|
274
|
Fujii N, Evison BJ, Actis ML, Inoue A. A novel assay revealed that ribonucleotide reductase is functionally important for interstrand DNA crosslink repair. Bioorg Med Chem 2015; 23:6912-21. [PMID: 26462050 DOI: 10.1016/j.bmc.2015.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022]
Abstract
Cells have evolved complex biochemical pathways for DNA interstrand crosslink (ICL) removal. Despite the chemotherapeutic importance of ICL repair, there have been few attempts to identify which mechanistic DNA repair inhibitor actually inhibits ICL repair. To identify such compounds, a new and robust ICL repair assay was developed using a novel plasmid that contains synthetic ICLs between a CMV promoter region that drives transcription and a luciferase reporter gene, and an SV40 origin of replication and the large T antigen (LgT) gene that enables self-replication in mammalian cells. In a screen against compounds that are classified as inhibitors of DNA repair or synthesis, the reporter generation was exquisitely sensitive to ribonucleotide reductase (RNR) inhibitors such as gemcitabine and clofarabine, but not to inhibitors of PARP, ATR, ATM, Chk1, and others. The effect was observed also by siRNA downregulation of RNR. Moreover, the reporter generation was also particularly sensitive to 3-AP, a non-nucleoside RNR inhibitor, but not significantly sensitive to DNA replication stressors, suggesting that the involvement of RNR in ICL repair is independent of incorporation of a nucleotide RNR inhibitor into DNA to induce replication stress. The reporter generation from a modified version of the plasmid that lacks the LgT-SV40ori motif was also adversely affected by RNR inhibitors, further indicating a role for RNR in ICL repair that is independent of DNA replication. Intriguingly, unhooking of cisplatin-ICL from nuclear DNA was significantly inhibited by low doses of gemcitabine, suggesting an unidentified functional role for RNR in the process of ICL unhooking. The assay approach could identify other molecules essential for ICLR in quantitative and flexible manner.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marcelo L Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
275
|
Kohnken R, Kodigepalli KM, Wu L. Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications. Mol Cancer 2015; 14:176. [PMID: 26416562 PMCID: PMC4587406 DOI: 10.1186/s12943-015-0446-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Regulation of intracellular deoxynucleoside triphosphate (dNTP) pool is critical to genomic stability and cancer development. Imbalanced dNTP pools can lead to enhanced mutagenesis and cell proliferation resulting in cancer development. Therapeutic agents that target dNTP synthesis and metabolism are commonly used in treatment of several types of cancer. Despite several studies, the molecular mechanisms that regulate the intracellular dNTP levels and maintain their homeostasis are not completely understood. The discovery of SAMHD1 as the first mammalian dNTP triphosphohydrolase provided new insight into the mechanisms of dNTP regulation. SAMHD1 maintains the homeostatic dNTP levels that regulate DNA replication and damage repair. Recent progress indicates that gene mutations and epigenetic mechanisms lead to downregulation of SAMHD1 activity or expression in multiple cancers. Impaired SAMHD1 function can cause increased dNTP pool resulting in genomic instability and cell-cycle progression, thereby facilitating cancer cell proliferation. This review summarizes the latest advances in understanding the importance of dNTP metabolism in cancer development and the novel function of SAMHD1 in regulating this process.
Collapse
Affiliation(s)
- Rebecca Kohnken
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA
| | - Karthik M Kodigepalli
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA. .,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
276
|
Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Mol Ther 2015; 24:240-250. [PMID: 26388461 DOI: 10.1038/mt.2015.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
277
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
278
|
Dorman SN, Baranova K, Knoll JHM, Urquhart BL, Mariani G, Carcangiu ML, Rogan PK. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol Oncol 2015; 10:85-100. [PMID: 26372358 DOI: 10.1016/j.molonc.2015.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease.
Collapse
Affiliation(s)
- Stephanie N Dorman
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Katherina Baranova
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Molecular Diagnostics Division, Laboratory Medicine Program, London Health Sciences Centre, ON, Canada; Cytognomix Inc., London, ON, Canada
| | - Brad L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gabriella Mariani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Luisa Carcangiu
- Department of Diagnostic and Laboratory Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Cytognomix Inc., London, ON, Canada; Department of Computer Science, University of Western Ontario, London, ON, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
279
|
Mah V, Alavi M, Márquez-Garbán DC, Maresh EL, Kim SR, Horvath S, Bagryanova L, Huerta-Yepez S, Chia D, Pietras R, Goodglick L. Ribonucleotide reductase subunit M2 predicts survival in subgroups of patients with non-small cell lung carcinoma: effects of gender and smoking status. PLoS One 2015; 10:e0127600. [PMID: 26001082 PMCID: PMC4441434 DOI: 10.1371/journal.pone.0127600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
Background Ribonucleotide reductase catalyzes the conversion of ribonucleotide diphosphates to deoxyribonucleotide diphosphates. The functional enzyme consists of two subunits - one large (RRM1) and one small (RRM2 or RRM2b) subunit. Expression levels of each subunit have been implicated in prognostic outcomes in several different types of cancers. Experimental Design Immunohistochemistry for RRM1 and RRM2 was performed on a lung cancer tissue microarray (TMA) and analyzed. 326 patients from the microarray were included in this study. Results In non-small cell lung cancer (NSCLC), RRM2 expression was strongly predictive of disease-specific survival in women, non-smokers and former smokers who had quit at least 10 years prior to being diagnosed with lung cancer. Higher expression was associated with worse survival. This was not the case for men, current smokers and those who had stopped smoking for shorter periods of time. RRM1 was not predictive of survival outcomes in any subset of the patient group. Conclusion RRM2, but not RRM1, is a useful predictor of survival outcome in certain subsets of NSCLC patients.
Collapse
Affiliation(s)
- Vei Mah
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
- * E-mail:
| | - Mohammad Alavi
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Diana C. Márquez-Garbán
- Department of Medicine, Division of Hematology-Oncology, UCLA, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, United States of America
| | - Erin L. Maresh
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Sara R. Kim
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Steve Horvath
- Department of Biostatistics, UCLA, Los Angeles, California, 90095, United States of America
- Department of Human Genetics, UCLA, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, United States of America
| | - Lora Bagryanova
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, SSa, México
| | - David Chia
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, United States of America
| | - Richard Pietras
- Department of Medicine, Division of Hematology-Oncology, UCLA, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, United States of America
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, United States of America
| |
Collapse
|
280
|
RRM2B-Mediated Regulation of Mitochondrial Activity and Inflammation under Oxidative Stress. Mediators Inflamm 2015; 2015:287345. [PMID: 26089597 PMCID: PMC4451759 DOI: 10.1155/2015/287345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022] Open
Abstract
RRM2B is a critical ribonucleotide reductase (RR) subunit that exists as p53-inducible and p53-dependent molecule. The p53-independent regulation of RRM2B has been recently studied, and FOXO3 was identified as a novel regulator of RRM2B. However, the p53-independent regulation of RRM2B, particularly under oxidative stress, remains largely unknown. In this study, we investigated the role of RRM2B underoxidative stress-induced DNA damage and further examined the regulation of mitochondrial and inflammatory genes by RRM2B. Our study is the first to report the critical role of RRM2B in mitochondrial homeostasis and the inflammation signaling pathway in a p53-independent manner. Furthermore, our study provides novel insights into the role of the RR in inflammatory diseases.
Collapse
|
281
|
Julián E, Baelo A, Gavaldà J, Torrents E. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme. PLoS One 2015; 10:e0122049. [PMID: 25782003 PMCID: PMC4363900 DOI: 10.1371/journal.pone.0122049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.
Collapse
Affiliation(s)
- Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Baelo
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
| | - Joan Gavaldà
- Infectious Diseases Research Laboratory, Infectious Diseases Department, Vall d’Hebron Research Institute, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
- * E-mail:
| |
Collapse
|
282
|
Non-enzymatic action of RRM1 protein upregulates PTEN leading to inhibition of colorectal cancer metastasis. Tumour Biol 2015; 36:4833-42. [DOI: 10.1007/s13277-015-3137-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
|
283
|
Parvez S, Fu Y, Li J, Long MJC, Lin HY, Lee D, Hu GS, Aye Y. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J Am Chem Soc 2015; 137:10-3. [PMID: 25544059 PMCID: PMC4304447 DOI: 10.1021/ja5084249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Indexed: 12/24/2022]
Abstract
Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.
Collapse
Affiliation(s)
- Saba Parvez
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yuan Fu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Jiayang Li
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Marcus J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Hong-Yu Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Dustin
K. Lee
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Gene S. Hu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Department
of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
284
|
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 2014; 6:88-100. [PMID: 25476483 PMCID: PMC4312762 DOI: 10.1007/s13238-014-0119-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
285
|
Lecona E, Fernández-Capetillo O. Replication stress and cancer: it takes two to tango. Exp Cell Res 2014; 329:26-34. [PMID: 25257608 DOI: 10.1016/j.yexcr.2014.09.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022]
Abstract
Problems arising during DNA replication require the activation of the ATR-CHK1 pathway to ensure the stabilization and repair of the forks, and to prevent the entry into mitosis with unreplicated genomes. Whereas the pathway is essential at the cellular level, limiting its activity is particularly detrimental for some cancer cells. Here we review the links between replication stress (RS) and cancer, which provide a rationale for the use of ATR and Chk1 inhibitors in chemotherapy. First, we describe how the activation of oncogene-induced RS promotes genome rearrangements and chromosome instability, both of which could potentially fuel carcinogenesis. Next, we review the various pathways that contribute to the suppression of RS, and how mutations in these components lead to increased cancer incidence and/or accelerated ageing. Finally, we summarize the evidence showing that tumors with high levels of RS are dependent on a proficient RS-response, and therefore vulnerable to ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
286
|
Fu Y, Lin H, Wisitpitthaya S, Blessing WA, Aye Y. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization. Chembiochem 2014; 15:2598-2604. [PMID: 25256246 DOI: 10.1002/cbic.201402368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 11/11/2022]
Abstract
Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853
| | - Hongyu Lin
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853
| | | | - William A Blessing
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853
| | - Yimon Aye
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853.,Department of Biochemistry Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
287
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|