251
|
Panwar P, Allen MA, Williams TJ, Hancock AM, Brazendale S, Bevington J, Roux S, Páez-Espino D, Nayfach S, Berg M, Schulz F, Chen IMA, Huntemann M, Shapiro N, Kyrpides NC, Woyke T, Eloe-Fadrosh EA, Cavicchioli R. Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. MICROBIOME 2020; 8:116. [PMID: 32772914 PMCID: PMC7416419 DOI: 10.1186/s40168-020-00889-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , 476 Lancaster Rd, Pegarah, Australia
| | - James Bevington
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - David Páez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Mammoth BioSciences, 279 East Grand Ave, South San Francisco, CA, USA
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Maureen Berg
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A Chen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
252
|
White RA, Visscher PT, Burns BP. Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats. Trends Microbiol 2020; 29:204-213. [PMID: 32654857 DOI: 10.1016/j.tim.2020.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
Stromatolites are geobiological systems formed by complex microbial communities, and fossilized stromatolites provide a record of some of the oldest life on Earth. Microbial mats are precursors of extant stromatolites; however, the mechanisms of transition from mat to stromatolite are controversial and are still not well understood. To fully recognize the profound impact that these ecosystems have had on the evolution of the biosphere requires an understanding of modern lithification mechanisms and how they relate to the geological record. We propose here viral mechanisms in carbonate precipitation, leading to stromatolite formation, whereby viruses directly or indirectly impact microbial metabolisms that govern the transition from microbial mat to stromatolite. Finding a tangible link between host-virus interactions and changes in biogeochemical processes will provide tools to interpret mineral biosignatures through geologic time, including those on Earth and beyond.
Collapse
Affiliation(s)
- Richard Allen White
- Plant Pathology, Washington State University, Pullman, WA, USA; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; RAW Molecular Systems (RMS) LLC, Spokane, WA, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; Departments of Marine Sciences and Geosciences, University of Connecticut, CT, USA; Biogeosciences, the Université de Bourgogne Franche-Comté, Dijon, France
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
253
|
Evseev P, Sykilinda N, Gorshkova A, Kurochkina L, Ziganshin R, Drucker V, Miroshnikov K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020; 12:E721. [PMID: 32635178 PMCID: PMC7412058 DOI: 10.3390/v12070721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| |
Collapse
|
254
|
Khan Mirzaei M, Xue J, Costa R, Ru J, Schulz S, Taranu ZE, Deng L. Challenges of Studying the Human Virome - Relevant Emerging Technologies. Trends Microbiol 2020; 29:171-181. [PMID: 32622559 DOI: 10.1016/j.tim.2020.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
In this review we provide an overview of current challenges and advances in bacteriophage research within the growing field of viromics. In particular, we discuss, from a human virome study perspective, the current and emerging technologies available, their limitations in terms of de novo discoveries, and possible solutions to overcome present experimental and computational biases associated with low abundance of viral DNA or RNA. We summarize recent breakthroughs in metagenomics assembling tools and single-cell analysis, which have the potential to increase our understanding of phage biology, diversity, and interactions with both the microbial community and the human body. We expect that these recent and future advances in the field of viromics will have a strong impact on how we develop phage-based therapeutic approaches.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Zofia E Taranu
- Aquatic Contaminants Research Division (ACRD), Environment and Climate Change Canada (ECCC), Montréal, QC H2Y 2E7, Canada
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany.
| |
Collapse
|
255
|
Hassim A, Lekota KE, van Dyk DS, Dekker EH, van Heerden H. A Unique Isolation of a Lytic Bacteriophage Infected Bacillus anthracis Isolate from Pafuri, South Africa. Microorganisms 2020; 8:microorganisms8060932. [PMID: 32575780 PMCID: PMC7356010 DOI: 10.3390/microorganisms8060932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
Bacillus anthracis is a soil-borne, Gram-positive endospore-forming bacterium and the causative agent of anthrax. It is enzootic in Pafuri, Kruger National Park in South Africa. The bacterium is amplified in a wild ungulate host, which then becomes a source of infection to the next host upon its death. The exact mechanisms involving the onset (index case) and termination of an outbreak are poorly understood, in part due to a paucity of information about the soil-based component of the bacterium’s lifecycle. In this study, we present the unique isolation of a dsDNA bacteriophage from a wildebeest carcass site suspected of having succumbed to anthrax. The aggressively lytic bacteriophage hampered the initial isolation of B. anthracis from samples collected at the carcass site. Classic bacteriologic methods were used to test the isolated phage on B. anthracis under different conditions to simulate deteriorating carcass conditions. Whole genome sequencing was employed to determine the relationship between the bacterium isolated on site and the bacteriophage-dubbed Bacillus phage Crookii. The 154,012 bp phage belongs to Myoviridae and groups closely with another African anthrax carcass-associated Bacillus phage WPh. Bacillus phage Crookii was lytic against B. cereus sensu lato group members but demonstrated a greater affinity for encapsulated B. anthracis at lower concentrations (<1 × 108 pfu) of bacteriophage. The unusual isolation of this bacteriophage demonstrates the phage’s role in decreasing the inoculum in the environment and impact on the life cycle of B. anthracis at a carcass site.
Collapse
Affiliation(s)
- Ayesha Hassim
- Department of Veterinary Tropical diseases, University of Pretoria, Faculty of Veterinary Science, Pretoria 0110, South Africa; (K.E.L); (H.v.H.)
- Correspondence: ; Tel.: +27-125-298-339
| | - Kgaugelo Edward Lekota
- Department of Veterinary Tropical diseases, University of Pretoria, Faculty of Veterinary Science, Pretoria 0110, South Africa; (K.E.L); (H.v.H.)
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - David Schalk van Dyk
- Department of Agriculture Fisheries and Forestry, Office of the State Veterinarian, Skukuza 1350, South Africa; (D.S.v.D.); (E.H.D.)
| | - Edgar Henry Dekker
- Department of Agriculture Fisheries and Forestry, Office of the State Veterinarian, Skukuza 1350, South Africa; (D.S.v.D.); (E.H.D.)
| | - Henriette van Heerden
- Department of Veterinary Tropical diseases, University of Pretoria, Faculty of Veterinary Science, Pretoria 0110, South Africa; (K.E.L); (H.v.H.)
| |
Collapse
|
256
|
Wojewodzic MW. Bacteriophages Could Be a Potential Game Changer in the Trajectory of Coronavirus Disease (COVID-19). ACTA ACUST UNITED AC 2020; 1:60-65. [PMID: 36147892 PMCID: PMC9041474 DOI: 10.1089/phage.2020.0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pandemic of the coronavirus disease (Covid-19) has caused the death of at least 270,000 people as of the 8th of May 2020. This work stresses the potential role of bacteriophages to decrease the mortality rate of patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The indirect cause of mortality in Covid-19 is miscommunication between the innate and adaptive immune systems, resulting in a failure to produce effective antibodies against the virus on time. Although further research is urgently needed, secondary bacterial infections in the respiratory system could potentially contribute to the high mortality rate observed among the elderly due to Covid-19. If bacterial growth, together with delayed production of antibodies, is a significant contributing factor to Covid-19's mortality rate, then the additional time needed for the human body's adaptive immune system to produce specific antibodies could be gained by reducing the bacterial growth rate in the respiratory system of a patient. Independently of that, the administration of synthetic antibodies against SARS-CoV-2 viruses could potentially decrease the viral load. The decrease of bacterial growth and the covalent binding of synthetic antibodies to viruses should further diminish the production of inflammatory fluids in the lungs of patients (the indirect cause of death). Although the first goal could potentially be achieved by antibiotics, I argue that other methods may be more effective or could be used together with antibiotics to decrease the growth rate of bacteria, and that respective clinical trials should be launched. Both goals can be achieved by bacteriophages. The bacterial growth rate could potentially be reduced by the aerosol application of natural bacteriophages that prey on the main species of bacteria known to cause respiratory failure and should be harmless to a patient. Independently of that, synthetically changed bacteriophages could be used to quickly manufacture specific antibodies against SARS-CoV-2. This can be done via a Nobel Prize awarded technique called “phage display.” If it works, the patient is given extra time to produce their own specific antibodies against the SARS-CoV-2 virus and stop the damage caused by an excessive immunological reaction.
Collapse
Affiliation(s)
- Marcin W. Wojewodzic
- Cancer Registry of Norway (Kreftregisteret), Institute of Population-Based Cancer Research, Etiology Group, NO-0304, Oslo, Norway
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
257
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
258
|
González B, Monroe L, Li K, Yan R, Wright E, Walter T, Kihara D, Weintraub ST, Thomas JA, Serwer P, Jiang W. Phage G Structure at 6.1 Å Resolution, Condensed DNA, and Host Identity Revision to a Lysinibacillus. J Mol Biol 2020; 432:4139-4153. [PMID: 32454153 DOI: 10.1016/j.jmb.2020.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Å resolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.
Collapse
Affiliation(s)
- Brenda González
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Lyman Monroe
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Kunpeng Li
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Rui Yan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Elena Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Thomas Walter
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907-2107, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Julie A Thomas
- Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Wen Jiang
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Purdue Cryo-EM Facility, Purdue University, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Purdue Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, IN 47907, USA; Purdue Institute for Infectious, Immunology and Inflammatory Diseases, Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47097, USA.
| |
Collapse
|
259
|
Abstract
Huge bacteriophages display genome sizes that bridge the gap between viral and bacterial genomes. Large Pseudomonas phages elaborate a nucleus-like structure in the infected bacterial cell and a tubulin-like phage protein forms a kind of spindle apparatus. While this probably represents cases of convergent evolution, these observations revive the discussion on the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Harald Brüssow
- KU Leuven, Department of Biosystems, Laboratory of Gene Technology, Leuven, Belgium
| |
Collapse
|
260
|
Serwer P, Wright ET. In-Gel Isolation and Characterization of Large (and Other) Phages. Viruses 2020; 12:v12040410. [PMID: 32272774 PMCID: PMC7232213 DOI: 10.3390/v12040410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
We review some aspects of the rapid isolation of, screening for and characterization of jumbo phages, i.e., phages that have dsDNA genomes longer than 200 Kb. The first aspect is that, as plaque-supporting gels become more concentrated, jumbo phage plaques become smaller. Dilute agarose gels are better than conventional agar gels for supporting plaques of both jumbo phages and, prospectively, the even larger (>520 Kb genome), not-yet-isolated mega-phages. Second, dilute agarose gels stimulate propagation of at least some jumbo phages. Third, in-plaque techniques exist for screening for both phage aggregation and high-in-magnitude, negative average electrical surface charge density. The latter is possibly correlated with high phage persistence in blood. Fourth, electron microscopy of a thin section of a phage plaque reveals phage type, size and some phage life cycle information. Fifth, in-gel propagation is an effective preparative technique for at least some jumbo phages. Sixth, centrifugation through sucrose density gradients is a relatively non-destructive jumbo phage purification technique. These basics have ramifications in the development of procedures for (1) use of jumbo phages for phage therapy of infectious disease, (2) exploration of genomic diversity and evolution and (3) obtaining accurate metagenomic analyses.
Collapse
|
261
|
Too big to be ignored. Nat Rev Microbiol 2020; 18:192. [DOI: 10.1038/s41579-020-0341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
262
|
Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020; 30:315-333. [PMID: 32188701 PMCID: PMC7111523 DOI: 10.1101/gr.258640.119] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genomes are an integral component of the biological information about an organism; thus, the more complete the genome, the more informative it is. Historically, bacterial and archaeal genomes were reconstructed from pure (monoclonal) cultures, and the first reported sequences were manually curated to completion. However, the bottleneck imposed by the requirement for isolates precluded genomic insights for the vast majority of microbial life. Shotgun sequencing of microbial communities, referred to initially as community genomics and subsequently as genome-resolved metagenomics, can circumvent this limitation by obtaining metagenome-assembled genomes (MAGs); but gaps, local assembly errors, chimeras, and contamination by fragments from other genomes limit the value of these genomes. Here, we discuss genome curation to improve and, in some cases, achieve complete (circularized, no gaps) MAGs (CMAGs). To date, few CMAGs have been generated, although notably some are from very complex systems such as soil and sediment. Through analysis of about 7000 published complete bacterial isolate genomes, we verify the value of cumulative GC skew in combination with other metrics to establish bacterial genome sequence accuracy. The analysis of cumulative GC skew identified potential misassemblies in some reference genomes of isolated bacteria and the repeat sequences that likely gave rise to them. We discuss methods that could be implemented in bioinformatic approaches for curation to ensure that metabolic and evolutionary analyses can be based on very high-quality genomes.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Alon Shaiber
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA.,Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|