251
|
Yu SL, Ko KL, Chen CS, Chang YC, Syu WJ. Characterization of the distal tail fiber locus and determination of the receptor for phage AR1, which specifically infects Escherichia coli O157:H7. J Bacteriol 2000; 182:5962-8. [PMID: 11029414 PMCID: PMC94728 DOI: 10.1128/jb.182.21.5962-5968.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2000] [Accepted: 08/05/2000] [Indexed: 11/20/2022] Open
Abstract
Phage AR1 is similar to phage T4 in several essential genes but differs in host range. AR1 infects various isolates of Escherichia coli O157:H7 but does not infect K-12 strains that are commonly infected by T4. We report here the determinants that confer this infection specificity. In T-even phages, gp37 and gp38 are components of the tail fiber that are critical for phage-host interaction. The counterparts in AR1 may be similarly important and, therefore, were characterized. The AR1 gp37 has a sequence that differs totally from those of T2 and T4, except for a short stretch at the N terminus. The gp38 sequence, however, has some conservation between AR1 and T2 but not between AR1 and T4. The sequences that are most closely related to the AR1 gp37 and gp38 are those of phage Ac3 in the T2 family. To identify the AR1-specific receptor, E. coli O157:H7 was mutated by Tn10 insertion and selected for an AR1-resistant phenotype. A mutant so obtained has an insertion occurring at ompC that encodes an outer membrane porin. To confirm the role of OmpC in the AR1 infection, homologous replacement was used to create an ompC disruption mutant (RM). When RM was complemented with OmpC originated from an O157:H7 strain, but not from K-12, its AR1 susceptibility was fully restored. Our results suggest that the host specificity of AR1 is mediated at least in part through the OmpC molecule.
Collapse
Affiliation(s)
- S L Yu
- Institute of Microbiology and Immunology, National Yang Ming University, Pai-Tao, Taipei, 112, Taiwan
| | | | | | | | | |
Collapse
|
252
|
Yethon JA, Vinogradov E, Perry MB, Whitfield C. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol 2000; 182:5620-3. [PMID: 10986272 PMCID: PMC111012 DOI: 10.1128/jb.182.19.5620-5623.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 07/17/2000] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, phosphoryl substituents in the lipopolysaccharide core region are essential for outer membrane stability. Mutation of the core glucosyltransferase encoded by waaG (formerly rfaG) resulted in lipopolysaccharide truncated immediately after the inner core heptose residues, which serve as the sites for phosphorylation. Surprisingly, mutation of waaG also destabilized the outer membrane. Structural analyses of waaG mutant lipopolysaccharide showed that the cause for this phenotype was a decrease in core phosphorylation, an unexpected side effect of the waaG mutation.
Collapse
Affiliation(s)
- J A Yethon
- Canadian Bacterial Diseases Network and Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1
| | | | | | | |
Collapse
|
253
|
So JS, Kim WS, Stacey G. Molecular characterization of a gene region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum: cloning, sequencing and expression of rfaf gene. FEMS Microbiol Lett 2000; 190:109-14. [PMID: 10981699 DOI: 10.1111/j.1574-6968.2000.tb09271.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 3.0-kb region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum was sequenced. One complete open reading frame was identified which encodes a polypeptide of 354 amino acid residues with a predicted molecular mass of 38 209 Da. Expression of the protein using a T7 gene expression system revealed a band of similar molecular mass after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A database search against known gene sequences revealed a significant sequence similarity to the rfaF gene cloned from several Gram-negative bacteria. The rfaF gene is known to encode heptosyltransferase II that transfers a second heptose to the inner core of lipopolysaccharide. The cloned B. japonicum open reading frame was able to functionally complement a rfaF mutant of Salmonella typhimurium SL3789. Transformation of this mutant with the B. japonicum gene restored production of an intact lipopolysaccharide and resistance to the hydrophobic antibiotic, novobiocin. An additional open reading frame having a significant sequence similarity to the rfaD gene was found to be divergently oriented to the rfaF gene.
Collapse
Affiliation(s)
- J S So
- Department of Biological Engineering, Inha University, South Korea.
| | | | | |
Collapse
|
254
|
Llamas MA, Ramos JL, Rodríguez-Herva JJ. Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J Bacteriol 2000; 182:4764-72. [PMID: 10940016 PMCID: PMC111352 DOI: 10.1128/jb.182.17.4764-4772.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of gram-negative bacteria functions as a permeability barrier that protects cells against a large number of antibacterial agents. OprL protein of Pseudomonas putida has been shown to be crucial to maintain the stability of this cell component (J. J. Rodríguez-Herva, M.-I. Ramos-González, and J. L. Ramos. J. Bacteriol. 178:1699-1706, 1996). In the present study we cloned and mutagenized the orf1, tolQ, tolR, tolA, and tolB genes from P. putida KT2440, which were located upstream of the oprL gene. Polar and nonpolar mutations of the P. putida tolQ, tolR, tolA, and tolB genes were generated in vitro by using the omega-Km(r) interposon, which carries two transcriptional stop signals, or a promoterless xylE cassette, lacking any transcriptional stop signal, respectively. The mutant constructs were used to inactivate, by reverse genetics procedures, the corresponding chromosomal copies of the genes. The phenotype of each mutant strain was analyzed and compared with those of the wild-type strain and the previously characterized P. putida oprL::xylE mutant. All mutant strains exhibited a similar phenotype: altered cell morphology, bleb formation at the cell surface, release of periplasmic and outer membrane proteins to the extracellular medium, increased sensitivity to a variety of compounds (i.e., EDTA, sodium dodecyl sulfate, deoxycholate, and some antibiotics), filament formation, and severely reduced cell motility. Altogether, these results demonstrate the importance of the Tol-OprL system for the maintenance of outer membrane integrity in P. putida and suggest a possible role of these proteins in assembling outer membrane components.
Collapse
Affiliation(s)
- M A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, 18008 Granada, Spain
| | | | | |
Collapse
|
255
|
Tan NS, Ng ML, Yau YH, Chong PK, Ho B, Ding JL. Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides. FASEB J 2000; 14:1801-13. [PMID: 10973930 DOI: 10.1096/fj.99-0866com] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three truncated fragments, harboring different sushi domains, namely, sushi123, sushi1, and sushi3 domains, of Factor C were produced as biologically active secreted recombinant proteins. Sushi1 and 3 each has a high-affinity LPS binding site with K:(d) of 10(-9) to 10(-10) M. Positive cooperativity in sushi123 resulted in a 1000-fold increase in K:(d)2. The core LPS binding region of sushi1 and 3 reside in two 34-mer peptides, S1 and S3. A rigidly held disulfide-bonded structure is not essential but is important for LPS binding, as confirmed by a 100- to 10000-fold decrease in affinity. Both S1 and S3 can inhibit LAL reaction and LPS-induced hTNF-alpha secretion with different potency. LAL assay revealed that at least two molecules of S1 bind cooperatively to one LPS molecule, with Hill's coefficient of 2.42. The LPS binding by S3 is independent and noncooperative. The modified SDelta1 and SDelta3 peptides exhibited increased LPS neutralization potential although its LPS binding affinities indicated only a 10-fold improvement. Hence, the structural difference of the four sushi peptides conferred different efficiencies in LPS neutralization without altering their binding affinity for LPS. Circular dichroism spectrometry revealed that the four peptides underwent conformational change in the presence of lipid A, transitioning from a random coil to either an alpha-helical or beta-sheet structure. Two factors are critical for the sensitivity of Factor C to LPS: 1) the presence of multiple binding sites for LPS on a single Factor C molecule; and 2) high positive cooperativity in LPS binding. The results showed that in the design of an improved LPS binding and neutralizing peptide, charge balance of the peptide is a critical parameter in addition to its structure.
Collapse
Affiliation(s)
- N S Tan
- Department of Biological Sciences, Department of Microbiology, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
256
|
Yethon JA, Gunn JS, Ernst RK, Miller SI, Laroche L, Malo D, Whitfield C. Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo. Infect Immun 2000; 68:4485-91. [PMID: 10899846 PMCID: PMC98355 DOI: 10.1128/iai.68.8.4485-4491.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the waaP (rfaP) gene product was recently shown to be responsible for phosphorylation of the first heptose residue of the lipopolysaccharide (LPS) inner core region. WaaP was also shown to be necessary for the formation of a stable outer membrane. These earlier studies were performed with an avirulent rough strain of E. coli (to facilitate the structural chemistry required to properly define waaP function); therefore, we undertook the creation of a waaP mutant of Salmonella enterica serovar Typhimurium to assess the contribution of WaaP and LPS core phosphorylation to the biology of an intracellular pathogen. The S. enterica waaP mutant described here is the first to be both genetically and structurally characterized, and its creation refutes an earlier claim that waaP mutations in S. enterica must be leaky to maintain viability. The mutant was shown to exhibit characteristics of the deep-rough phenotype, despite its ability to produce a full-length core capped with O antigen. Further, phosphoryl modifications in the LPS core region were shown to be required for resistance to polycationic antimicrobials. The waaP mutant was significantly more sensitive to polymyxin in both wild-type and polymyxin-resistant backgrounds, despite the decreased negative charge of the mutant LPSs. In addition, the waaP mutation was shown to cause a complete loss of virulence in mouse infection models. Taken together, these data indicate that WaaP is a potential target for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- J A Yethon
- Canadian Bacterial Diseases Network, University of Guelph, Guelph, Ontario N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
257
|
Park KM, So JS. Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. J Microbiol Methods 2000; 41:219-26. [PMID: 10958967 DOI: 10.1016/s0167-7012(00)00155-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors previously isolated a lipopolysaccharide (LPS) deficient Tn5-mutant of Bradyrhizobium japonicum, and subsequently isolated the LPS gene region. In this study the LPS deficiency of B. japonicum was studied in terms of its cell surface characteristics. By monitoring the kinetics of the partition with hexadecane the LPS-mutant was found to be far more hydrophobic than the wild type strain; the partition coefficients were 3.19 min(-1) for the mutant, as compared with only 1.40 min(-1) for the wild type. When the mutant was transformed with the cloned LPS gene, the transformant regained the wild type phenotypes, including the cell surface hydrophobicity (CSH) and LPS profile. A polyacrylamide gel electrophoretic analysis of LPS demonstrated that the O-antigenic part of LPS was completely absent in the mutant. The LPS-mutant of B. japonicum was visually distinguishable from the wild type after a simple centrifugation of the cells.
Collapse
Affiliation(s)
- K M Park
- Department of Biological Engineering, Inha University, 402-751, Inchon, South Korea
| | | |
Collapse
|
258
|
Filiatrault MJ, Gibson BW, Schilling B, Sun S, Munson RS, Campagnari AA. Construction and characterization of Haemophilus ducreyi lipooligosaccharide (LOS) mutants defective in expression of heptosyltransferase III and beta1,4-glucosyltransferase: identification of LOS glycoforms containing lactosamine repeats. Infect Immun 2000; 68:3352-61. [PMID: 10816485 PMCID: PMC97600 DOI: 10.1128/iai.68.6.3352-3361.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To begin to understand the role of the lipooligosaccharide (LOS) molecule in chancroid infections, we constructed mutants defective in expression of glycosyltransferase genes. Pyocin lysis and immunoscreening was used to identify a LOS mutant of Haemophilus ducreyi 35000. This mutant, HD35000R, produced a LOS molecule that lacked the monoclonal antibody 3F11 epitope and migrated with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Structural studies indicated that the principal LOS glycoform contains lipid A, Kdo, and two of the three core heptose residues. HD35000R was transformed with a plasmid library of H. ducreyi 35000 DNA, and a clone producing the wild-type LOS was identified. Sequence analysis of the plasmid insert revealed one open reading frame (ORF) that encodes a protein with homology to the WaaQ (heptosyltransferase III) of Escherichia coli. A second ORF had homology to the LgtF (glucosyltransferase) of Neisseria meningitidis. Individual isogenic mutants lacking expression of the putative H. ducreyi heptosyltransferase III, the putative glucosyltransferase, and both glycosyltransferases were constructed and characterized. Each mutant was complemented with the representative wild-type genes in trans to restore expression of parental LOS and confirm the function of each enzyme. Matrix-assisted laser desorption ionization mass spectrometry and SDS-PAGE analysis identified several unique LOS glycoforms containing di-, tri-, and poly-N-acetyllactosamine repeats added to the terminal region of the main LOS branch synthesized by the heptosyltransferase III mutant. These novel H. ducreyi mutants provide important tools for studying the regulation of LOS assembly and biosynthesis.
Collapse
Affiliation(s)
- M J Filiatrault
- Department of Microbiology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | |
Collapse
|
259
|
Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP, Whitfield C. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 2000; 68:1116-24. [PMID: 10678915 PMCID: PMC97256 DOI: 10.1128/iai.68.3.1116-1124.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1999] [Accepted: 11/29/1999] [Indexed: 11/20/2022] Open
Abstract
In the lipopolysaccharides of Escherichia coli there are five distinct core oligosaccharide (core OS) structures, designated K-12 and R1 to R4. The objective of this work was to determine the prevalences of these core OS types within the species. Unique sequences in the waa (core OS biosynthesis) gene operon were used to develop a PCR-based system that facilitated unequivocal determination of the core OS types in isolates of E. coli. This system was applied to the 72 isolates in the E. coli ECOR collection, a compilation of isolates that is considered to be broadly representative of the genetic diversity of the species. Fifty (69. 4%) of the ECOR isolates contained the R1 core OS, 8 (11.1%) were representatives of R2, 8 (11.1%) were R3, 2 (2.8%) were R4, and only 4 (5.6%) were K-12. R1 is the only core OS type found in all four major phylogenetic groups (A, B1, B2, and D) in the ECOR collection. Virulent extraintestinal pathogenic E. coli isolates tend to be closely related to group B2 and, to a lesser extent, group D isolates. All of the ECOR representatives from the B2 and D groups had the R1 core OS. In contrast, commensal E. coli isolates are more closely related to group A, which contains isolates representing each of the five core OS structures. R3 was the only core OS type found in 38 verotoxigenic E. coli (VTEC) isolates from humans and cattle belonging to the common enterohemorrhagic E. coli serogroups O157, O111, and O26. Although isolates from other VTEC serogroups showed more core OS diversity, the R3 type (83.1% of all VTEC isolates) was still predominant. When non-VTEC commensal isolates from cattle were analyzed, it was found that most possessed the R1 core OS type.
Collapse
Affiliation(s)
- K Amor
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1
| | | | | | | | | | | |
Collapse
|
260
|
Rathman M, Jouirhi N, Allaoui A, Sansonetti P, Parsot C, Tran Van Nhieu G. The development of a FACS-based strategy for the isolation of Shigella flexneri mutants that are deficient in intercellular spread. Mol Microbiol 2000; 35:974-90. [PMID: 10712681 DOI: 10.1046/j.1365-2958.2000.01770.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the disease course of bacillary dysentery, pathogenic Shigella flexneri invade colonic epithelial cells and spread both within and between host cells. The ability to spread intercellularly allows the organism to infect an entire epithelial layer without significant contact with the extracellular milieu. Using fluorescence activated cell sorter (FACS)-based technology, we developed a rapid and powerful selection strategy for the isolation of S. flexneri mutants that are unable to spread from cell to cell. The majority of mutants identified using this strategy harbour mutations that affect the structure of their lipopolysaccharide or the ability of the bacteria to move intracellularly via actin-based motility; both factors have previously been shown to be essential for cell-to-cell spread. However, using a modified strategy that eliminated both of these types of mutants, we identified several mutants that provide us with evidence that bacterial proteins of the type III secretion system, which are essential for bacterial entry into host cells, also play a role in cell-to-cell spread.
Collapse
Affiliation(s)
- M Rathman
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
261
|
Boyce JD, Chung JY, Adler B. Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Vet Microbiol 2000; 72:121-34. [PMID: 10699509 DOI: 10.1016/s0378-1135(99)00193-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Capsules from a range of bacterial species have been shown to be major virulence determinants and capsule has been implicated in virulence in Pasteurella multocida. Moreover, capsular serogroup appears to be related to disease predilection. Haemorrhagic septicaemia strains belong to serogroup B and E, fowl cholera strains to serogroup A and atrophic rhinitis strains to serogroup D. The entire capsule biosynthetic locus of P. multocida A:1 has been cloned and its nucleotide sequence determined (Chung et al., 1998. FEMS Microbiol. Lett. 166, 289-296); however, nothing is known of the P. multocida B:2 capsule locus. In this work we have determined the nucleotide sequence and genetic organisation of the P. multocida M1404 (B:2) capsule locus. By analogy with the cap loci of other bacteria, the nucleotide sequence can be divided into three functional regions. Regions 1 and 3 comprise six genes involved in transport of the polysaccharide capsule to the cell surface. The deduced products of these genes show high similarity to proteins involved in capsule export in other bacteria. Region 2 comprises nine genes which are likely involved in biosynthesis of the polysaccharide capsule. The deduced products of three of these genes (bcbA, bcbB and bcbC) show significant similarity to proteins known to be involved in polysaccharide biosynthesis while the other six show no similarity to known proteins. However, their organisation indicates they are co-transcribed with bcbA, bcbB, bcbC and the Region 1 capsule export genes, suggesting strongly that they are also involved in capsule biosynthesis.
Collapse
Affiliation(s)
- J D Boyce
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
262
|
Logan SM, Conlan JW, Monteiro MA, Wakarchuk WW, Altman E. Functional genomics of Helicobacter pylori: identification of a beta-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol Microbiol 2000; 35:1156-67. [PMID: 10712696 DOI: 10.1046/j.1365-2958.2000.01784.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A previously annotated open reading frame (ORF) (HP0826) from Helicobacter pylori was cloned and expressed in Escherichia coli cells and determined to be a beta-1,4-galactosyltransferase that used GlcNAc as an acceptor. Mutational analysis in H. pylori strains demonstrated that this enzyme plays a key role in the biosynthesis of the type 2 N-acetyl-lactosamine (LacNAc) polysaccharide O-chain backbone, by catalysing the addition of Gal to GlcNAc. To examine the potential role of this O-chain structure in bacterial colonization of the host stomach, the mutation was introduced into H. pylori strain SS1 which is known to be capable of colonizing the gastric mucosa of mice. Compared with the parental strain, mutated SS1 was less efficient at colonizing the murine stomach.
Collapse
Affiliation(s)
- S M Logan
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A OR6.
| | | | | | | | | |
Collapse
|
263
|
Walsh AG, Matewish MJ, Burrows LL, Monteiro MA, Perry MB, Lam JS. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol Microbiol 2000; 35:718-27. [PMID: 10692150 DOI: 10.1046/j.1365-2958.2000.01741.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is notorious for its intrinsic drug resistance. We have used chemical and genetic techniques to characterize three putative kinase genes that are involved in the addition of phosphate to the inner core region of P. aeruginosa lipopolysaccharide. The first gene is a waaP homologue, whereas the other two (wapP and wapQ) are unique to P. aeruginosa. Repeated attempts using a variety of membrane-stabilizing conditions to generate waaP:Gm (Gm, gentamicin) or wapP:Gm mutants were unsuccessful. We were able to generate a chromosomal waaP mutant that had a wild-type copy of either waaPPa or waaPEc in trans, but were unable to cure this plasmid-borne copy of the gene. These results are consistent with the fact that P. aeruginosa mutants lacking inner core heptose (Hep) or phosphate have never been isolated and demonstrate the requirement of Hep-linked phosphate for P. aeruginosa viability. A wapQ:Gm mutant was isolated and it had an unaltered minimum inhibitory concentration (MIC) for novobiocin and only a small decrease in the MIC for sodium dodecyl sulphate (SDS), suggesting that the loss of a phosphate group transferred by WapQ may only be having a small impact on outer-membrane permeability. Nuclear magnetic resonance and methylation linkage analysis showed that WaaPPa could add one phosphate to O4 of HepI in a Salmonella typhimurium waaP mutant. The expression of WaaPPa increased the outer-membrane integrity of these complemented mutants, as evidenced by 35-fold and 75-fold increases in the MIC for novobiocin and SDS respectively. The S. typhimurium waaP mutant transformed with both waaP and wapP had over 250-fold and 1000-fold increases, respectively, in these MICs. The inner core phosphates of P. aeruginosa appear to be playing a key role in the intrinsic drug resistance of this bacterium.
Collapse
Affiliation(s)
- A G Walsh
- Department of Microbiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
264
|
Feldman MF, Marolda CL, Monteiro MA, Perry MB, Parodi AJ, Valvano MA. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 1999; 274:35129-38. [PMID: 10574995 DOI: 10.1074/jbc.274.49.35129] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.
Collapse
Affiliation(s)
- M F Feldman
- Instituto de Investigaciones Bioquímicas Fundación Campomar, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
265
|
Rodríguez-Herva JJ, Reniero D, Galli E, Ramos JL. Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. Environ Microbiol 1999; 1:479-88. [PMID: 11207769 DOI: 10.1046/j.1462-2920.1999.00058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To generate mutants with altered lipopolysaccharides (LPS) of the wild-type Pseudomonas putida KT2442, we used the mini-Tn5luxAB-Km transposon. A mutant was found among luminescent colonies and selected as a negative clone in enzyme-linked immunosorbent assay (ELISA) with monoclonal antibody (mAb) 7.3B, which recognizes the O-antigen of P. putida LPS. The DNA region of the LPS mutant interrupted by the minitransposon insertion was cloned and sequenced. Comparison of the deduced amino acid sequence with protein sequence databases showed similarity to the O-antigen polymerase (Wzy) of Salmonella enterica (muenchen). The wild-type gene was rescued by polymerase chain reaction (PCR), cloned into a broad-host-range plasmid and used to carry out complementation assays. The cloned gene was able to restore the wild-type phenotype of the P. putida wzy mutant. We constructed an isogenic mutant of the luminescent wzy mutant to which an oprL mutation was transferred by homologous recombination with an oprL::xylE cassette. The wzy mutants of P. putida were more sensitive to SDS, deoxycholate and EDTA than the corresponding parental strains. We analysed the ability of wzy, oprL and wzy oprL mutants of P. putida to colonize soil. In comparison with the wild-type strain, the ability of single mutants to colonize soil decreased; this characteristic was more evident for the double mutant, especially at high temperatures.
Collapse
Affiliation(s)
- J J Rodríguez-Herva
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
266
|
Affiliation(s)
- T J Beveridge
- Canadian Bacterial Disease Network, and Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
267
|
Zhou Z, Lin S, Cotter RJ, Raetz CR. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate. J Biol Chem 1999; 274:18503-14. [PMID: 10373459 DOI: 10.1074/jbc.274.26.18503] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two-thirds of the lipid A in wild-type Escherichia coli K12 is a hexa-acylated disaccharide of glucosamine in which monophosphate groups are attached at positions 1 and 4'. The remaining lipid A contains a monophosphate substituent at position 4' and a pyrophosphate moiety at position 1. The biosynthesis of the 1-pyrophosphate unit is unknown. Its presence is associated with lipid A translocation to the outer membrane (Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C., and Raetz, C. R. H. (1998) J. Biol. Chem. 273, 12466-12475). To determine if a phosphatase regulates the amount of the lipid A 1-pyrophosphate, we grew cells in broth containing nonspecific phosphatase inhibitors. Na2WO4 and sodium fluoride increased the relative amount of the 1-pyrophosphate slightly. Remarkably, NH4VO3-treated cells generated almost no 1-pyrophosphate, but made six major new lipid A derivatives (EV1 to EV6). Matrix-assisted laser desorption ionization/time of flight mass spectrometry of purified EV1 to EV6 indicated that these compounds were lipid A species substituted singly or in combination with palmitoyl, phosphoethanolamine, and/or aminodeoxypentose residues. The aminodeoxypentose residue was released by incubation in chloroform/methanol (4:1, v/v) at 25 degrees C, and was characterized by 1H NMR spectroscopy. The chemical shifts and vicinal coupling constants of the two anomers of the aminodeoxypentose released from EV3 closely resembled those of synthetic 4-amino-4-deoxy-L-arabinose. NH4VO3-induced lipid A modification did not require the PhoP/PhoQ two-component regulatory system, and also occurred in E. coli msbB or htrB mutants. The lipid A variants that accumulate in NH4VO3-treated E. coli K12 are the same as many of those normally found in untreated Salmonella typhimurium and Salmonella minnesota, demonstrating that E. coli K12 has latent enzyme systems for synthesizing these important derivatives.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
268
|
Currie CG, Poxton IR. The lipopolysaccharide core type of Escherichia coli O157:H7 and other non-O157 verotoxin-producing E. coli. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 24:57-62. [PMID: 10340713 DOI: 10.1111/j.1574-695x.1999.tb01265.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A mouse monoclonal antibody specific for the R3 lipopolysaccharide core type of Escherichia coli was used to determine the core type of E. coli O157:H7 and other non-O157 verotoxin-producing E. coli strains. Lipopolysaccharide extracts from 28 clinical isolates were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting and all were found to have the R3 core. None of the core lipopolysaccharide from the strains tested reacted with the control R1 and R2 specific monoclonal antibodies. A common core type between all the verotoxin-producing E. coli strains tested may be significant when considering the immune response to these bacteria, and to the receptor for the VT bacteriophage.
Collapse
Affiliation(s)
- C G Currie
- Department of Medical Microbiology, University of Edinburgh Medical School, UK
| | | |
Collapse
|
269
|
Rahn A, Drummelsmith J, Whitfield C. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 1999; 181:2307-13. [PMID: 10094716 PMCID: PMC93651 DOI: 10.1128/jb.181.7.2307-2313.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 1 capsules of Escherichia coli are similar to the capsules produced by strains of Klebsiella spp. in terms of structure, genetics, and patterns of expression. The striking similarities between the capsules of these organisms prompted a more detailed investigation of the cps loci encoding group 1 capsule synthesis. Six strains of K. pneumoniae and 12 strains of E. coli were examined. PCR analysis showed that the clusters in these strains are conserved in their chromosomal locations. A highly conserved block of four genes, orfX-wza-wzb-wzc, was identified in all of the strains. The wza and wzc genes are required for translocation and surface assembly of E. coli K30 antigen. The conservation of these genes points to a common pathway for capsule translocation. A characteristic JUMPstart sequence was identified upstream of each cluster which may function in conjunction with RfaH to inhibit transcriptional termination at a stem-loop structure found immediately downstream of the "translocation-surface assembly" region of the cluster. Interestingly, the sequence upstream of the cps clusters in five E. coli strains and one Klebsiella strain indicated the presence of IS elements. We propose that the IS elements were responsible for the transfer of the cps locus between organisms and that they may continue to mediate recombination between strains.
Collapse
Affiliation(s)
- A Rahn
- Department of Microbiology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
270
|
Abstract
Many Escherichia coli strains are covered in a layer of surface-associated polysaccharide called the capsule. Capsular polysaccharides represent a major surface antigen, the K antigen, and more than 80 distinct K serotypes result from structural diversity in these polymers. However, not all capsules consist of K antigen. Some are due to production of an extensive layer of a polymer structurally identical to a lipopolysaccharide O antigen, but distinguished from lipopolysaccharide by the absence of terminal lipid A-core. Recent research has provided insight into the manner in which capsules are organized on the Gram-negative cell surface, the pathways used for their assembly, and the regulatory processes used to control their expression. A limited repertoire of capsule expression systems are available, despite the fact that the producing bacteria occupy a variety of ecological niches and possess diverse physiologies. All of the known capsule assembly systems seen in Gram-negative bacteria are represented in E. coli, as are the majority of the regulatory strategies. Escherichia coli therefore provides a variety of working models on which studies in other bacteria are (or can be) based. In this review, we present an overview of the current molecular and biochemical models for capsule expression in E. coli. By taking into account the organization of capsule gene clusters, details of the assembly pathway, and regulatory features that dictate capsule expression, we provide a new classification system that separates the known capsules of E. coli into four distinct groups.
Collapse
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada.
| | | |
Collapse
|