Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W, Robinson P, Redwood C, Watkins H. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype.
J Biol Chem 2005;
280:28498-506. [PMID:
15923195 DOI:
10.1074/jbc.m412281200]
[Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. Inherited DCM can result from mutations in the genes encoding cardiac troponin T, troponin C, and alpha-tropomyosin; different mutations in the same genes cause hypertrophic cardiomyopathy. To understand how certain mutations lead specifically to DCM, we have investigated their effect on contractile function by comparing wild-type and mutant recombinant proteins. Because initial studies on two troponin T mutations have generated conflicting findings, we analyzed all eight published DCM mutations in troponin T, troponin C, and alpha-tropomyosin in a range of in vitro assays. Thin filaments, reconstituted with a 1:1 ratio of mutant/wild-type proteins (the likely in vivo ratio), all showed reduced Ca(2+) sensitivity of activation in ATPase and motility assays, and except for one alpha-tropomyosin mutant showed lower maximum Ca(2+) activation. Incorporation of either of two troponin T mutants in skinned cardiac trabeculae also decreased Ca(2+) sensitivity of force generation. Structure/function considerations imply that the diverse thin filament DCM mutations affect different aspects of regulatory function yet change contractility in a consistent manner. The DCM mutations depress myofibrillar function, an effect fundamentally opposite to that of hypertrophic cardiomyopathy-causing thin filament mutations, suggesting that decreased contractility may trigger pathways that ultimately lead to the clinical phenotype.
Collapse