251
|
Ou Q, Magico A, King-Jones K. Nuclear receptor DHR4 controls the timing of steroid hormone pulses during Drosophila development. PLoS Biol 2011; 9:e1001160. [PMID: 21980261 PMCID: PMC3181225 DOI: 10.1371/journal.pbio.1001160] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 08/15/2011] [Indexed: 12/15/2022] Open
Abstract
Pulses of the steroid hormone ecdysone are turned off periodically through nucleo-cytoplasmic oscillations of a nuclear receptor that counteracts the neuropeptide signaling pathway responsible for activating hormone pulses in Drosophila melanogaster. In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear compartment. Steroid hormones play fundamental roles in development and disease. They are often released as pulses, thereby orchestrating multiple physiological and developmental changes throughout the body. Hormone pulses must be regulated in a way so that they have a defined beginning, peak, and end. In Drosophila, pulses of the steroid hormone ecdysone govern all major developmental transitions, such as the molts or the transformation of a larva to a pupa. While we have a relatively good understanding of how an ecdysone pulse is initiated, little is known about how hormone production is turned off. In this study, we identify a critical regulator of this process, the nuclear receptor DHR4. When we interfere with the function of DHR4 specifically in the ecdysone-producing gland, we find that larvae develop much faster than normal, and that this is caused by the inability to turn off ecdysone production. We show that DHR4 oscillates between cytoplasm and nucleus of ecdysone-producing cells under the control of a neuropeptide that regulates ecdysone production. When the neuropeptide pathway is inactive, DHR4 enters the nucleus and represses another gene, Cyp6t3, for which we show a novel role in the production of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Adam Magico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
252
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
253
|
Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P, Vanden Broeck J. Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1240-1248. [PMID: 21708158 DOI: 10.1016/j.jinsphys.2011.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/21/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
The functional characterization of the Halloween genes represented a major breakthrough in the elucidation of the ecdysteroid biosynthetic pathway. These genes encode cytochrome P450 enzymes catalyzing the final steps of ecdysteroid biosynthesis in the dipteran Drosophila melanogaster and the Lepidoptera Manduca sexta and Bombyx mori. This is the first report on the identification of two Halloween genes, spook (spo) and phantom (phm), from a hemimetabolous orthopteran insect, the desert locust Schistocerca gregaria. Using q-RT-PCR, their spatial and temporal transcript profiles were analyzed in both final larval stage and adult locusts. The circulating ecdysteroid titers in the hemolymph were measured and found to correlate well with changes in the temporal transcript profiles of spo and phm. Moreover, an RNA interference (RNAi)-based approach was employed to study knockdown effects upon silencing of both transcripts in the fifth larval stage. Circulating ecdysteroid levels were found to be significantly reduced upon dsRNA treatment.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
254
|
Jankovics F, Henn L, Bujna Á, Vilmos P, Kiss N, Erdélyi M. A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos. PLoS One 2011; 6:e22229. [PMID: 21799798 PMCID: PMC3140500 DOI: 10.1371/journal.pone.0022229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022] Open
Abstract
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
255
|
Ai J, Zhu Y, Duan J, Yu Q, Zhang G, Wan F, Xiang ZH. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 2011; 480:42-50. [DOI: 10.1016/j.gene.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/29/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
256
|
Gibbens YY, Warren JT, Gilbert LI, O'Connor MB. Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/Activin signaling. Development 2011; 138:2693-703. [PMID: 21613324 DOI: 10.1242/dev.063412] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In insects, initiation of metamorphosis requires a surge in the production of the steroid hormone 20-hydroxyecdysone from the prothoracic gland, the primary endocrine organ of juvenile larvae. Here, we show that blocking TGFβ/Activin signaling, specifically in the Drosophila prothoracic gland, results in developmental arrest prior to metamorphosis. The terminal, giant third instar larval phenotype results from a failure to induce the large rise in ecdysteroid titer that triggers metamorphosis. We further demonstrate that activin signaling regulates competence of the prothoracic gland to receive PTTH and insulin signals, and that these two pathways act at the mRNA and post-transcriptional levels, respectively, to control ecdysone biosynthetic enzyme expression. This dual regulatory circuitry may provide a cross-check mechanism to ensure that both developmental and nutritional inputs are synchronized before initiating the final genetic program leading to reproductive adult development. As steroid hormone production in C. elegans and mammals is also influenced by TGFβ/Activin signaling, this family of secreted factors may play a general role in regulating developmental transitions across phyla.
Collapse
Affiliation(s)
- Ying Y Gibbens
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
257
|
Yamazaki Y, Kiuchi M, Takeuchi H, Kubo T. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:283-93. [PMID: 21277979 DOI: 10.1016/j.ibmb.2011.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 05/12/2023]
Abstract
We previously reported preferential expression of genes for ecdysteroid signaling in the mushroom bodies of honeybee workers, suggesting a role of ecdysteroid signaling in regulating honeybee behaviors. The organs that produce ecdysteroids in worker honeybees, however, remain unknown. We show here that the expression of neverland and Non-molting glossy/shroud, which are involved in early steps of ecdysteroid synthesis, was enhanced in the ovary, while the expression of CYP306A1 and CYP302A1, which are involved in later steps of ecdysone synthesis, was enhanced in the brain, and the expression of CYP314A1, which is involved in converting ecdysone into active 20-hydroxyecdysone (20E), was enhanced in the brain, fat body, and ovary. In in vitro organ culture, a significant amount of ecdysteroids was detected in the culture medium of the brain, fat body, and hypopharyngeal glands. The ecdysteroids detected in the culture medium of the fat body were identified as ecdysone and 20E. These findings suggest that, in worker honeybees, cholesterol is converted into intermediate ecdysteroids in the ovary, whereas ecdysone is synthesized and secreted mainly by the brain and converted into 20E in the brain and fat body.
Collapse
Affiliation(s)
- Yurika Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
258
|
Rewitz KF, Yamanaka N, O'Connor MB. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 2011; 19:895-902. [PMID: 21145504 DOI: 10.1016/j.devcel.2010.10.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022]
Abstract
Steroid hormones are systemic signaling molecules that regulate juvenile-adult transitions in both insects and mammals. In insects, pulses of the steroid hormone 20-hydroxyecdysone (20E) are generated by increased biosynthesis followed by inactivation/clearance. Although mechanisms that control 20E synthesis have received considerable recent attention, the physiological significance of 20E inactivation remains largely unknown. We show that the cytochrome P450 Cyp18a1 lowers 20E titer during the Drosophila prepupal to pupal transition. Furthermore, this reduction of 20E levels is a prerequisite to induce βFTZ-F1, a key factor in the genetic hierarchy that controls early metamorphosis. Resupplying βFTZ-F1 rescues Cyp18a1-deficient prepupae. Because Cyp18a1 is 20E-inducible, it appears that the increased production of steroid is responsible for its eventual decline, thereby generating the regulatory pulse required for proper temporal progression of metamorphosis. The coupling of hormone clearance to βFTZ-F1 expression suggests a general mechanism by which transient signaling drives unidirectional progression through a multistep process.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Science, Roskilde University, Denmark
| | | | | |
Collapse
|
259
|
Gan L, Liu X, Xiang Z, He N. Microarray-based gene expression profiles of silkworm brains. BMC Neurosci 2011; 12:8. [PMID: 21247463 PMCID: PMC3032748 DOI: 10.1186/1471-2202-12-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/19/2011] [Indexed: 01/16/2023] Open
Abstract
Background Molecular genetic studies of Bombyx mori have led to profound advances in our understanding of the regulation of development. Bombyx mori brain, as a main endocrine organ, plays important regulatory roles in various biological processes. Microarray technology will allow the genome-wide analysis of gene expression patterns in silkworm brains. Results We reported microarray-based gene expression profiles in silkworm brains at four stages including V7, P1, P3 and P5. A total of 4,550 genes were transcribed in at least one selected stage. Of these, clustering algorithms separated the expressed genes into stably expressed genes and variably expressed genes. The results of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of stably expressed genes showed that the ribosomal and oxidative phosphorylation pathways were principal pathways. Secondly, four clusters of genes with significantly different expression patterns were observed in the 1,175 variably expressed genes. Thirdly, thirty-two neuropeptide genes, six neuropeptide-like precursor genes, and 117 cuticular protein genes were expressed in selected developmental stages. Conclusion Major characteristics of the transcriptional profiles in the brains of Bombyx mori at specific development stages were present in this study. Our data provided useful information for future research.
Collapse
Affiliation(s)
- Ling Gan
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
260
|
CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol 2011; 349:35-45. [DOI: 10.1016/j.ydbio.2010.09.023] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/16/2022]
|
261
|
Bond ND, Hoshizaki DK, Gibbs AG. The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:398-404. [DOI: 10.1016/j.cbpa.2010.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/25/2022]
|
262
|
Gáliková M, Klepsatel P, Senti G, Flatt T. Steroid hormone regulation of C. elegans and Drosophila aging and life history. Exp Gerontol 2010; 46:141-7. [PMID: 20854888 DOI: 10.1016/j.exger.2010.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
In the last two decades it has become clear that hormones and gene mutations in endocrine signaling pathways can exert major effects on lifespan and related life history traits in worms, flies, mice, and other organisms. While most of this research has focused on insulin/insulin-like growth factor-1 signaling, a peptide hormone pathway, recent work has shown that also lipophilic hormones play an important role in modulating lifespan and other life history traits. Here we review how steroid hormones, a particular group of lipophilic hormones, affect life history traits in the nematode worm (Caenorhabditis elegans) and the fruit fly (Drosophila melanogaster), with a particular focus on longevity. Interestingly, a comparison suggests that parallel endocrine principles might be at work in worms and flies in these species and that steroid hormones interact with the gonad to affect lifespan.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Population Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
263
|
Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno Y, Fujimoto Y, Shigenobu S, Kobayashi S, Shimada T, Katsuma S, Shinoda T. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid biosynthesis pathway. Development 2010; 137:1991-9. [PMID: 20501590 DOI: 10.1242/dev.045641] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In insects, the precise timing of molting and metamorphosis is strictly guided by a principal steroid hormone, ecdysone. Among the multiple conversion steps for synthesizing ecdysone from dietary cholesterol, the conversion of 7-dehydrocholesterol to 5beta-ketodiol, the so-called 'Black Box', is thought to be the important rate-limiting step. Although a number of genes essential for ecdysone synthesis have recently been revealed, much less is known about the genes that are crucial for functioning in the Black Box. Here we report on a novel ecdysteroidgenic gene, non-molting glossy (nm-g)/shroud (sro), which encodes a short-chain dehydrogenase/reductase. This gene was first isolated by positional cloning of the nm-g mutant of the silkworm Bombyx mori, which exhibits a low ecdysteroid titer and consequently causes a larval arrest phenotype. In the fruit fly, Drosophila melanogaster, the closest gene to nm-g is encoded by the sro locus, one of the Halloween mutant members that are characterized by embryonic ecdysone deficiency. The lethality of the sro mutant is rescued by the overexpression of either sro or nm-g genes, indicating that these two genes are orthologous. Both the nm-g and the sro genes are predominantly expressed in tissues producing ecdysone, such as the prothoracic glands and the ovaries. Furthermore, the phenotypes caused by the loss of function of these genes are restored by the application of ecdysteroids and their precursor 5beta-ketodiol, but not by cholesterol or 7-dehydrocholesterol. Altogether, we conclude that the Nm-g/Sro family protein is an essential enzyme for ecdysteroidogenesis working in the Black Box.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Xiang Y, Liu Z, Huang X. br regulates the expression of the ecdysone biosynthesis gene npc1. Dev Biol 2010; 344:800-8. [PMID: 20621708 DOI: 10.1016/j.ydbio.2010.05.510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 12/24/2022]
Abstract
The growth and metamorphosis of insects are regulated by ecdysteroid hormones produced in the ring gland. Ecdysone biosynthesis-related genes are both highly and specifically expressed in the ring gland. However, the intrinsic regulation of ecdysone biosynthesis has received little attention. Here we used the Drosophila npc1 gene to study the mechanism of ring gland-specific gene expression. npc1 is important for sterol trafficking in the ring gland during ecdysone biosynthesis. We have identified a conserved ring gland-specific cis-regulatory element (RSE) in the npc1 promoter using promoter fusion reporter analysis. Furthermore, genetic loss-of-function analysis and in vitro electrophoretic mobility shift assays revealed that the ecdysone early response gene broad complex (br) is a vital factor in the positive regulation of npc1 ring gland expression. Moreover, br also affects the ring gland expression of many other ecdysone biosynthetic genes as well as torso and InR, two key factors in the regulation of ecdysone biosynthesis. These results imply that ecdysone could potentially act through its early response gene br to achieve positive feedback regulation of ecdysone biosynthesis during development.
Collapse
Affiliation(s)
- Yanhui Xiang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
265
|
Parthasarathy R, Sheng Z, Sun Z, Palli SR. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:429-39. [PMID: 20385235 PMCID: PMC2916939 DOI: 10.1016/j.ibmb.2010.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 05/12/2023]
Abstract
Previous studies from our laboratory showed the involvement of juvenile hormone (JH) and ecdysteroid signaling in the regulation of female reproduction in the red flour beetle, Tribolium castaneum. JH regulates vitellogenin (Vg) synthesis in the fat body but the role of ecdysteroid signaling is not known. Here, we report on ecdysteroid regulation of ovarian growth and oocyte maturation. Microarray analysis of RNA isolated from ovaries showed the up-regulation of several genes coding for proteins involved in ecdysteroid signaling on the 4th day after female adult eclosion. The functional analyses of genes coding for proteins involved in ecdysteroid and JH signaling pathways by RNA interference (RNAi) revealed that ecdysteroids but not JH regulate ovarian growth and primary oocyte maturation. Ultrastructural studies showed the temporal sequences of key events in oogenesis including the development of primary oocytes, the differentiation and development of follicle epithelial cells, and the formation of intercellular spaces to facilitate uptake of Vg protein. RNAi studies showed that ecdysone receptor (EcR) and ultraspiracle (USP) are required for the ovarian growth, primary oocyte maturation and the growth and migration of the follicle cells. These studies suggest important roles for ecdysteroids in the regulation of oocyte maturation in the beetle ovaries.
Collapse
Affiliation(s)
| | | | | | - Subba R. Palli
- Corresponding Author, Phone: 859 257 4962, Fax: 859 323 1120,
| |
Collapse
|
266
|
Suzuki T, Sakurai S, Iwami M. Physiological requirements for 20-hydroxyecdysone-induced rectal sac distention in the pupa of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:673-677. [PMID: 20193691 DOI: 10.1016/j.jinsphys.2010.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insect's ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention.
Collapse
Affiliation(s)
- Takumi Suzuki
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
267
|
Parthasarathy R, Sun Z, Bai H, Palli SR. Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:405-14. [PMID: 20381616 PMCID: PMC2875371 DOI: 10.1016/j.ibmb.2010.03.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 05/12/2023]
Abstract
To elucidate the endocrine regulation of vitellogenin (Vg) synthesis in the red flour beetle, Tribolium castaneum, the titers of juvenile hormone (JH) and ecdysteroids in the whole body of female beetles were measured and compared with Vg mRNA levels. Juvenile hormone levels remained high while the ecdysteroid levels declined steadily during 1-5 days post adult emergence (PAE). The Vg mRNA levels began to increase by the end of 3rd day PAE and peaked by the 4th-5th day PAE. Gene expression profiling by microarray and quantitative real-time PCR analyses of RNA isolated from 1 to 5 days PAE beetles revealed that the genes coding for proteins involved in JH biosynthesis and action, but not those involved in 20-hydroxyecdysone (20E) biosynthesis and action had similar expression patterns as the genes coding for Vg. RNA interference (RNAi)-aided knock-down in the expression of these genes showed that both JH and 20E were required for Vg gene expression. However, Vg mRNA was induced by the application of JH III but not by the injection of 20E into the previtellogenic females. These data suggest that JH is required for Vg synthesis in the fat body and 20E influences Vg synthesis through its action on oocyte maturation.
Collapse
Affiliation(s)
| | | | | | - Subba R. Palli
- Corresponding Author Phone: 859 257 4962, Fax: 859 323 1120,
| |
Collapse
|
268
|
Tissue-autonomous EcR functions are required for concurrent organ morphogenesis in the Drosophila embryo. Mech Dev 2010; 127:308-19. [DOI: 10.1016/j.mod.2010.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/14/2022]
|
269
|
Christiaens O, Iga M, Velarde RA, Rougé P, Smagghe G. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:187-200. [PMID: 20482650 DOI: 10.1111/j.1365-2583.2009.00957.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 alpha-helices associated with a short hairpin of two antiparallel beta-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling.
Collapse
MESH Headings
- Animals
- Aphids/genetics
- Aphids/growth & development
- Aphids/metabolism
- Binding Sites
- Cloning, Molecular
- Ecdysteroids/biosynthesis
- Ecdysterone/biosynthesis
- Genes, Insect
- Genome, Insect
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Insecta/genetics
- Insecta/metabolism
- Ligands
- Models, Molecular
- Pisum sativum/parasitology
- Phylogeny
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- O Christiaens
- Department of Crop Protection, Ghent University, Belgium
| | | | | | | | | |
Collapse
|
270
|
Iga M, Smagghe G. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis. Peptides 2010; 31:456-67. [PMID: 19682519 DOI: 10.1016/j.peptides.2009.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
20-Hydroxyecdyone (20E), an active form of ecdysteroid, is the key hormone in insect growth and development. The biosynthesis of ecdysteroid is triggered and under the control of the neuropeptide, prothoracicotropic hormone (PTTH). To date, five cytochrome P450 enzymes, namely Spook (Spo), Phantom (Phm), Disembodied (Dib), Shadow (Sad) and Shade (Shd) related to ecdysteroid biosynthesis, are identified and the character of last four enzymes is well studied in Drosophila melanogaster, Bombyx mori and Manduca sexta. These genes are called Halloween genes and mediate the biosynthesis of 20E from cholesterol. In this study, we extended these works to a major pest insect in agriculture, the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). We identified the sequence of five Halloween genes, and the converted amino acid sequences were compared with those of other insects. The phylogenetic analysis clearly showed separated clusters of each gene and the evolutional conservation in insects with a high similarity in Lepidoptera. Spo, phm, dib and sad were predominantly expressed in prothoracic glands, and shd was expressed in fat body and Malpighian tubules at the last instar larvae. Spo expression was kept high level between day 2 and day 4 after ecdysis. The expression of phm and dib peaked at day 2, and sad and shd expressions peaked at day 2 and day 4 after ecdysis. In addition, the hemolymph ecdysteroid titer showed a small peak at day 2 and a large peak at day 4 after ecdysis. These results suggest the importance of Halloween genes in ecdysone biosynthesis by prothoracic glands and conversion of ecdysone into 20E by fat body in larval-pupal metamorphosis.
Collapse
Affiliation(s)
- Masatoshi Iga
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | | |
Collapse
|
271
|
Blais C, Blasco T, Maria A, Dauphin-Villemant C, Lafont R. Characterization of ecdysteroids in Drosophila melanogaster by enzyme immunoassay and nano-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:925-32. [PMID: 20303327 DOI: 10.1016/j.jchromb.2010.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 11/24/2022]
Abstract
Ecdysteroids are polyhydroxylated steroids that function as molting hormones in insects. 20-Hydroxyecdysone (a 27C-ecdysteroid) is classically considered as the major steroid hormone of Drosophilamelanogaster, but this insect also contains 28C-ecdysteroids. This arises from both the use of several dietary sterols as precursors for the synthesis of its steroid hormones, and its inability to dealkylate the 28C-phytosterols to produce cholesterol. The nature of Drosophila ecdysteroids has been re-investigated using both high-performance liquid chromatography coupled to enzyme immunoassay and a particularly sensitive nano-liquid chromatography-mass spectrometry methodology, while taking advantage of recently available ecdysteroid standards isolated from plants. In vitro incubations of the larval steroidogenic organ, the ring-gland, reveals the synthesis of ecdysone, 20-deoxy-makisterone A and a third less polar compound identified as the 24-epimer of the latter, while wandering larvae contain the three corresponding 20-hydroxylated ecdysteroids. This pattern results from the simultaneous use of higher plant sterols (from maize) and fungal sterols (from yeast). The physiological relevance of all these ecdysteroids, which display different affinities to the ecdysteroid receptors, is still a matter of debate.
Collapse
Affiliation(s)
- Catherine Blais
- UPMC Univ Paris 06, UMR CNRS 7622, Equipe Biogenèse des signaux hormonaux, Case 29, 7 Quai Saint Bernard, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
272
|
Chung JS. Hemolymph ecdysteroids during the last three molt cycles of the blue crab, Callinectes sapidus: quantitative and qualitative analyses and regulation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:1-13. [PMID: 19557853 DOI: 10.1002/arch.20327] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The profiles of circulating ecdysteroids during the three molt cycles prior to adulthood were monitored from the juvenile blue crab, Callinectes sapidus. Ecdysteroid patterns are remarkably similar in terms of peak concentrations ranging between 210-330 ng/ml hemolymph. Analysis of hemolymph at late premolt stage revealed six different types of ecdysteroids with ponasterone A (PoA) and 20-OH ecdysone (20-OH E) as the major forms. This ecdysteroid profile was consistent in all three molt cycles. Bilateral eyestalk ablation (EA) is a procedure that removes inhibitory neurohormones including crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) and often results in precocious molting in crustaceans. However, the inhibitory roles of these neuropeptides in vivo have not yet been tested in C. sapidus. We determined the regulatory roles of CHH and MIH in the circulating ecdysteroid from ablated animals through daily injection. A daily administration of purified native CHH and MIH at physiological concentration maintained intermolt levels of ecdysteroids in the EA animals. This suggests that Y organs (YO) require a brief exposure to CHH and MIH in order to maintain the low level of ecdysteroids. Compared to intact animals, the EA crabs did not exhibit the level of peak ecdysteroids, and the major ecdysteroid turned out to be 20-OH E, not PoA. These results further underscore the important actions of MIH and CHH in ecdysteroidogenesis, as they not only inhibit, but also control the composition of output of the YO activity.
Collapse
Affiliation(s)
- J Sook Chung
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
273
|
Bakrim A, Guittard E, Maria A, De Virville JD, Lafont R, Takvorian N. Phytoecdysteroid C2-hydroxylase is microsomal in spinach, Spinacia oleracea L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:210-219. [PMID: 19750551 DOI: 10.1002/arch.20330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An enzyme involved in the biosynthesis of phytoecdysteroids, the C2-hydroxylase, has been investigated in spinach, Spinacia oleracea. This enzyme is microsomal and its K(m) has been determined using 2-deoxy-20-hydroxyecdysone as substrate (K(m)=3.72 microM). It is much more efficient with 2-deoxy-20-hydroxyecdysone than with 2-deoxyecdysone and, conversely, the C20-hydroxylase is more active on 2-deoxyecdysone than on ecdysone. These data support the conclusion that C20-hydroxylation precedes C2-hydroxylation. The C2-hydroxylase is inhibited by high concentrations of 20E. Substrate specificity and subcellular localization of C2-hydroxylase differ between plants and insects, and these data, as well as those previously reported on other biosynthetic steps, show the great difference between plant and insect ecdysteroid biosynthetic pathways and suggest an independent origin for the pathways in both kingdoms.
Collapse
Affiliation(s)
- Ahmed Bakrim
- UPMC, Université Paris VI, Laboratoire de Biochimie Structurale et Fonctionnelle des Protéines, CNRS FRE 2852, Paris, France
| | | | | | | | | | | |
Collapse
|
274
|
Asazuma H, Nagata S, Nagasawa H. Inhibitory effect of molt-inhibiting hormone on phantom expression in the Y-organ of the kuruma prawn, Marsupenaeus japonicus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:220-233. [PMID: 19802900 DOI: 10.1002/arch.20335] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Molting in crustaceans is induced by ecdysteroids as in insects. The ecdysteroid titre in hemolymph is negatively regulated by molt-inhibiting hormone (MIH) that inhibits the secretion of ecdysteroids from the Y-organ, an ecdysteroid-producing gland of crustaceans, whereas little is known about the molecular mechanism of inhibition by MIH. Recently, the Halloween genes encoding cytochrome P450 monooxygenases were characterized as the steroidogenic enzymes in insects. To elucidate whether the ecdysteroidogenesis in the Y-organ is regulated by molt-inhibiting hormone (MIH), we analyzed the expression level of an orthologue of a member of the Halloween genes, phantom (Cyp306a1, phm), in the Y-organ of a decapod crustacean, Marsupenaeus japonicus. A cDNA encoding phm (Mj-phm) was cloned by degenerate PCR and 5'- and 3'-RACEs. The deduced amino acid sequence of Mj-phm showed about 40% identity to those of insect phm. The six motif sequences and the four substrate recognition sites were well conserved between Mj-PHM and other PHM. RT-PCR showed the specific expression of Mj-phm mRNA in the Y-organ. In addition, quantitative real-time PCR verified that the expression level of Mj-phm was significantly increased at the pre-molt stage and decreased after ecdysis. Furthermore, exposure of the Y-organ to MIH significantly decreased the Mj-phm expression level in vitro. These results indicate that the transcription of Mj-phm in the Y-organ may be regulated by the inhibitory mechanism of MIH of M. japonicus, which involves the consequent negative regulation of ecdysteroidogenesis at the transcriptional level.
Collapse
Affiliation(s)
- Hideaki Asazuma
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku,Tokyo, Japan
| | | | | |
Collapse
|
275
|
Ohnishi T, Yokota T, Mizutani M. Insights into the function and evolution of P450s in plant steroid metabolism. PHYTOCHEMISTRY 2009; 70:1918-29. [PMID: 19818976 DOI: 10.1016/j.phytochem.2009.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/15/2009] [Indexed: 05/17/2023]
Abstract
Numerous cytochrome P450 monooxygenases (P450s) have been known to be involved in the biosynthesis and metabolism of triterpenoids and steroids. This review will survey the oxidative reactions by such P450s and provide insights into the evolution of the steroid-biosynthetic P450 genes in the plant kingdom. Special emphasis is placed on brassinosteroids (BRs), plant steroid hormones, that play essential roles in the regulation of plant growth and development. Several P450s involved in BR biosynthesis and catabolism have recently been characterized by recombinant protein experiments, revealing a new route of the BR biosynthetic pathway.
Collapse
Affiliation(s)
- Toshiyuki Ohnishi
- Division of Global Research Leaders, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
276
|
Li JY, Chen X, Fan W, Moghaddam SHH, Chen M, Zhou ZH, Yang HJ, Chen JE, Zhong BX. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. J Proteome Res 2009; 8:2620-32. [PMID: 19382758 DOI: 10.1021/pr8006123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three organs of silkworm larva endocrine system, including brain (Br), subesophageal ganglion (SG) and prothoracic glands (PG), were studied employing shotgun LC-MS/MS combined with bioinformatic analysis to comprehensively understand their roles and relations. Totally, 3430, 2683, and 3395 proteins were identified including 1885 common and 652, 253, and 790 organ-specific ones in Br, SG, and PG, respectively. Identified common-expressed proteins indicated the existence of intrinsic complex interactions among these parts of endocrine system. Most of the reputed organs-specific proteins were identified by this approach. KEGG pathway analysis showed 162 same pathways among the 169, 164, and 171 relating Br, SG, and PG. This analysis revealed functional similarities with exceptional resemblance in their metabolism and signaling pathways of the three organs. On the other hand, 70, 57, and 114 organ-specific enzymes related pathways were detected for Br, SG, and PG confirming their functional differences. These results reveal a cooperative mechanism among the three endocrine organs in regulating various physiological and developmental events, and also suggest that the organ-specific proteins might be the fundamental factors responsible for the functional differentiation of these organs.
Collapse
Affiliation(s)
- Jian-Ying Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Sonobe H, Ito Y. Phosphoconjugation and dephosphorylation reactions of steroid hormone in insects. Mol Cell Endocrinol 2009; 307:25-35. [PMID: 19524123 DOI: 10.1016/j.mce.2009.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
In insects, the major products of phase II metabolism of ecdysteroids, which include the molting hormone, are phosphate esters. The phosphoconjugation pathway is a reversible process, comprising two enzyme systems: ecdysteroid 22-kinase (EcKinase) and ecdysteroid-phosphate phosphatase (EPPase). We report here that: (1) the biochemical characteristics of EcKinase and EPPase, (2) the physiological significance of the reciprocal conversion of ecdysteroids and ecdysteroid phosphates in the ovary-egg system in insects, (3) the biochemical mechanism by which ecdysteroid phosphates are synthesized in the ovary, transferred to eggs, and finally dephosphorylated in eggs, and (4) the possible catalytic steps of EcKinase and EPPase on the basis of the data obtained by an in silico study. From these studies, it is obvious that ecdysteroid phosphates as well as steroid sulfates, which are major products of phase II metabolism in mammals, function as precursors for the formation of biologically active hormones.
Collapse
Affiliation(s)
- Haruyuki Sonobe
- Department of Biology, Konan University, Higashinada-ku, Kobe, Japan.
| | | |
Collapse
|
278
|
Beck Y, Delaporte C, Moras D, Richards G, Billas IM. The ligand-binding domains of the three RXR-USP nuclear receptor types support distinct tissue and ligand specific hormonal responses in transgenic Drosophila. Dev Biol 2009; 330:1-11. [DOI: 10.1016/j.ydbio.2008.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/18/2008] [Accepted: 12/22/2008] [Indexed: 11/16/2022]
|
279
|
Huang X, Warren JT, Gilbert LI. New players in the regulation of ecdysone biosynthesis. J Genet Genomics 2009; 35:1-10. [PMID: 18222403 DOI: 10.1016/s1673-8527(08)60001-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 11/24/2007] [Accepted: 11/24/2007] [Indexed: 02/04/2023]
Abstract
Insect ecdysone steroid hormone regulates major developmental transitions, such as molting and metamorphosis. The production of ecdysone correlates well with the timing of these transitions. Finding out how the ecdysone biosynthesis is regulated is crucial to fully understand these sophisticated developmental switches. Here we summarized recent findings in the regulation of ecdysone biosynthesis from the aspects of cell signaling, key biosynthetic enzymes and substrate cholesterol trafficking.
Collapse
Affiliation(s)
- Xun Huang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
280
|
Jang ACC, Chang YC, Bai J, Montell D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol 2009; 11:569-79. [PMID: 19350016 PMCID: PMC2675665 DOI: 10.1038/ncb1863] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/26/2009] [Indexed: 12/30/2022]
Abstract
During development, elaborate patterns of cell differentiation and movement must occur in the correct locations and at the proper times. Developmental timing has been studied less than spatial pattern formation, and the mechanisms integrating the two are poorly understood. Border-cell migration in the Drosophila ovary occurs specifically at stage 9. Timing of the migration is regulated by the steroid hormone ecdysone, whereas spatial patterning of the migratory population requires localized activity of the JAK-STAT pathway. Ecdysone signalling is patterned spatially as well as temporally, although the mechanisms are not well understood. In stage 9 egg chambers, ecdysone signalling is highest in anterior follicle cells including the border cells. We identify the gene abrupt as a repressor of ecdysone signalling and border-cell migration. Abrupt protein is normally lost from border-cell nuclei during stage 9, in response to JAK-STAT activity. This contributes to the spatial pattern of the ecdysone response. Abrupt attenuates ecdysone signalling by means of a direct interaction with the basic helix-loop-helix (bHLH) domain of the P160 ecdysone receptor coactivator Taiman (Tai). Taken together, these findings provide a molecular mechanism by which spatial and temporal cues are integrated.
Collapse
Affiliation(s)
- Anna C-C Jang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | | | |
Collapse
|
281
|
Parthasarathy R, Tan A, Sun Z, Chen Z, Rankin M, Palli SR. Juvenile hormone regulation of male accessory gland activity in the red flour beetle, Tribolium castaneum. Mech Dev 2009; 126:563-79. [PMID: 19324087 DOI: 10.1016/j.mod.2009.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022]
Abstract
Male accessory gland proteins (Acps) act as key modulators of reproductive success in insects by influencing the female reproductive physiology and behavior. We used custom microarrays and identified 112 genes that were highly expressed in male accessory glands (MAG) in the red flour beetle, Tribolium castaneum. Out of these 112 identified genes, 59 of them contained sequences coding for signal peptide and cleavage site and the remaining 53 contained transmembrane domains. The expression of 14 of these genes in the MAG but not in other tissues of male or female was confirmed by quantitative real-time PCR. In virgin males, juvenile hormone (JH) levels increased from second day post adult emergence (PAE), remained high on third day PAE and declined on fourth day PAE. The ecdysteroid titers were high soon after adult emergence but declined to minimal levels from 1 to 5 days PAE. Feeding of juvenile hormone analog, hydroprene, but not the ecdysteroid analog, RH-2485, showed an increase in size of MAGs, as well as an increase in total RNA and protein content of MAG. Hydroprene treatment also increased the expression of Acp genes in the MAG. RNAi-mediated knock-down in the expression of JHAMT gene decreased the size of MAGs and expression of Acps. JH deficiency influenced male reproductive fitness as evidenced by a less vigor in mating behavior, poor sperm transfer, low egg and the progeny production by females mated with the JH deficient males. These data suggest a critical role for JH in the regulation of male reproduction especially through MAG secretions.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
282
|
Abstract
Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification.
Collapse
|
283
|
Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 2009; 299:39-50. [PMID: 18682271 DOI: 10.1016/j.mce.2008.07.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/10/2008] [Accepted: 07/03/2008] [Indexed: 12/19/2022]
Abstract
Hormonal signals can modulate lifespan and reproductive capacity across the animal kingdom. The use of model organisms such as worms, flies and mice has been fundamentally important for aging research in the discovery of genetic alterations that can extend healthy lifespan. The effects of mutations in the insulin and insulin-like growth factor-like signaling (IIS) pathways are evolutionarily conserved in that they can increase lifespan in all three animal models. Additionally, steroids and other lipophilic signaling molecules modulate lifespan in diverse organisms. Here we shall review how major hormonal pathways in the fruit fly Drosophila melanogaster interact to influence reproductive capacity and aging.
Collapse
Affiliation(s)
- Janne M Toivonen
- Institute of Healthy Aging, UCL Research Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
284
|
Brown MR, Sieglaff DH, Rees HH. Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:105-25. [PMID: 18680437 PMCID: PMC7205109 DOI: 10.1146/annurev.ento.53.103106.093334] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ecdysteroids are multifunctional hormones in male and female arthropods and are stored in oocytes for use during embryogenesis. Ecdysteroid biosynthesis and its hormonal regulation are demonstrated for insect gonads, but not for the gonads of other arthropods. The Y-organ in the cephalothorax of crustaceans and the integument of ticks are sources of secreted ecdysteroids in adults, as in earlier stages, but the tissue source is not known for adults in many arthropod groups. Ecdysteroid metabolism occurs in several tissues of adult arthropods. This review summarizes the evidence for ecdysteroid biosynthesis by gonads and its metabolism in adult arthropods and considers the apparent uniqueness of ecdysteroid hormones in arthropods, given the predominance of vertebrate-type steroids in sister invertebrate groups and vertebrates.
Collapse
Affiliation(s)
- Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
285
|
Arai H, Watanabe B, Nakagawa Y, Miyagawa H. Synthesis of ponasterone A derivatives with various steroid skeleton moieties and evaluation of their binding to the ecdysone receptor of Kc cells. Steroids 2008; 73:1452-64. [PMID: 18804484 DOI: 10.1016/j.steroids.2008.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/29/2008] [Accepted: 08/07/2008] [Indexed: 11/27/2022]
Abstract
A series of ponasterone A (PNA) derivatives with various steroid moieties were synthesized to measure their binding activity to the ecdysone receptors of Drosophila Kc cells. The activity of compounds was evaluated by determining the concentration required to give the 50% inhibition (IC(50) in M) of the incorporation of [(3)H]PNA to Drosophila Kc cells. Compounds with no functional groups such as OH and CO group in the steroid skeleton moiety were inactive. By the introduction of functional groups such as the OH and the CO group in the steroidal structure, these compounds became active. Some compounds containing the A/B-trans ring fusion, which is different from that (A/B-cis) of ecdysteroids were also active. The oxidation of CH(2) at 6-position to CO, enhanced the activity 19 times, but the activity was erased by the reduction of oxo to OH group at 6-position. The activity was enhanced about 250 times by the conversion of A/B ring configuration from trans [(20R,22R)-2beta,3beta,20,22-tetrahydroxy-5alpha-cholestan-6-one: pIC(50)=4.84] to cis [(20R,22R)-2beta,3beta,20,22-tetrahydroxy-5beta-cholestan-6-one: pIC(50)=7.23]. The latter cis-type compound which is the most potent among compounds synthesized in this study was equipotent to the natural molting hormone, 20-hydroxyecdysone, even though it is 1/50 of PNA.
Collapse
Affiliation(s)
- Hirokazu Arai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
286
|
Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc Natl Acad Sci U S A 2008; 105:19631-6. [PMID: 19060216 DOI: 10.1073/pnas.0809264105] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In female insects, the steroid hormone 20-hydroxyecdysone (20E) plays a major role in activating vitellogenesis, a process required for egg development. By contrast with vertebrates, production of large amounts of hormonal steroids has not been reported in adult male insects. In the present study, we analyzed steroidogenesis in both male and female adult of the malaria mosquito Anopheles gambiae and we found that A. gambiae male mosquitoes produce high amounts of the steroid hormone 20E. Importantly, we found that male accessory glands, but not testes, are the source of 20E. Moreover, this steroid hormone is stored in male accessory glands and delivered to females during mating. These findings suggest that male 20E may not act as a true male sex steroid, but more likely as an allohormone. Our results give new insights into species-specific physiological processes that govern the reproductive success of the malaria mosquito. This could thus lead to the identification of new target genes for manipulating male and/or female reproductive success, a promising way to reduce or eliminate mosquito population and therefore to control malaria transmission.
Collapse
|
287
|
A role of Pygopus as an anti-repressor in facilitating Wnt-dependent transcription. Proc Natl Acad Sci U S A 2008; 105:19324-9. [PMID: 19036929 DOI: 10.1073/pnas.0806098105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wnt/beta-catenin signaling controls animal development and tissue homeostasis, and is also an important cancer pathway. Pygopus (Pygo) is a conserved nuclear Wnt signaling component that is essential for Wingless-induced transcription throughout Drosophila development. It associates with Armadillo/beta-catenin and T cell factor (TCF) through the Legless/BCL9 adaptor, but its molecular function in TCF-mediated transcription is unknown. Here, we use a groucho-null allele to show that Groucho represses Wingless target genes during Drosophila development. Interestingly, groucho pygo double-mutants revealed that Pygo is not obligatory for transcriptional and phenotypic Wingless signaling outputs if the interaction between Groucho and Drosophila TCF is compromised genetically. Pygo function is also non-essential for Wingless outputs in the absence of other transcriptional antagonists of Wingless signaling. This indicates an anti-repressor function of Pygo: we propose that Pygo predisposes Drosophila TCF target genes for rapid Wingless-induced transcription, or that it protects them against premature shut-down.
Collapse
|
288
|
Ito Y, Yasuda A, Sonobe H. Synthesis and Phosphorylation of Ecdysteroids During Ovarian Development in the Silkworm, Bombyx mori. Zoolog Sci 2008; 25:721-7. [DOI: 10.2108/zsj.25.721] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022]
|
289
|
Talamillo A, Sánchez J, Cantera R, Pérez C, Martín D, Caminero E, Barrio R. Smt3 is required for Drosophila melanogaster metamorphosis. Development 2008; 135:1659-68. [PMID: 18367553 DOI: 10.1242/dev.020685] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sumoylation, the covalent attachment of the small ubiquitin-related modifier SUMO to target proteins, regulates different cellular processes, although its role in the control of development remains unclear. We studied the role of sumoylation during Drosophila development by using RNAi to reduce smt3 mRNA levels in specific tissues. smt3 knockdown in the prothoracic gland, which controls key developmental processes through the synthesis and release of ecdysteroids, caused a 4-fold prolongation of larval life and completely blocked the transition from larval to pupal stages. The reduced ecdysteroid titer of smt3 knockdown compared with wild-type larvae explains this phenotype. In fact, after dietary administration of exogenous 20-hydroxyecdysone, knockdown larvae formed pupal cases. The phenotype is not due to massive cell death or degeneration of the prothoracic glands at the time when puparium formation should occur. Knockdown cells show alterations in expression levels and/or the subcellular localisation of enzymes and transcription factors involved in the regulation of ecdysteroid synthesis. In addition, they present reduced intracellular channels and a reduced content of lipid droplets and cholesterol, which could explain the deficit in steroidogenesis. In summary, our study indicates that Smt3 is required for the ecdysteroid synthesis pathway at the time of puparium formation.
Collapse
Affiliation(s)
- Ana Talamillo
- Functional Genomics Unit, CIC bioGUNE, Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | | | | | | | | | | | | |
Collapse
|
290
|
Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:507-16. [DOI: 10.1016/j.cbpb.2007.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 11/15/2022]
|
291
|
Rewitz KF, Gilbert LI. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evol Biol 2008; 8:60. [PMID: 18298845 PMCID: PMC2276477 DOI: 10.1186/1471-2148-8-60] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/25/2008] [Indexed: 12/04/2022] Open
Abstract
Background In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. Results To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Conclusion Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA.
| | | |
Collapse
|
292
|
McBrayer Z, Ono H, Shimell M, Parvy JP, Beckstead RB, Warren JT, Thummel CS, Dauphin-Villemant C, Gilbert LI, O’Connor MB. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev Cell 2007; 13:857-71. [PMID: 18061567 PMCID: PMC2359579 DOI: 10.1016/j.devcel.2007.11.003] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 01/31/2023]
Abstract
In insects, control of body size is intimately linked to nutritional quality as well as environmental and genetic cues that regulate the timing of developmental transitions. Prothoracicotropic hormone (PTTH) has been proposed to play an essential role in regulating the production and/or release of ecdysone, a steroid hormone that stimulates molting and metamorphosis. In this report, we examine the consequences on Drosophila development of ablating the PTTH-producing neurons. Surprisingly, PTTH production is not essential for molting or metamorphosis. Instead, loss of PTTH results in delayed larval development and eclosion of larger flies with more cells. Prolonged feeding, without changing the rate of growth, causes the overgrowth and is a consequence of low ecdysteroid titers. These results indicate that final body size in insects is determined by a balance between growth-rate regulators such as insulin and developmental timing cues such as PTTH that set the duration of the feeding interval.
Collapse
Affiliation(s)
- Zofeyah McBrayer
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
| | - Hajime Ono
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, 55455
| | - MaryJane Shimell
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
| | - Jean-Philippe Parvy
- FRE2852 Protéines Biochimie structurale et fonctionnelle, CNRS- Université P. et M. Curie, Bat A, 5ème ét., Case 29, 7 Quai St Bernard, 75252 Paris CEDEX 05 France
| | - Robert B. Beckstead
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - James T. Warren
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Chantal Dauphin-Villemant
- FRE2852 Protéines Biochimie structurale et fonctionnelle, CNRS- Université P. et M. Curie, Bat A, 5ème ét., Case 29, 7 Quai St Bernard, 75252 Paris CEDEX 05 France
| | - Lawrence I. Gilbert
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Michael B. O’Connor
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
293
|
Shah PK, Tripathi LP, Jensen LJ, Gahnim M, Mason C, Furlong EE, Rodrigues V, White KP, Bork P, Sowdhamini R. Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families. Gene 2007; 407:199-215. [PMID: 17996400 DOI: 10.1016/j.gene.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/09/2007] [Accepted: 10/07/2007] [Indexed: 12/30/2022]
Abstract
Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.
Collapse
Affiliation(s)
- Parantu K Shah
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Sztal T, Chung H, Gramzow L, Daborn PJ, Batterham P, Robin C. Two independent duplications forming the Cyp307a genes in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1044-53. [PMID: 17785192 DOI: 10.1016/j.ibmb.2007.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/28/2007] [Accepted: 05/28/2007] [Indexed: 05/17/2023]
Abstract
The conserved relationship between orthologs of many cytochrome P450 genes involved in ecdysone synthesis is not reflected in the evolution of the Drosophila Cyp307a genes. In Drosophila melanogaster Cyp307a1 (spook) and Cyp307a2 (spookier) both play essential roles in ecdysone synthesis and may possess biochemically redundant functions. Using phylogenetic analyses we show that the Drosophila Cyp307a genes were formed from two independent duplication events depicting a complicated evolutionary scenario. An initial duplication, from a Cyp307a2 ancestral gene produced the Cyp307a1 gene that has been maintained only in the Sophophoran subgenus. A second duplication in the Drosophila subgenus formed an additional paralog, Cyp307a3. Microsynteny is conserved for Cyp307a2 throughout the Drosophila species, but is not conserved between Cyp307a1 and Cyp307a3. These are located in different genomic positions in the Sophophora and Drosophila subgenera, respectively. Cyp307a3 appears to encode a functional gene product and is expressed in a different spatial and temporal manner to Cyp307a1. This suggests some level of functional divergence between the Cyp307a paralogs in different Drosophila species.
Collapse
Affiliation(s)
- Tamar Sztal
- Department of Genetics, Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Vic., 3010, Australia
| | | | | | | | | | | |
Collapse
|
295
|
Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 2007; 134:3733-42. [PMID: 17804599 DOI: 10.1242/dev.004572] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mutations in either of the two human Niemann-Pick type C (NPC) genes, NPC1 and NPC2, cause a fatal neurodegenerative disease associated with abnormal cholesterol accumulation in cells. npc1a, the Drosophila NPC1 ortholog, regulates sterol homeostasis and is essential for molting hormone (20-hydroxyecdysone; 20E) biosynthesis. While only one npc2 gene is present in yeast, worm, mouse and human genomes, a family of eight npc2 genes (npc2a-h) exists in Drosophila. Among the encoded proteins, Npc2a has the broadest expression pattern and is most similar in sequence to vertebrate Npc2. Mutation of npc2a results in abnormal sterol distribution in many cells, as in Drosophila npc1a or mammalian NPC mutant cells. In contrast to the ecdysteroid-deficient, larval-lethal phenotype of npc1a mutants, npc2a mutants are viable and fertile with relatively normal ecdysteroid level. Mutants in npc2b, another npc2 gene, are also viable and fertile, with no significant sterol distribution abnormality. However, npc2a; npc2b double mutants are not viable but can be rescued by feeding the mutants with 20E or cholesterol, the basic precursor of 20E. We conclude that npc2a functions redundantly with npc2b in regulating sterol homeostasis and ecdysteroid biosynthesis, probably by controlling the availability of sterol substrate. Moreover, npc2a; npc2b double mutants undergo apoptotic neurodegeneration, thus constituting a new fly model of human neurodegenerative disease.
Collapse
Affiliation(s)
- Xun Huang
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | | | | | | |
Collapse
|
296
|
Rauschenbach IY, Gruntenko NE, Chentsova NA, Adonyeva NV, Alekseev AA. Role of ecdysone 20-monooxygenase in regulation of 20-hydroxyecdysone levels by juvenile hormone and biogenic amines in Drosophila. J Comp Physiol B 2007; 178:27-32. [PMID: 17703313 DOI: 10.1007/s00360-007-0196-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/18/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
The effects of increased levels of dopamine (feeding flies with dopamine precursor, L: -dihydroxyphenylalanine) and octopamine (feeding flies with octopamine) on ecdysone 20-monooxygenase activity in young (2 days old) wild type females (the strain wt) of Drosophila virilis have been studied. L: -dihydroxyphenylalanine and octopamine feeding increases ecdysone 20-monooxygenase activity by a factor of 1.6 and 1.7, respectively. Ecdysone 20-monooxygenase activity in the young (1 day old) octopamineless females of the strain Tbetah ( nM18 ), in females of the strain P845 (precursor of Tbetah ( nM18 ) strain) and in wild type females (Canton S) of Drosophila melanogaster have been measured. The absence of octopamine leads to a considerable decrease in the enzyme activity. We have also studied the effects of juvenile hormone application on ecdysone 20-monooxygenase activity in 2-day-old wt females of D. virilis and demonstrated that an increase in juvenile hormone titre leads to an increase in the enzyme activity. We discuss the supposition that ecdysone 20-monooxygenase occupies a key position in the regulation of 20-hydroxyecdysone titre under the conditions that lead to changes in juvenile hormone titre and biogenic amine levels.
Collapse
Affiliation(s)
- Inga Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Lavrentjev ave., 10, Novosibirsk , 630090, Russia.
| | | | | | | | | |
Collapse
|
297
|
Rewitz KF, O'Connor MB, Gilbert LI. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:741-53. [PMID: 17628274 DOI: 10.1016/j.ibmb.2007.02.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 05/16/2023]
Abstract
The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Science, Systems and Models, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
298
|
Beckstead RB, Lam G, Thummel CS. Specific transcriptional responses to juvenile hormone and ecdysone in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:570-8. [PMID: 17517334 PMCID: PMC1976265 DOI: 10.1016/j.ibmb.2007.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Indexed: 05/10/2023]
Abstract
Previous studies have shown that ecdysone (E), and its immediate downstream product 20-hydroxyecdysone (20E), can have different biological functions in insects, suggesting that E acts as a distinct hormone. Here, we use Drosophila larval organ culture in combination with microarray technology to identify genes that are transcriptionally regulated by E, but which show little or no response to 20E. These genes are coordinately expressed for a brief temporal interval at the onset of metamorphosis, suggesting that E acts together with 20E to direct puparium formation. We also show that E74B, pepck, and CG14949 can be induced by juvenile hormone III (JH III) in organ culture, and that CG14949 can be induced by JH independently of protein synthesis. In contrast, E74A and E75A show no response to JH in this system. These studies demonstrate that larval organ culture can be used to identify Drosophila genes that are regulated by hormones other than 20E, and provide a basis for studying crosstalk between multiple hormone signaling pathways.
Collapse
Affiliation(s)
| | | | - Carl S. Thummel
- *Corresponding author. Tel.: +801-581-2937; fax: +801-581-5374. E-mail address: (C.S. Thummel)
| |
Collapse
|
299
|
Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol 2007; 7:46. [PMID: 17381843 PMCID: PMC1852546 DOI: 10.1186/1471-2148-7-46] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 03/23/2007] [Indexed: 11/23/2022] Open
Abstract
Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.
Collapse
|
300
|
Müller P, Donnelly MJ, Ranson H. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 2007; 8:36. [PMID: 17261191 PMCID: PMC1797171 DOI: 10.1186/1471-2164-8-36] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 01/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification--though equally important--remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases) have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. RESULTS Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD) gene family. CONCLUSION These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance.
Collapse
Affiliation(s)
- Pie Müller
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Hilary Ranson
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|