Jackson NM, Hill MG. Electrochemistry at DNA-modified surfaces: new probes for charge transport through the double helix.
Curr Opin Chem Biol 2001;
5:209-15. [PMID:
11282349 DOI:
10.1016/s1367-5931(00)00192-7]
[Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrochemistry at DNA-modified surfaces provides an alternative approach to photochemistry or radiation biology for studying charge migration through the double helix. Using short duplexes self-assembled onto gold, electrochemical reduction of redox-active reporter molecules has been observed through DNA films more than 50 A thick, with heterogeneous rate constants as great as approximately 100 s(-1). Though apparently insensitive to base content and sequence, even small distortions in the electronic structure of the pi-stack (caused, for example, by single-base mismatches and other DNA lesions) attenuate the rate of electron transport. Understanding the role of conformational dynamics within the double helix, as well as the cooperative effects of self-assembling individual duplexes into ordered superlattices remain important challenges for theory and experiment.
Collapse