251
|
Aomi Y, Chen CS, Nakada K, Ito S, Isobe K, Murakami H, Kuno SY, Tawata M, Matsuoka R, Mizusawa H, Hayashi JI. Cytoplasmic transfer of platelet mtDNA from elderly patients with Parkinson's disease to mtDNA-less HeLa cells restores complete mitochondrial respiratory function. Biochem Biophys Res Commun 2001; 280:265-73. [PMID: 11162509 DOI: 10.1006/bbrc.2000.4113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For determination of whether platelet mtDNA in patients with Parkinson's disease (PD) possesses some lesions to reduce respiratory enzyme activities, platelet mtDNA was transferred into mtDNA-less (rho0) HeLa cells from aged PD patients and age-matched normal subjects, since their activities were controlled by both mitochondrial and nuclear genomes. The resultant mtDNA-repopulated cybrid clones containing the HeLa nuclear genome as a common background were used for comparison of respiratory enzyme activities. Remarkable variations of the enzyme activities were observed in the cybrid clones, irrespective of whether their mtDNA was transferred from normal subjects or PD patients, and some of them showed 20% reduction of average activities. Thus, the mtDNA mutations responsible for inducing 20% reduction should be polymorphic rather than pathogenic. On the other hand, pathogenic control cybrid clones possessing mtDNA mutations from patients with mitochondrial disorders showed significant and specific decline of respiratory enzyme complex I activity beyond the normal range of the variations. These observations warrant reassessment of the conventional concept that complex I activity in platelets of PD patients is defective due to mtDNA mutations.
Collapse
Affiliation(s)
- Y Aomi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Ludwig A, May B, Debus L, Jenneckens I. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 2000; 156:1933-47. [PMID: 11102385 PMCID: PMC1461359 DOI: 10.1093/genetics/156.4.1933] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Data from 1238 fishes from 19 sturgeon species and 1 paddlefish were used to analyze heteroplasmy in sturgeon. Lengths of central repeat units ranged from 74 to 83 bp among sturgeon species. No repeat sequence was found in the paddlefish, Polyodon spathula. A general feature of the repeat units was the presence of termination associated sequence (TAS) motifs. About 50% of 138 interspecific mutations observed among the D-loop sequences are located 10 bp down- and upstream from these TAS motifs. Interestingly, most homoplasmic species showed deletions upstream to the TAS motifs, whereas deletions downstream to the TAS motifs observed in two species do not seem to preclude heteroplasmy. Calculations of secondary structures and thermal stabilities of repeat units showed DeltaG values for all heteroplasmic species to be <-8 and for most homoplasmic species DeltaG value to be >-8. Most heteroplasmic fishes had two and/or three repeat units. No homoplasmic sturgeon with >2 repeat units were observed. Molecular phylogeny based on the entire cytochrome b showed that heteroplasmy probably resulted from a single evolutionary event. Our data demonstrate that heteroplasmy is present in most sturgeon species and suggest that the thermal stability of the secondary structure of the repeat unit in combination with mutations downstream of the TAS sequences influences heteroplasmy.
Collapse
Affiliation(s)
- A Ludwig
- Institute of Freshwater Ecology and Inland Fisheries, 12561 Berlin, Germany.
| | | | | | | |
Collapse
|
253
|
Abstract
Until very recently, mitochondria were thought to be clonally inherited through the maternal line in most higher animals. However, three papers published in 2000 claimed population-genetic evidence of recombination in human mitochondrial DNA. Here I review the current state of the debate. I review the evidence for the two main pathways by which recombination might occur: through paternal leakage and via a mitochondrial DNA sequence in the nuclear genome. There is no strong evidence for either pathway, although paternal leakage seems a definite possibility. However, the population-genetic evidence, although not conclusive, is strongly suggestive of recombination in mitochondrial DNA. The implications of non-clonality for our understanding of human and mitochondrial evolution are discussed.
Collapse
Affiliation(s)
- A Eyre-Walker
- Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
254
|
Shitara H, Kaneda H, Sato A, Inoue K, Ogura A, Yonekawa H, Hayashi JI. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 2000; 156:1277-84. [PMID: 11063701 PMCID: PMC1461340 DOI: 10.1093/genetics/156.3.1277] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exclusion of paternal mitochondria in fertilized mammalian eggs is very stringent and ensures strictly maternal mtDNA inheritance. In this study, to examine whether elimination was specific to sperm mitochondria, we microinjected spermatid or liver mitochondria into mouse embryos. Congenic B6-mt(spr) strain mice, which are different from C57BL/6J (B6) strain mice (Mus musculus domesticus) only in possessing M. spretus mtDNA, were used as mitochondrial donors. B6-mt(spr) mice and a quantitative PCR method enabled selective estimation of the amount of M. spretus mtDNA introduced even in the presence of host M. m. domesticus mtDNA and monitoring subsequent changes of its amount during embryogenesis. Results showed that M. spretus mtDNA in spermatid mitochondria was not eliminated by the blastocyst stage, probably due to the introduction of a larger amount of spermatid mtDNA than of sperm mtDNA into embryos on fertilization. However, spermatid-derived M. spretus mtDNA was eliminated by the time of birth, whereas liver-derived M. spretus mtDNA was still present in most newborn mice, even though its amount introduced was significantly less than that of spermatid mtDNA. These observations suggest that mitochondria from spermatids but not from liver have specific factors that ensure their selective elimination and resultant elimination of mtDNA in them, and that the occurrence of elimination is not limited to early stage embryos, but continues throughout embryogenesis.
Collapse
Affiliation(s)
- H Shitara
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | |
Collapse
|
255
|
Lanza RP, Cibelli JB, Diaz F, Moraes CT, Farin PW, Farin CE, Hammer CJ, West MD, Damiani P. Cloning of an Endangered Species (Bos gaurus) Using Interspecies Nuclear Transfer. ACTA ACUST UNITED AC 2000; 2:79-90. [PMID: 16218862 DOI: 10.1089/152045500436104] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.
Collapse
Affiliation(s)
- R P Lanza
- Advanced Cell Technology, One Innovation Drive, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 2000; 26:176-81. [PMID: 11017072 DOI: 10.1038/82826] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice carrying mitochondrial DNA (mtDNA) with pathogenic mutations would provide a system in which to study how mutant mtDNAs are transmitted and distributed in tissues, resulting in expression of mitochondrial diseases. However, no effective procedures are available for the generation of these mice. Isolation of mouse cells without mtDNA (rho0) enabled us to trap mutant mtDNA that had accumulated in somatic tissues into rho0 cells repopulated with mtDNA (cybrids). We isolated respiration-deficient cybrids with mtDNA carrying a deletion and introduced this mtDNA into fertilized eggs. The mutant mtDNA was transmitted maternally, and its accumulation induced mitochondrial dysfunction in various tissues. Moreover, most of these mice died because of renal failure, suggesting the involvement of mtDNA mutations in the pathogeneses of new diseases.
Collapse
Affiliation(s)
- K Inoue
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
257
|
Abstract
The rate of advance of our understanding of mitochondrial pathology continues to accelerate. Trends in genotype-phenotype correlations in mitochondrial DNA mutations continue to be developed; the latest of these is the association of exercise intolerance with cytochrome b mutations and onset in infancy of multisystem disorders associated with cytochrome oxidase assembly defects. New models for mitochondrial disease are being developed. Drugs, toxins and deficiency of nuclear encoded proteins that are targeted at mitochondria are now recognized as important causes of secondary mitochondrial respiratory chain deficiency.
Collapse
Affiliation(s)
- A H Schapira
- University Department of Clinical Neurosciences, Royal Free and University College School of Medicine, and Institute of Neurology, University College London, UK.
| |
Collapse
|
258
|
Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 2000; 63:582-90. [PMID: 10906068 DOI: 10.1095/biolreprod63.2.582] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371-372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- P Sutovsky
- Oregon Regional Primate Research Center, Departments of Cell-Developmental Biology and Obstetrics-Gynecology, Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
259
|
Takeda K, Takahashi S, Onishi A, Hanada H, Imai H. Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics 2000; 155:777-83. [PMID: 10835398 PMCID: PMC1461126 DOI: 10.1093/genetics/155.2.777] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the interactions between mtDNA and nuclear genomes, we produced heteroplasmic maternal lineages by transferring the cytoplasts between the embryos of two mouse strains, C57BL/6 (B6) and RR. A total of 43 different nucleotides exist in the displacement-loop (D-loop) region of mtDNA between B6 and RR. Heteroplasmic embryos were reconstructed by electrofusion using a blastomere from a two-cell stage embryo of one strain and an enucleated blastomere from a two-cell stage embryo of the other strain. Equivalent volumes of both types of mtDNAs were detected in blastocyst stage embryos. However, the mtDNA from the RR strain became biased in the progeny, regardless of the source of the nuclear genome. The RR mtDNA population was very high in most of the tissues examined but was relatively low in the brain and the heart. An age-related increase of RR mtDNA was also observed in the blood. The RR mtDNAs in the reconstructed embryos and in the embryos collected from heteroplasmic mice showed a different segregation pattern during early embryonic development. These results suggest that the RR mtDNA has a replicative advantage over B6 mtDNA during embryonic development and differentiation, regardless of the type of nuclear genome.
Collapse
Affiliation(s)
- K Takeda
- Department of Animal Breeding and Genetics, National Institute of Animal Industry, Tsukuba 305-0901, Japan.
| | | | | | | | | |
Collapse
|
260
|
Yamaoka M, Isobe K, Shitara H, Yonekawa H, Miyabayashi S, Hayashi JI. Complete repopulation of mouse mitochondrial DNA-less cells with rat mitochondrial DNA restores mitochondrial translation but not mitochondrial respiratory function. Genetics 2000; 155:301-7. [PMID: 10790404 PMCID: PMC1461064 DOI: 10.1093/genetics/155.1.301] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By the fusion of mtDNA-less (rho(0)) cells of Mus musculus domesticus with platelets from different species, mtDNA repopulated cybrids were obtained for finding the mtDNA species that could induce mitochondrial abnormalities. Expression of mitochondrial dysfunction might be expected in these cybrids due to incompatibility between nuclear and mitochondrial genomes from different species. The results showed that mouse rho(0) cells could receive mtDNA from a different mouse species, M. spretus, or even mtDNA from the rat, Rattus norvegicus, and that the introduced rat mtDNA, but not M. spretus mtDNA, caused mitochondrial dysfunction, even though rat mtDNA could restore normal mitochondrial translation in the cybrids. Considering that mitochondrial respiratory complexes consist of nuclear DNA- and mtDNA-coded polypeptides, these observations suggest that the nuclear and mitochondrial interactions required for replication, transcription, and translation of introduced rat mtDNA must be less stringently controlled than those required for formation of normal respiratory complexes. As no procedure for introduction of mutagenized mouse mtDNA into living cells has yet been established, these findings provide important insights into generating mtDNA-knockout mice.
Collapse
Affiliation(s)
- M Yamaoka
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
261
|
Affiliation(s)
- A A Morris
- Department of Child Health, Royal Victoria Infirmary, University of Newcastle upon Tyne, UK
| | | |
Collapse
|
262
|
Affiliation(s)
- T Bourgeron
- Laboratoire d'Immunogénétique Humaine, INSERM U276, Institut Pasteur, Paris, France
| |
Collapse
|
263
|
Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:1-65. [PMID: 10603574 DOI: 10.1016/s0074-7696(08)62703-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian fertilization has traditionally been regarded as a simple blending of two gametes, during which the haploid genome of the fertilizing spermatozoon constitutes the primary paternal contribution to the resulting embryo. In contrast to this view, new research provides evidence of important cytoplasmic contributions made by the fertilizing spermatozoon to the zygotic makeup, to the organization of preimplantation development, and even reproductive success of new forms of assisted fertilization. The central role of the sperm-contributed centriole in the reconstitution of zygotic centrosome has been established in most mammalian species and is put in contrast with strictly maternal centrosomal inheritance in rodents. The complementary reduction or multiplication of sperm and oocyte organelles during gametogenesis, exemplified by the differences in the biogenesis of centrosome in sperm and oocytes, represents an intriguing mechanism for avoiding their redundancy during early embryogenesis. New studies on perinuclear theca of sperm revealed its importance for both spermatogenesis and fertilization. Remodeling of the sperm chromatin into a male pronucleus is guided by oocyte-produced, reducing peptide glutathione and a number of molecules required for the reconstitution of the functional nuclear envelope and nuclear skeleton. Although some of the sperm structures are transformed into zygotic components, the elimination of others is vital to early stages of embryonic development. Sperm mitochondria, carrying potentially harmful paternal mtDNA, appear to be eliminated by a ubiquitin-dependent mechanism. Other accessory structures of the sperm axoneme, including fibrous sheath, microtubule doublets, outer dense fibers, and the striated columns of connecting piece, are discarded in an orderly fashion. The new methods of assisted fertilization, represented by intracytoplasmic sperm injection and round spermatid injection, bypass multiple steps of natural fertilization by introducing an intact spermatozoon or spermatogenic cell into oocyte cytoplasm. Consequently, the carryover of sperm accessory structures that would normally be eliminated before or during the entry of sperm into oocyte cytoplasm persist therein and may interfere with early embryonic development, thus decreasing the success rate of assisted fertilization and possibly causing severe embryonic anomalies. Similarly, foreign organelles, proteins, messenger RNAs, and mitochondrial DNAs, which may have a profound impact on the embryonic development, are propagated by the nuclear transfer of embryonic blastomeres and somatic cell nuclei. This aspect of assisted fertilization is yet to be explored by a focused effort.
Collapse
Affiliation(s)
- P Sutovsky
- Department of Obstetrics and Gynecology, Oregon Health Science University, USA
| | | |
Collapse
|
264
|
Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature 1999; 402:371-2. [PMID: 10586873 DOI: 10.1038/46466] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- P Sutovsky
- Oregon Regional Primate Research Center, and Department of Cell-Developmental Biology, Oregon Health Sciences University, Beaverton 97006, USA
| | | | | | | | | | | |
Collapse
|
265
|
Abstract
Analysis of mitochondrial DNA (mtDNA) variation has permitted the reconstruction of the ancient migrations of women. This has provided evidence that our species arose in Africa about 150000 years before present (YBP), migrated out of Africa into Asia about 60000 to 70000 YBP and into Europe about 40000 to 50000 YBP, and migrated from Asia and possibly Europe to the Americas about 20000 to 30000 YBP. Although much of the mtDNA variation that exists in modern populations may be selectively neutral, studies of the mildly deleterious mtDNA mutations causing Leber's hereditary optic neuropathy (LHON) have demonstrated that some continent-specific mtDNA lineages are more prone to manifest the clinical symptoms of LHON than others. Hence, all mtDNA lineages are not equal, which may provide insights into the extreme environments that were encountered by our ancient ancestor, and which may be of great importance in understanding the pathophysiology of mitochondrial disease.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
266
|
Abstract
Although mitochondrial DNA (mtDNA) abnormalities are known to cause insulin deficiency, insulin resistance and diabetes mellitus, it's quantitative aspect was not addressed well. In this review, mitochondrial genome hypothesis of thrifty phenomenon is proposed, based on the data and review of literatures. From a population based epidemiologic study, it was found that mtDNA quantity was decreased in the peripheral blood of diabetic subjects, and also in those subjects who will convert to diabetes mellitus within 2 years. In this population, low mtDNA subjects were found to have higher blood pressure and high waist hip ratio. These findings suggested mtDNA status might be quantitatively linked to the insulin resistance syndrome. As quantitative relationships between peripheral blood mtDNA levels and insulin requirement, and energy utilization pattern (fat and carbohydrate oxidation during hyperinsulinemic clamp studies) were observed in a group of male students; and maternal mtDNA content (peripheral blood) correlated with birth weight and peripheral blood mtDNA content of the offspring in another study, possibility of thrifty phenotype phenomena might be due to the low mitochondrial status arose. As thrifty phenotype phenomenon shows the quantitatively continuous relationship between involved parameters and characteristics of 'imprinting', a possible mechanism is suggested.
Collapse
Affiliation(s)
- H K Lee
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| |
Collapse
|
267
|
Hiendleder S, Schmutz SM, Erhardt G, Green RD, Plante Y. Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol Reprod Dev 1999; 54:24-31. [PMID: 10423294 DOI: 10.1002/(sici)1098-2795(199909)54:1<24::aid-mrd4>3.0.co;2-s] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To assess the extent of cytoplasmic genetic variability in cloned cattle produced by nuclear transplantation procedures, we investigated 29 individuals of seven male cattle clones (sizes 2-6) from two different commercial sources. Restriction enzyme and direct sequence analysis of mitochondrial DNA (mtDNA) detected a total of 12 different haplotypes. Transmitochondrial individuals (i.e., animals which share identical nuclei but have different mitochondrial DNA) were detected in all but one of the clones, demonstrating that mtDNA variation among cloned cattle is a very common phenomenon which prevents true genetic identity. The analyses also showed that the cytoplasmic genetic status of some investigated individuals and clones is further complicated by heteroplasmy (more than one mtDNA type in an individual). The relative proportions of different mtDNA-types in two animals with mild heteroplasmy were estimated at 2:98% and 4:96% in DNA samples derived from blood. This is in agreement with values expected from karyoplast-cytoplast volume ratios. In contrast, the mtDNA haplotype proportions observed in six other heteroplasmic animals of two different clones ranged from 21:79% to 57:43%, reflecting a marked increase in donor blastomere mtDNA contributions. These results suggest that mtDNA type of donor embryos and recipient oocytes used in nuclear transfer cattle cloning should be controlled to obtain true clones with identical nuclear and cytoplasmic genomes.
Collapse
Affiliation(s)
- S Hiendleder
- Department of Animal Breeding and Genetics, Justus- Liebig- University, Giessen, Germany.
| | | | | | | | | |
Collapse
|
268
|
Sutovsky P, Ramalho-Santos J, Moreno RD, Oko R, Hewitson L, Schatten G. On-stage selection of single round spermatids using a vital, mitochondrion-specific fluorescent probe MitoTracker(TM) and high resolution differential interference contrast microscopy. Hum Reprod 1999; 14:2301-12. [PMID: 10469700 DOI: 10.1093/humrep/14.9.2301] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The selection of individual round spermatids for round spermatid injection (ROSI), a prerequisite for the successful application of this infertility treatment, has been hampered by the ambiguous definition of a round spermatid and the lack of specific vital and non-vital markers. Using cells from rhesus monkey and bull, we describe a non-invasive method for the on-stage selection of individual round spermatids for ROSI, based on the polarized patterns of mitochondria, visualized in live round spermatid cells by epifluorescence microscopy after incubation with MitoTracker(TM), a vital, mitochondrion-specific fluorescent probe. The correct identification of live round spermatid was confirmed by the presence of the acrosomal granule or acrosomal cap in parallel observations by Nomarski differential interference contrast microscopy. The existence of mitochondrial polarization was first established by the labelling of MitoTracker-tagged round spermatids with spermatid-specific antibodies against proteins of nascent sperm accessory structures combined with antibodies against a nuclear pore complex component, known to disappear at the round spermatid stage. Using an inverted microscope equipped with epifluorescence, the round spermatids can be individually selected from a heterogeneous population of testicular cells labelled with MitoTracker dyes. A major advantage of this approach is that the dyes are incorporated into the paternal mitochondria, destined for rapid elimination after fertilization. In addition, the relatively high excitation and emission wavelengths of MitoTracker dyes are less harmful to DNA after their photon excitation. Before the appropriate clinical testing is conducted, the MitoTracker-based round spermatid selection may be instrumental in the training of clinical staff.
Collapse
Affiliation(s)
- P Sutovsky
- Departments of Obstetrics and Gynecology, and Cell and Developmental Biology, Oregon Health Sciences University, and the Oregon Regional Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
269
|
Evans MJ, Gurer C, Loike JD, Wilmut I, Schnieke AE, Schon EA. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 1999; 23:90-3. [PMID: 10471506 PMCID: PMC3042135 DOI: 10.1038/12696] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells contain two distinct genomes. One is located in the nucleus (nDNA) and is transmitted in a mendelian fashion, whereas the other is located in mitochondria (mtDNA) and is transmitted by maternal inheritance. Cloning of mammals typically has been achieved via nuclear transfer, in which a donor somatic cell is fused by electoporation with a recipient enucleated oocyte. During this whole-cell electrofusion, nDNA as well as mtDNA ought to be transferred to the oocyte. Thus, the cloned progeny should harbour mtDNAs from both the donor and recipient cytoplasms, resulting in heteroplasmy. Although the confirmation of nuclear transfer has been established using somatic cell-specific nDNA markers, no similar analysis of the mtDNA genotype has been reported. We report here the origin of the mtDNA in Dolly, the first animal cloned from an established adult somatic cell line, and in nine other nuclear transfer-derived sheep generated from fetal cells. The mtDNA of each of the ten nuclear-transfer sheep was derived exclusively from recipient enucleated oocytes, with no detectable contribution from the respective somatic donor cells. Thus, although these ten sheep are authentic nuclear clones, they are in fact genetic chimaeras, containing somatic cell-derived nuclear DNA but oocyte-derived mtDNA.
Collapse
Affiliation(s)
- M J Evans
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
270
|
|
271
|
Danan C, Sternberg D, Van Steirteghem A, Cazeneuve C, Duquesnoy P, Besmond C, Goossens M, Lissens W, Amselem S. Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection. Am J Hum Genet 1999; 65:463-73. [PMID: 10417289 PMCID: PMC1377945 DOI: 10.1086/302484] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is now used when severe male-factor infertility has been documented. Since defective mitochondrial functions may result in male hypofertility, it is of prime importance to evaluate the risk of paternal transmission of an mtDNA defect to neonates. DNA samples from the blood of 21 infertile couples and their 27 neonates born after ICSI were studied. The highly polymorphic mtDNA D-loop region was analyzed by four PCR-based approaches. With denaturing gradient gel electrophoresis (DGGE), which allows 2% of a minor mtDNA species to be detected, the 27 newborns had a DGGE pattern identical to that of their mother but different from that of their father. Heteroplasmy documented in several parents and children supported an exclusive maternal inheritance of mtDNA. The parental origin of the children's mtDNA molecules also was studied by more-sensitive assays: restriction-endonuclease analysis (REA) of alpha[32P]-radiolabeled PCR products; paternal-specific PCR assay; and depletion of maternal mtDNA, followed by REA. We did not detect paternal mtDNA in nine neonates, with a sensitivity level of 0.01% in five children, 0.1% in two children, and 1% in two children. The estimated ratio of sperm-to-oocyte mtDNA molecules in humans is 0.1%-1.5%. Thus, we conclude that, in these families, the ICSI procedure performed with mature spermatozoa did not alter the uniparental pattern of inheritance of mtDNA.
Collapse
Affiliation(s)
- C Danan
- Laboratoire de Génétique Moléculaire-INSERM U468, Hôpital Henri-Mondor, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
|
273
|
Storfer M. Myopia, intelligence, and the expanding human neocortex: behavioral influences and evolutionary implications. Int J Neurosci 1999; 98:153-276. [PMID: 10995133 DOI: 10.3109/00207459908997465] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first two parts of this monograph document that areas of the human neocortex heavily used to cope with a complex, language-driven society have been expanding rapidly and suggest strongly that this is linked with the huge upsurge that's occurred in myopia, and with the large gradual 20th-century increase in measured intelligence. Part III proposes mechanisms capable of supporting such rapid changes, without violating the basic precepts of Darwin's thinking. Part IV discusses the social and evolutionary ramifications of our apparent proclivity for rapid, progressive, adaptive neocortical change, and suggests areas for productive research.
Collapse
Affiliation(s)
- M Storfer
- The Foundation for Brain (Life) Research, Delray Beach, FL, USA
| |
Collapse
|
274
|
Affiliation(s)
- G Herrick
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA
| | | |
Collapse
|
275
|
Rinaudo P, Niven-Fairchild T, Buradagunta S, Massobrio M, Revelli A, Keefe DL. Microinjection of mitochondria into zygotes creates a model for studying the inheritance of mitochondrial DNA during preimplantation development. Fertil Steril 1999; 71:912-8. [PMID: 10231056 DOI: 10.1016/s0015-0282(99)00089-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the effect of mutant mitochondria on preimplantation embryo development and of preimplantation embryo development on the survival of mutant mitochondrial DNA. DESIGN Laboratory research. SETTING Academic research laboratory. PATIENT(S) None. INTERVENTION(S) Mutant and wild-type mitochondria, fractionated from tissue obtained from a patient with MELAS syndrome, a mitochondrial disease, were microinjected into mouse zygotes. Control zygotes received either no injection or sham injection. MAIN OUTCOME MEASURE(S) Preimplantation embryo development and survival of mutant mitochondrial DNA as determined by polymerase chain reaction analysis. RESULT(S) After microinjection into zygotes, the MELAS mutation could be identified by polymerase chain reaction until the hatched blastocyst stage of embryo development. The survival of MELAS-injected zygotes, observed for 4 days after injection, did not differ from the survival of zygotes injected with wild-type mitochondria or from the survival of uninjected or sham-injected controls. CONCLUSION(S) It appears that preimplantation embryo development does not screen out mitochondrial DNA mutations introduced into fertilized oocytes, and low levels of mutant mitochondrial DNA do not disrupt early embryo development.
Collapse
Affiliation(s)
- P Rinaudo
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
276
|
Takai D, Isobe K, Hayashi J. Transcomplementation between different types of respiration-deficient mitochondria with different pathogenic mutant mitochondrial DNAs. J Biol Chem 1999; 274:11199-202. [PMID: 10196206 DOI: 10.1074/jbc.274.16.11199] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cell lines were used for determination of whether interaction occurred between different types of respiration-deficient mitochondria. One was a respiration-deficient rho- cell line having mutant mitochondrial DNA (mtDNA) with a 5,196-base pair deletion including five tRNA genes (tRNAGly, Arg, Ser(AGY), Leu(CUN), His), DeltamtDNA5196, causing Kearns-Sayre syndrome. The other was a respiration-deficient syn- cell line having mutant mtDNA with an A to G substitution at 4,269 in the tRNAIle gene, mtDNA4269, causing fatal cardiomyopathy. The occurrence of mitochondrial interaction was examined by determining whether cybrids constructed by fusion of enucleated rho- cells with syn- cells became respiration competent by exchanging their tRNAs. No cybrids were isolated in selection medium, where only respiration-competent cells could survive, suggesting that no interaction occurred, or that it occurred so slowly that sufficient recovery of mitochondrial respiratory function was not attained by the time of selection. The latter possibility was confirmed by the observations that heteroplasmic cybrids with both mutant mtDNA4269 and DeltamtDNA5196 isolated without selection showed restored mitochondrial respiration activity. This demonstration of transcomplementation between different respiration-deficient mitochondria will help in understanding the relationship between somatic mutant mtDNAs and the roles of such mutations in aging processes.
Collapse
Affiliation(s)
- D Takai
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
277
|
Irwin MH, Johnson LW, Pinkert CA. Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgenic Res 1999; 8:119-23. [PMID: 10481311 DOI: 10.1023/a:1008925419758] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
At present, there are no means for creation of relevant animal models of human mitochondrial DNA (mtDNA)-based diseases in a directed fashion. As an initial step towards this end, we have developed a microinjection technique for transfer of isolated, viable mitochondria between two mouse species. Previously, we reported detection, by nested PCR with species-specific primer sets, of Mus spretus mtDNA in Mus musculus domesticus blastocyts following zygote microinjection and culture. We now report the production of transmitochondrial founder mice, and germline transmission of the heteroplasmic state in a maternal lineage. Heteroplasmic mice produced by this technique will be useful in the study of mitochondrial dynamics and may hasten the creation of animal models of human mtDNA-based diseases.
Collapse
Affiliation(s)
- M H Irwin
- Department of Comparative Medicine, University of Alabama at Birmingham 35294-0019, USA
| | | | | |
Collapse
|
278
|
Abstract
Phylogenetic trees constructed using human mitochondrial sequences contain a large number of homoplasies. These are due either to repeated mutation or to recombination between mitochondrial lineages. We show that a tree constructed using synonymous variation in the protein coding sequences of 29 largely complete human mitochondrial molecules contains 22 homoplasies at 32 phylogenetically informative sites. This level of homoplasy is very unlikely if inheritance is clonal, even if we take into account base composition bias. There must either be 'hypervariable' sites or recombination between mitochondria. We present evidence which suggests that hypervariable sites do not exist in our data. It therefore seems likely that recombination has occurred between mitochondrial lineages in humans.
Collapse
Affiliation(s)
- A Eyre-Walker
- Centre for the Study of Evolution, University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
279
|
Le Roy I, Perez-Diaz F, Cherfouh A, Roubertoux PL. Preweanling sensorial and motor development in laboratory mice: quantitative trait loci mapping. Dev Psychobiol 1999; 34:139-58. [PMID: 10086232 DOI: 10.1002/(sici)1098-2302(199903)34:2<139::aid-dev7>3.0.co;2-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chromosomal mapping of genes linked with 19 measures of sensorial, motor, and body weight development were investigated. Chromosomal mapping is the first step towards gene identification. When a genomic region is shown to be linked to a trait, it is possible to select a reduced number of candidate genes that have been previously mapped on this region. The involvement of every gene can be individually tested either by molecular (transgenesis, homologous recombination) or traditional methods (congenicity). Mapping was performed using 389 males and females from two inbred strains of laboratory mice C57BL/6By and NZB/BlNJ, their reciprocal F1s and F2s. Thirty-six Quantitative Trait Loci (QTL) were mapped, 12 reached the 3.13 lod score, being thus considered as confirmed. These QTL were tentatively labeled: Cliff Drop Aversion (Cliff Qtl), Geotaxia (Geot Qtl), Vertical Clinging (VertCling Qtl), Bar Holding with the 4 paws (BH4P Qtl), Age at Eyelid Opening (Aeyo Qtl), Visual Placing (Vispl Qtl), Startle Response (Start Qtl1, Start Qtl2), Body Weight at Day 10 in Males pooled with Females (Bwefmd10 Qtl), and Body Weight at Day 30 in males (Bwemd30 Qtl). For the majority of the developmental measures, the QTL that were mapped contributed little to the phenotypic variance, even when mitochondrial DNA contribution was included: Righting Response (12.7%), Cliff Drop Aversion (10%), Crossed Extensor Response (18.1%), Geotaxia (16.2%), Bar Holding Response for 10 s (12.1%), Bar Holding Response with 4 paws (8.1%), Vertical Clinging (9.3%), Vertical Climbing (5%), Startle Response (21.2%), Eyelid Opening (14.6%), Visual Placing (22%), Body Weight at Day 10 (27%), Body Weight at Day 15 in Females (52.5%), Body Weight at Day 15 in Males (17%), Body Weight at Day 30 in Females (42%), and Body Weight at Day 30 in Males (48%). A factorial analysis of the correlations between the measures of development did not provide evidence of a general factor. A general genetic factor of development was also rejected because few common genetic correlates were discovered for the 19 measures of development (Body Weight at Days 15 and 30 in Females on Chromosome 2, Eyelid Opening and Body Weight at Day 10 on Chromosome 5 and mitochondrial genome for five measures). Co-identification of genes, the function of which were previously known thanks to newly discovered QTL, should help to explain the function of QTL. Present data help to highlight candidate regions including several genes that could be candidates for the QTL function. Large confidence intervals were obtained as usual from the F2 intercrossed population. More stringent methods are suggested for more efficient co-identification.
Collapse
Affiliation(s)
- I Le Roy
- UPR CNRS 9074 Génétique, Neurogénétique, Comportement Institut de Transgénose, Orléans, France
| | | | | | | |
Collapse
|
280
|
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:103-23. [PMID: 10076021 DOI: 10.1016/s0005-2728(98)00161-3] [Citation(s) in RCA: 1059] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
Collapse
Affiliation(s)
- J W Taanman
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, University of London, Rowland Hill Street, London NW3 2PF,
| |
Collapse
|
281
|
Sumida M, Ogata M. Intraspecific Differentiation in the Japanese Brown Frog Rana japonica Inferred from Mitochondrial DNA Sequences of the CytochromebGene. Zoolog Sci 1998. [DOI: 10.2108/zsj.15.989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
282
|
Reynier P, Chrétien MF, Savagner F, Larcher G, Rohmer V, Barrière P, Malthièry Y. Long PCR analysis of human gamete mtDNA suggests defective mitochondrial maintenance in spermatozoa and supports the bottleneck theory for oocytes. Biochem Biophys Res Commun 1998; 252:373-7. [PMID: 9826537 DOI: 10.1006/bbrc.1998.9651] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long PCR and the Southern blot techniques were used to study mitochondrial DNA (mtDNA) in 94 sperm samples, and in 35 oocytes collected from 12 women. The sperm samples were classified in two sets: 37 samples from normal subjects, and 57 samples from patients with oligoasthenospermia. In both sets, most of the spermatozoan mitochondria had multiple mtDNA deletions. The rate of mtDNA mutation, which appears unexpectedly high, considering the short life span of the spermatozoa, may be due to impaired maintenance during differentiation. In contrast, despite the long life span of oocytes and the extended meiotic period, oocyte mitochondria showed few mtDNA rearrangements. However, mitochondria in oocytes from a given donor revealed considerable mutational heterogeneity. This supports the bottleneck theory of rapid segregation of mtDNA genotypes during early oogenesis. The long PCR technique, which allows analysis of the entire mitochondrial genome, provides new information on mtDNA instability in human gametes. Our findings suggest that mtDNA maintenance differs in the two types of gametes.
Collapse
Affiliation(s)
- P Reynier
- Laboratoire de Biochimie et Biologie Moléculaire A, CHU d'Angers, Angers Cedex 01, 49033, France
| | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
Molecular geneticists and ovarian physiologists today face the challenge of defining and reconciling two major biological imperatives that each center on oogenesis, folliculogenesis and competition between ovarian follicles: (1), defining how the mitochondrial genome--important in both aging and a number of serious mitochondrial diseases--is refreshed and purified as it passes, via the oocyte's cytoplasm, from one generation to the next; and (2), endeavouring to discover what cytoplasmic factor(s) it is that permits some eggs but not others to produce viable embryos and ongoing pregnancies. We review here in detail the passage of mitochondria through the female germ cell line. For mitochondria, the processes of oogenesis, follicle formation and loss constitute a restriction/amplification/constraint event of the kind predicted by L. Chao for purification and refinement of a haploid genome. We argue that maintaining the integrity of mitochondrial inheritance is such a strong evolutionary imperative that we should expect at least some features of ovarian follicular formation, function and loss to be primarily adapted to this specific purpose. We predict, moreover, that to prevent accumulation of mild mitochondrial genomes in the population there is a need for physiological female sterility prior to total depletion of ovarian oocytes, a phenomenon for which there is empirical evidence and which we term the oöpause.
Collapse
|
284
|
Howell N. Human mitochondrial diseases: answering questions and questioning answers. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 186:49-116. [PMID: 9770297 DOI: 10.1016/s0074-7696(08)61051-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the first identification in 1988 of pathogenic mitochondrial DNA (mtDNA) mutations, the mitochondrial diseases have emerged as a major clinical entity. The most striking feature of these disorders is their marked heterogeneity, which extends to their clinical, biochemical, and genetic characteristics. The major mitochondrial encephalomyopathies include MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes), MERRF (myoclonic epilepsy with ragged red fibers), KSS/CPEO (Kearns-Sayre syndrome/chronic progressive external ophthalmoplegia), and NARP/MILS (neuropathy, ataxia, and retinitis pigmentosum/maternally inherited Leigh syndrome) and they typically present highly variable multisystem defects that usually involve abnormalities of skeletal muscle and/or the CNS. The primary emphasis here is to review recent investigations of these mitochondrial diseases from the standpoint of how the complexities of mitochondrial genetics and biogenesis might determine their varied features. In addition, the mitochondrial encephalomyopathies are compared and contrasted to Leber hereditary optic neuropathy, a mitochondrial disease in which the pathogenic mtDNA mutations produce a more uniform and focal neuropathology. All of these disorders involve, at some level, a mitochondrial respiratory chain dysfunction. Because mitochondrial genetics differs so strikingly from the Mendelian inheritance of chromosomes, recent research on the origin and subsequent segregation and transmission of mtDNA mutations is reviewed.
Collapse
Affiliation(s)
- N Howell
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston 77555, USA.
| |
Collapse
|
285
|
Nishimura Y, Higashiyama T, Suzuki L, Misumi O, Kuroiwa T. The biparental transmission of the mitochondrial genome in Chlamydomonas reinhardtii visualized in living cells. Eur J Cell Biol 1998; 77:124-33. [PMID: 9840462 DOI: 10.1016/s0171-9335(98)80080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the isogamous green alga Chlamydomonas reinhardtii, the chloroplast genome is transmitted from the mt+ parent, while the mitochondrial genes are believed to be inherited from the mt- parent. Chloroplast nucleoids have been visualized by DAPI (4,6-diamidino-2-phenylindole) staining, and the preferential digestion of the mt- chloroplast nucleoids has been observed in young zygotes. However, the mitochondrial nucleoids have never been visualized, and their behavior is only deduced from genetic and biochemical studies. We discovered that the mitochondrial and chloroplast genomes can be visualized simultaneously in living cells, using the fluorescent dye SYBR Green I. The ability to visualize the mitochondrial and chloroplast genome in vivo permits the direct observation of the number, distribution and behavior of the chloroplast and mitochondrial nucleoids in young zygotes. Using this method, the biparental transmission of the mitochondrial genome was revealed.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan.
| | | | | | | | | |
Collapse
|
286
|
Widschwendter M, Schröcksnadel H, Mörtl MG. Pre-eclampsia: a disorder of placental mitochondria? MOLECULAR MEDICINE TODAY 1998; 4:286-91. [PMID: 9743989 DOI: 10.1016/s1357-4310(98)01293-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pre-eclampsia is a common, pregnancy-induced, multisystem disease leading to severe complications in the mother and foetus. The aetiology of pre-eclampsia remains a mystery, but a growing body of evidence suggests that a mitochondrial defect might cause the impairement of differentiation and invasion of the trophoblast that leads to this disorder. This hypothesis is the topic of ongoing studies that, if confirmed, would be highly relevant to preventative strategies for this disease.
Collapse
Affiliation(s)
- M Widschwendter
- Dept of Gynecology and Obstetrics, Innsbruck University, Austria.
| | | | | |
Collapse
|
287
|
Ito S, Inoue K, Yanagisawa N, Kaneko M, Hayashi J. Long-term postmortem survival of mitochondrial genomes in mouse synaptosomes and their rescue in a mitochondrial DNA-less mouse cell line. Biochem Biophys Res Commun 1998; 247:432-5. [PMID: 9642145 DOI: 10.1006/bbrc.1998.8800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondrial DNA (mtDNA) transfer was carried out from postmortem mouse tissues to mouse mtDNA-less (rho0) cells to determine how long it takes for autolysis of mtDNA after death and whether mtDNA in postmortem tissues can recover its function in rho0 cells. The results showed that mtDNA was stable in postmitotic tissues stored at 4 degreesC. Moreover, mtDNA in postmortem brain tissues stored for up to 1 month still retained functional properties, causing complete recovery of mitochondrial respiratory function, when it was transferred to rho0 cells. These observations suggest that mtDNA in brain tissue can survive for 1 month after death and can start replication and gene expression in rho0 cells without showing any functional defects. This procedure might be applied to human autopsy brain tissues for examination of the influence of accumulated somatic mutations in mtDNA from aged subjects.
Collapse
Affiliation(s)
- S Ito
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
288
|
Steinborn R, Zakhartchenko V, Wolf E, Müller M, Brem G. Non-balanced mix of mitochondrial DNA in cloned cattle produced by cytoplast-blastomere fusion. FEBS Lett 1998; 426:357-61. [PMID: 9600266 DOI: 10.1016/s0014-5793(98)00351-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have investigated the transmission of parental mitochondrial DNA (mtDNA) in three clones of born cattle obtained by intraspecific cytoplast-blastomere fusion. Using allele-specific TaqMan PCR a low level transmission of blastomere mtDNA (DB mtDNA) into the cloned offspring was detected, thereby generating a heteroplasmic population of mtDNA. The amount of DB mtDNA was 13% and 18% in two animals of a clone which derived from a 24-cell morula and 0.6% and 0.4% in two calves of clonal origin derived from a 92-cell morula. These values are in accordance with the tendency expected for neutral mtDNA segregation that the fewer cell divisions that have occurred in the donor embryo, the higher the amount of DB mtDNA. We also found a strong decrease of DB mtDNA which was about three orders of magnitude in the third clone derived from a 52-cell morula stage.
Collapse
Affiliation(s)
- R Steinborn
- Department of Animal Biotechnology at IFA, Tulln, Austria.
| | | | | | | | | |
Collapse
|
289
|
Sumida M, Ogata M, Kaneda H, Yonekawa H. Evolutionary relationships among Japanese pond frogs inferred from mitochondrial DNA sequences of cytochrome b and 12S ribosomal RNA genes. Genes Genet Syst 1998; 73:121-33. [PMID: 9718677 DOI: 10.1266/ggs.73.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The evolutionary relationships among Japanese pond frogs (Rana nigromaculata, R.porosa porosa, and R. p. brevipoda) were investigated by analyzing nucleotide sequences of mitochondrial cytochrome b (cyt b) and 12S rRNA genes. The nucleotide sequences of 444-bp segment of the cyt b gene and 410-bp segment of 12S rRNA gene were determined by the PCR-direct sequencing method using 18 frogs from 13 populations of Japanese pond frogs, and phylogenetic trees were constructed by the neighbor-joining and maximum likelihood methods using R. catesbeiana as an outgroup. The sequenced 444-bp segment of cyt b gene provided 69 variables sites, and the sequenced 410-bp segment of 12S rRNA gene provided 21 variables sites. The numbers of nucleotide substitutions per site of the cyt b gene within ingroup were 0.0022-0.0205 at the populational level, 0.0368-0.0462 at the racial or subspecific level, and 0.1038-0.1244 at the specific level, whereas those of the 12S rRNA gene were 0-0.0074 at the populational or subspecific level, and 0.0378-0.0456 at the specific level. Most nucleotide substitutions within ingroup occurred at the third codon position of the cyt b gene and were silent mutations. High frequencies of transitions relative to transversions were shown at cyt b and 12S rRNA genes within ingroup. The phylogenetic trees constructed from the nucleotide sequences of the cyt b gene showed that after outgroup R. catesbeiana separated from ingroup frogs, ingroup Japanese pond frogs diverged into R.nigromaculata and R.porosa, then the latter diverged into R.p. porosa, R.p. brevipoda (the typical Okayama race), and the Nagoya race of R.p.porosa. The phylogenetic trees constructed from the nucleotide sequences of the 12S rRNA gene also showed distinct divergence between two species, but not any divergence within species.
Collapse
Affiliation(s)
- M Sumida
- Laboratory for Amphibian Biology, Faculty of Science, Hiroshima University, Japan
| | | | | | | |
Collapse
|
290
|
Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF, Imai H, Yonekawa H. Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet Syst 1998; 73:21-7. [PMID: 9546205 DOI: 10.1266/ggs.73.21] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maternal transmission of mitochondrial DNA (mtDNA) allows us to generate mtDNA congenic strain by repeating backcrosses of female mice to male mice of an inbred strain, which carries different mtDNA haplotype from that of the female progenitor. Since genetic backgrounds of inbred strains commonly used (e.g., C57BL/6J [B6] and BALB/c) are mainly derived from an European subspecies of Mus musculus domesticus, congenic strains, in which mtDNA originated from an Asian subspecies M. musculus musculus or an European species M. spretus, give in vivo condition that mismatch occurs between the mitochondrial and the nuclear genome. So far, little has been known how the mismatch condition affects the physiological phenotype of the mice. To address this question, we established two mtDNA congenic strains, C57BL/6J(B6)-mtSPR and BALB/c-mtSHH, which carry M. spretus- and M. m. musculus-derived mtDNAs, representing the conditions of interspecific and intersubspecific mitochondrial-nuclear genome mismatch, respectively. Using these congenic strains, we examined their physical performance by measuring their running time on a treadmill belt until exhaustion. The result clearly showed that the mtDNA congenic strains manifested a significant decrease in the level of physical performance, when compared with their progenitor strains. It also appeared that the congenic mice manifested growth rate. Thus, all results indicated that mismatch between the mitochondrial and the nuclear genome causes phenotypic changes in individuals of mice.
Collapse
Affiliation(s)
- Y Nagao
- Laboratory of Reproductive Biotechnology, National Institute of Animal Industry, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
291
|
Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 1998; 148:851-7. [PMID: 9504930 PMCID: PMC1459812 DOI: 10.1093/genetics/148.2.851] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transmission profiles of sperm mtDNA introduced into fertilized eggs were examined in detail in F1 hybrids of mouse interspecific crosses by addressing three aspects. The first is whether the leaked paternal mtDNA in fertilized eggs produced by interspecific crosses was distributed stably to all tissues after the eggs' development to adults. The second is whether the leaked paternal mtDNA was transmitted to the subsequent generations. The third is whether paternal mtDNA continuously leaks in subsequent backcrosses. For identification of the leaked paternal mtDNA, we prepared total DNA samples directly from tissues or embryos and used PCR techniques that can detect a few molecules of paternal mtDNA even in the presence of 10(8)-fold excess of maternal mtDNA. The results showed that the leaked paternal mtDNA was not distributed to all tissues in the F1 hybrids or transmitted to the following generations through the female germ line. Moreover, the paternal mtDNA leakage was limited to the first generation of an interspecific cross and did not occur in progeny from subsequent backcrosses. These observations suggest that species-specific exclusion of sperm mtDNA in mammalian fertilized eggs is extremely stringent, ensuring strictly maternal inheritance of mtDNA.
Collapse
Affiliation(s)
- H Shitara
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
292
|
Abstract
Mitochondrial disorders are characterized by protein deficiencies affecting the structure and function of mitochondria. The protein deficiencies are caused by mutations either in a nuclear gene or in the mitochondrial genome. Most current approaches to gene therapy of mitochondrial diseases aim at expression of the corrective gene sequence by nuclear/cytoplasmic expression. However, the mitochondrial genome and its autonomous expression system offer the potential of an alternative gene therapy strategy: the introduction of nuclear gene sequences into the mitochondrial genome and their expression by the mitochondrial gene expression system. In addition to its potential for gene therapy, the introduction and expression of an exogenous gene in mitochondria would provide an invaluable tool towards the understanding of mitochondrial genome expression and its regulation.
Collapse
Affiliation(s)
- J M Collombet
- Imperial College-School of Medicine, Section of Molecular Genetics, St Mary's Hospital, London, UK
| | | |
Collapse
|
293
|
NAGAO Y, TOTSUKA Y, ATOMI Y, YONEKAWA H, IMAI H. Effect of Different Type of Mitochondrial DNA on Preimplantation Embryonic Development in the Mouse. J Reprod Dev 1998. [DOI: 10.1262/jrd.44.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yasumitsu NAGAO
- Graduate School of Arts and Sciences, Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku 3-8-1, Tokyo 153-0041, Japan
- Laboratory of Reproductive Biotechnology, National Institute of Animal Industry, Tsukuba Norindanchi, P. O. Box 5, Ibaraki 305-0902, Japan
| | - Yoshikazu TOTSUKA
- Graduate School of Arts and Sciences, Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku 3-8-1, Tokyo 153-0041, Japan
| | - Yoriko ATOMI
- Graduate School of Arts and Sciences, Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku 3-8-1, Tokyo 153-0041, Japan
| | - Hiromichi YONEKAWA
- Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Hiroshi IMAI
- Laboratory of Reproductive Biotechnology, National Institute of Animal Industry, Tsukuba Norindanchi, P. O. Box 5, Ibaraki 305-0902, Japan
| |
Collapse
|
294
|
Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ. Mitochondria transfer into mouse ova by microinjection. Transgenic Res 1997; 6:379-83. [PMID: 9423287 DOI: 10.1023/a:1018431316831] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A method for mitochondria isolation and interspecific transfer of mitochondria was developed in mice. Mitochondria were isolated from Mus spretus liver samples for microinjection into fertilized ova obtained from superovulated M. musculus domesticus females. Electron microscopic observations of mitochondria preparations used for microinjection demonstrated intact mitochondrial vesicles with little microsomal contamination. Species-specific nested PCR primers complementary to sequence differences in the mitochondrial DNA D-loop region revealed high rates of successful transfer of foreign mitochondria after isolation and injection into zygotes cultured through the blastocyst stage of embryonic development. Of 217 zygotes, 67 survived mitochondria injection and 23 out of 37 zygotes developed were at the blastocyst-stage of embryonic development after 4.5 days of in vitro culture. All 23 of these blastocysts contained detectable levels of foreign mitochondria. These results represent an initial step in developing a model system to study mitochondrial dynamics and development of therapeutic strategies for human metabolic diseases affected by aberrations in mitochondrial function or mutation.
Collapse
Affiliation(s)
- C A Pinkert
- Department of Comparative Medicine, University of Alabama at Birmingham 35294-0019, USA
| | | | | | | |
Collapse
|
295
|
Cummins JM, Wakayama T, Yanagimachi R. Fate of microinjected sperm components in the mouse oocyte and embryo. ZYGOTE 1997; 5:301-8. [PMID: 9563678 DOI: 10.1017/s0967199400003889] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intact mouse sperm or mouse sperm tails alone, labelled with MitoTracker Green FM fluorochrome, were injected into mouse oocytes and the cells cultured in vitro for up to 5 days. The dye stained midpiece mitochondria, the sperm tail coarse fibres and the sperm perforatorium. Intact sperm (or tails injected with separated heads) induced normal embryonic development. The mitochondria could be identified in embryos up to the 4-cell stage, remaining associated with the sperm tail. They largely disappeared by the 8-cell stage, when only a minority of embryos (6/43) could be found with small patches of mitochondria. Axonemal elements could be identified coiled up in single external blastomeres as late as day 5 blastocysts. By contrast, mitochondria as well as tail components could be identified up to 5 days after injection of sperm tails alone into non-activated oocytes and also in embryos that arrested development before the 8-cell stage. We conclude that disappearance of the labelled sperm mitochondria in normally cleaving embryos is not due to fading or inactivation of the fluorochrome marker, but is rather an event specifically tied to cell cycle activities around the second cell division.
Collapse
Affiliation(s)
- J M Cummins
- School of Veterinary Studies, Murdoch University, Western Australia.
| | | | | |
Collapse
|
296
|
Manfredi G, Thyagarajan D, Papadopoulou LC, Pallotti F, Schon EA. The fate of human sperm-derived mtDNA in somatic cells. Am J Hum Genet 1997; 61:953-60. [PMID: 9382109 PMCID: PMC1715995 DOI: 10.1086/514887] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inheritance of animal mtDNA is almost exclusively maternal, most likely because sperm-derived mitochondria are actively eliminated from the ovum, either at or soon after fertilization. How such elimination occurs is currently unknown. We asked whether similar behavior could be detected in somatic cells, by following the fate of mitochondria and mtDNAs after entry of human sperm into transformed cells containing mitochondria but lacking endogenous mtDNAs (rho0 cells). We found that a high proportion (10%-20%) of cells contained functioning sperm mitochondria soon after sperm entry. However, under selective conditions permitting only the survival of cells harboring functional mtDNAs, only approximately 1/10(5) cells containing sperm mitochondria survived and proliferated. These data imply that mitochondria in sperm can enter somatic cells relatively easily, but they also suggest that mechanisms exist to eliminate sperm-derived mtDNA from somatic cells, mechanisms perhaps similar to those presumed to operate in the fertilized oocyte.
Collapse
Affiliation(s)
- G Manfredi
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Disorders, and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
297
|
Abstract
Mitochondria are essential subcellular organelles containing an extranuclear genome (mtDNA). Mutations in mtDNA have recently been identified as causing a variety of human hereditary disease. In most of these cases, the tissues of the affected individual contain a mixture of mutant and normal mtDNA, with this ratio determining the severity of symptoms. Stochastic factors alone have generally been believed to determine this ratio. Jenuth et al.(1), however, examining mice that contain a mixture of mtDNA types, show evidence of strong selective forces at work in favoring one mtDNA variant over another in some tissues.
Collapse
Affiliation(s)
- J L Boore
- Department of Biology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
298
|
Tsuda K, Kikkawa Y, Yonekawa H, Tanabe Y. Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs: evidence from inter- and intraspecies polymorphisms in the D-loop region of mitochondrial DNA between dogs and wolves. Genes Genet Syst 1997; 72:229-38. [PMID: 9418263 DOI: 10.1266/ggs.72.229] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To test the hypothesis that the domestic dogs are derived from several different ancestral gray wolf populations, we compared the sequence of the displacement (D)-loop region of the mitochondrial DNA (mtDNA) from 24 breeds of domestic dog (34 individual dogs) and 3 subspecies of gray wolf (Canis lupus lupus, C.l. pallipes and C.l. chanco; 19 individuals). The intraspecific sequence variations within domestic dogs (0.00-3.19%) and within wolves (0.00-2.88%) were comparable to the interspecific variations between domestic dogs and wolves (0.30-3.35%). A repetitive sequence with repeat units (TACACGTA/GCG) that causes the size variation in the D-loop region was also found in both dogs and wolves. However, no nucleotide substitutions or repetitive arrays were specific for domestic dogs or for wolves. These results showed that there is a close genetic relationship between dogs and wolves. Two major clades appeared in the phylogenetic trees constructed by neighbor-joining and by the maximum parsimony method; one clade containing Chinese wolf (C.l. chanco) showed extensive variations while the other showed only slight variation. This showed that there were two major genetic components both in domestic dogs and in wolves. However, neither clades nor haplotypes specific for any dog breed were observed, whereas subspecies-specific clades were found in Asiatic wolves. These results suggested that the extant breeds of domestic dogs have maintained a large degree of mtDNA polymorphisms introduced from their ancestral wolf populations, and that extensive interbreedings had occurred among multiple matriarchal origins.
Collapse
Affiliation(s)
- K Tsuda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | | | | |
Collapse
|
299
|
Ahmadi A, Ng SC. Sperm head decondensation, pronuclear formation, cleavage and embryonic development following intracytoplasmic injection of mitochondria-damaged sperm in mammals. ZYGOTE 1997; 5:247-53. [PMID: 9460909 DOI: 10.1017/s0967199400003683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to investigate the influence of sperm mitochondrial destruction on sperm head decondensation, male pronuclear formation, cleavage and embryonic development. In the study two models were used: heterologous (hamster ICSI assay: human sperm injected into a hamster oocyte) for evaluation of sperm head decondensation and pronuclear formation, and homologous (mouse model) for the study of fertilisation and development. Destruction of mitochondria of the sperm was achieved by exposure to cyanide, a respiratory poison. Rhodamine 123 was used to evaluate the functional integrity of mitochondria. Sperm head decondensation was found to be not statistically significantly affected by mitochondrial damage (p = 0.8), with 62.8% and 67.9% condensation in the experimental and control groups respectively. Male pronucleus formation was seen in 40.2% and 44.4% of the injected oocytes in the experimental and control groups respectively. In the mouse experiments 45.5% and 49.7% of the injected oocytes were fertilised in the mitochondria-damaged and live-intact sperm groups respectively (p = 0.53). Development to blastocyst was achieved in 53.5% and 59.4% of the experimental and control groups respectively; the difference was not significant (p = 0.71). Inner cell mass (ICM) cell number were 15.7 +/- 4.12 and 43.1 +/- 11.3 respectively in the mitochondria-damaged group; the equivalent numbers were 14.12 +/- 4.02 and 39.3 +/- 12.6 in the control group. However, the differences in ICM and total cell counts between these two groups were not significant. Of the blastocysts transferred to pseudopregnant mice, 51.3% (20/36) implanted and 33.4% (12/36) developed to live fetuses in the mitochondria-damaged group. These rates were 60.5% (23/38) and 39.5% (15/38) in the control group. In conclusion, this study shows that functional integrity of the sperm mitochondria is not necessary in the process of fertilisation and development when the sperm is deposited into the ooplasm. Fertilisation and development can be achieved by injection of sperm at the very early stage of necrosis in which only the mitochondria have been destroyed and the rest of the cell including the plasma membrane is still intact.
Collapse
Affiliation(s)
- A Ahmadi
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | | |
Collapse
|
300
|
Ohno S. The one ancestor per generation rule and three other rules of mitochondrial inheritance. Proc Natl Acad Sci U S A 1997; 94:8033-5. [PMID: 9223309 PMCID: PMC21551 DOI: 10.1073/pnas.94.15.8033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In mammals, at least, a species-specific mechanism exists that eliminates sperm-derived mitochondrial DNA from a fertilized egg. The result is the "one female ancestor per generation" rule and three other rules of mitochondrial inheritance. The second, third, and fourth rules are as follows. (ii) Sublineages of a given mitochondrial line can be generated only during the parallel descents from ancestral sisters. (iii) In a static population in which the production of one female progeny per mated pair per generation has been a rule, several ancient mitochondrial lineages harking back to the female founders of the speciation may persist side by side. (iv) Two or more individuals not related to each other in the recent past may share the identical or nearly identical mitochondrial genome derived from the common female ancestor or ancestral sisters of many generations ago.
Collapse
Affiliation(s)
- S Ohno
- Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010-0269, USA
| |
Collapse
|