251
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
252
|
Urban JH, Vogel J. A green fluorescent protein (GFP)-based plasmid system to study post-transcriptional control of gene expression in vivo. Methods Mol Biol 2009; 540:301-19. [PMID: 19381569 DOI: 10.1007/978-1-59745-558-9_22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression, which mainly modulate the translation of trans-encoded mRNAs. Typically, these molecules are 50-200 nucleotides in size and do not contain expressed open reading frames (ORFs). In Escherichia coli, about 70 members of this group have been identified to date and further estimates assume hundreds of sRNAs per bacterial genome. Regulation of gene expression by sRNAs is predominantly mediated by physical sRNA/target mRNA interactions that are based on short and imperfect complementarity. Although the contribution of sRNAs to overall bacterial gene regulation is now being appreciated, the function of many sRNAs is still unknown and their targets await to be uncovered. We recently developed a modular two-plasmid system, based on the green fluorescent protein (GFP) as non-invasive reporter of gene expression, to rapidly monitor the regulatory potential of sRNA/target mRNA pairs under investigation in vivo. The specialized reporter plasmid series also provides a suitable platform to study the function of cis-encoded riboregulators such as natural riboswitches, thermosensors, or engineered aptamer-based regulatory switches.
Collapse
Affiliation(s)
- Johannes H Urban
- Max Planck Institute for Infection Biology, RNA Biology Group, Charitéplatz 1, 10117, Berlin, Germany
| | | |
Collapse
|
253
|
Schumann W. Chapter 7 Temperature Sensors of Eubacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:213-56. [DOI: 10.1016/s0065-2164(08)01007-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
254
|
Hengge R. The two-component network and the general stress sigma factor RpoS (sigma S) in Escherichia coli. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:40-53. [PMID: 18792681 DOI: 10.1007/978-0-387-78885-2_4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The general stress sigma factor RpoS (sigma s) is induced during entry into stationary phase and in response to multiple stress conditions. RpoS is regulated at the levels of transcription, translation, proteolysis and protein activity. A key factor in RpoS control is the two-component response regulator RssB, which acts as a direct recognition and targeting factor for ClpXP-mediated RpoS proteolysis. A major, but not the only phosphodonor for RssB is the complex histidine sensor kinase ArcB. ArcB coordinates RpoS proteolysis with rpoS transcription by also phosphorylating the response regulator ArcA, which besides controlling a large regulon, also acts as a transcriptional repressor for rpoS. ArcB activity depends on the redox state of the respiratory chain, which links RpoS control to the balance between energy supply and available respiratory electron acceptor. In addition, the BarA/UvrY and Rcs phosphorelay systems can activate rpoS transcription and translation, respectively. These systems are involved in the control of motility, biofilm formation and/or virulence, suggesting that further studying a potential role of RpoS in these physiological functions may be rewarding.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie-Mikrobiologie, FB Biologie, Chemie und Pharmazie, Freie, Universität Berlin, Königin-Luise-str.12-16, 14195 Berlin, Germany.
| |
Collapse
|
255
|
Holland AM, Rather PN. Evidence for extracellular control of RpoS proteolysis in Escherichia coli. FEMS Microbiol Lett 2008; 286:50-9. [PMID: 18616600 DOI: 10.1111/j.1574-6968.2008.01255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The RpoS sigma factor is required for the transition of Escherichia coli into stationary phase, as well as adaptation to environmental stresses and nutrient depletion. In this study, we report that under nutrient poor conditions, RpoS protein accumulation in E. coli was strongly enhanced by a secreted factor. Expression of a single copy RpoS'-'LacZ translational fusion was activated 12-fold by the signal, but a single copy rpoS-lacZ transcriptional fusion was only activated 1.6-fold. The extracellular signal activated the RpoS'-'LacZ translational fusion in dsrA, rprA or dsrA/rprA mutant backgrounds, but did not activate in an hfq mutant background. A RpoS379'-'LacZ translational fusion, missing the region of RpoS required for the RssB (SprE)/ClpXP-dependent proteolysis, was not activated by the extracellular signal. Furthermore, in a rssB(sprE)::Tn10 background, the presence of extracellular signal did not significantly activate expression above the already elevated levels. Western and Northern blot analysis demonstrated that the extracellular signal significantly increased the levels of RpoS protein, but not mRNA. The extracellular signal did not bind to reversed-phase C-18 columns, was dialyzable, and stable to pH 2, pH 12 and heat. However, protease treatment drastically reduced signal activity. Extracellular signal activity was absent in an hldD (rfaD) mutant, but was present in cell lysates, suggesting that signal was unable to be exported in an hldD mutant.
Collapse
|
256
|
Guillier M, Gottesman S. The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 2008; 36:6781-94. [PMID: 18953042 PMCID: PMC2588501 DOI: 10.1093/nar/gkn742] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs are widespread regulators of gene expression in numerous organisms. This study describes the mode of action of two redundant Escherichia coli sRNAs, OmrA and OmrB, that downregulate the expression of multiple targets, most of which encode outer membrane proteins. Our results show that both sRNAs directly interact with at least two of these target mRNAs, ompT and cirA, in the vicinity of the translation initiation region, consistent with control of these targets being dependent on both Hfq and RNase E. Interestingly, these interactions depend on short stretches of complementarity and involve the conserved 5' end of OmrA/B. A mutation in this region abolishes control of all OmrA/B targets tested thus far, thereby highlighting the crucial role of the OmrA/B 5' end. This allowed us, by looking for mRNA sequences complementary to the OmrA/B 5' end, to identify ompR as an additional direct target of these two sRNAs. Since the OmpR transcriptional regulator activates expression of both omrA and omrB genes, this newly identified control should result in an autoregulatory loop limiting the amount of OmrA/B sRNAs.
Collapse
Affiliation(s)
- Maude Guillier
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
257
|
Updegrove T, Wilf N, Sun X, Wartell RM. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5' rpoS mRNA leader region. Biochemistry 2008; 47:11184-95. [PMID: 18826256 DOI: 10.1021/bi800479p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rpoS mRNA encodes a stress response transcription factor in Escherichia coli. It is one of a growing number of mRNAs found to be regulated by small RNAs (sRNA). Translation initiation of rpoS mRNA is enhanced by two sRNAs, DsrA and RprA, that pair to the same site near the rpoS start codon in the presence of the Hfq protein. In this work, we examine the interaction of E. coli Hfq with RprA and two portions of the rpoS mRNA leader region. One rpoS RNA, rpoS-L, contained the entire 565-nucleotide leader region, while the other, rpoS-S, contained the 199-nucleotide sequence surrounding the start codon. An RNase H assay indicated both rpoS RNAs have similar secondary structures in the translation initiation region. Hfq formed two complexes with RprA in a gel mobility assay with binding parameters similar to values previously determined for DsrA. Unlike DsrA, Hfq binding to RprA was inhibited by poly(A) and influenced by Hfq mutations on both the distal and proximal surfaces. Hfq increased the level of RprA binding to both rpoS RNAs but showed a much larger enhancement when rpoS-L, the entire leader region, was examined. The lower affinity of RprA for rpoS-L versus rpoS-S in the absence of Hfq suggests that Hfq overcomes an inhibitory structure within rpoS-L in stimulating RprA binding. Similar results were obtained with DsrA. The results indicate that the full upstream leader sequence of rpoS mRNA influences Hfq-facilitated annealing of RprA and DsrA and is likely to be involved in its regulation.
Collapse
Affiliation(s)
- Taylor Updegrove
- School of Biology and Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
258
|
Soper TJ, Woodson SA. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA (NEW YORK, N.Y.) 2008; 14:1907-17. [PMID: 18658123 PMCID: PMC2525945 DOI: 10.1261/rna.1110608] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/02/2008] [Indexed: 05/22/2023]
Abstract
Small noncoding RNAs (sRNAs) regulate the response of bacteria to environmental stress in conjunction with the Sm-like RNA binding protein Hfq. DsrA sRNA stimulates translation of the RpoS stress response factor in Escherichia coli by base-pairing with the 5' leader of the rpoS mRNA and opening a stem-loop that represses translation initiation. We report that rpoS leader sequences upstream of this stem-loop greatly increase the sensitivity of rpoS mRNA to Hfq and DsrA. Native gel mobility shift assays show that Hfq increases the rate of DsrA binding to the full 576 nt rpoS leader as much as 50-fold. By contrast, base-pairing with a 138-nt RNA containing just the repressor stem-loop is accelerated only twofold. Deletion and mutagenesis experiments showed that sensitivity to Hfq requires an upstream AAYAA sequence. Leaders long enough to contain this sequence bind Hfq tightly and form stable ternary complexes with Hfq and DsrA. A model is proposed in which Hfq recruits DsrA to the rpoS mRNA by binding both RNAs, releasing the self-repressing structure in the mRNA. Once base-pairing between DsrA and rpoS mRNA is established, interactions between Hfq and the mRNA may stabilize the RNA complex by removing Hfq from the sRNA.
Collapse
Affiliation(s)
- Toby J Soper
- Program in Cellular, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | | |
Collapse
|
259
|
Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading) 2008; 154:2533-2545. [PMID: 18757787 DOI: 10.1099/mic.0.2008/020693-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Free
- Institute of Evolutionary Biology, University of Edinburgh, Room 714a, Darwin Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
260
|
Mückstein U, Tafer H, Bernhart SH, Hernandez-Rosales M, Vogel J, Stadler PF, Hofacker IL. Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2008. [DOI: 10.1007/978-3-540-70600-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
261
|
Lee HJ, Park SJ, Choi SH, Lee KH. Vibrio vulnificus rpoS expression is repressed by direct binding of cAMP-cAMP receptor protein complex to its two promoter regions. J Biol Chem 2008; 283:30438-50. [PMID: 18713737 DOI: 10.1074/jbc.m802219200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vibrio vulnificus, a septicemia-causing pathogenic bacterium, acquires resistance against various stresses and expresses virulence factors via an rpoS gene product. In this study, we investigated the transcriptional characteristics of this global regulator. Two distinct transcriptional initiation sites for the rpoS gene, the proximal promoter (P(p)) and the distal promoter (P(d)), were defined by primer extension experiments. Various rpoS::luxAB transcriptional fusions indicated that P(d) is a major promoter of rpoS expression. Western blot analysis showed that RpoS levels were inversely correlated with intracellular levels of 3',5'-cyclic AMP (cAMP). The expressions of both P(d) and P(p) were increased in cya and crp mutants. The exogenous addition of cAMP to the cya mutant resulted in repressed expression of rpoS. In addition, rpoS expression was significantly lowered in the cpdA mutant, in which the level of cAMP was elevated because of the absence of 3',5'-cAMP phosphodiesterase. In vitro transcription assays using the V. vulnificus RNA polymerase showed that the transcripts from both promoters were reduced by addition of the cAMP-cAMP receptor protein (CRP). The cAMP-CRP was shown to bind to two rpoS promoters by electrophoretic mobility shift assays. The alteration of the putative CRP-binding site on each rpoS promoter, via site-directed mutagenesis, abolished the binding of cAMP-CRP as well as regulation by cAMP-CRP. Therefore, this study shows a relationship between the level of intracellular cAMP and the degree of rpoS expression and further demonstrates, for the first time, the direct binding of the cAMP-CRP complex to rpoS upstream regions, which results in repression of rpoS gene expression.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin 449-791, South Korea
| | | | | | | |
Collapse
|
262
|
Li H, Granat A, Stewart V, Gillespie JR. RpoS, H-NS, and DsrA influence EHEC hemolysin operon (ehxCABD) transcription inEscherichia coliO157:H7 strain EDL933. FEMS Microbiol Lett 2008; 285:257-62. [DOI: 10.1111/j.1574-6968.2008.01240.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
263
|
Li JT, Zhang Y, Kong L, Liu QR, Wei L. Trans-natural antisense transcripts including noncoding RNAs in 10 species: implications for expression regulation. Nucleic Acids Res 2008; 36:4833-44. [PMID: 18653530 PMCID: PMC2528163 DOI: 10.1093/nar/gkn470] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Natural antisense transcripts are at least partially complementary to their sense transcripts. Cis-Sense/Antisense pairs (cis-SAs) have been extensively characterized and known to play diverse regulatory roles, whereas trans-Sense/Antisense pairs (trans-SAs) in animals are poorly studied. We identified long trans-SAs in human and nine other animals, using ESTs to increase coverage significantly over previous studies. The percentage of transcriptional units (TUs) involved in trans-SAs among all TUs was as high as 4.13%. Particularly 2896 human TUs (or 2.89% of all human TUs) were involved in 3327 trans-SAs. Sequence complementarities over multiple segments with predicted RNA hybridization indicated that some trans-SAs might have sophisticated RNA-RNA pairing patterns. One-fourth of human trans-SAs involved noncoding TUs, suggesting that many noncoding RNAs may function by a trans-acting antisense mechanism. TUs in trans-SAs were statistically significantly enriched in nucleic acid binding, ion/protein binding and transport and signal transduction functions and pathways; a significant number of human trans-SAs showed concordant or reciprocal expression pattern; a significant number of human trans-SAs were conserved in mouse. This evidence suggests important regulatory functions of trans-SAs. In 30 cases, trans-SAs were related to cis-SAs through paralogues, suggesting a possible mechanism for the origin of trans-SAs. All trans-SAs are available at http://trans.cbi.pku.edu.cn/.
Collapse
Affiliation(s)
- Jiong-Tang Li
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | | | | | | | | |
Collapse
|
264
|
Translational regulation by an intramolecular stem-loop is required for intermolecular RNA regulation of the par addiction module. J Bacteriol 2008; 190:6076-83. [PMID: 18641135 DOI: 10.1128/jb.00660-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The par stability determinant of Enterococcus faecalis plasmid pAD1 is the only antisense RNA-regulated addiction module identified to date in gram-positive bacteria. par encodes two small, convergently transcribed RNAs, designated RNA I and RNA II, that function as the toxin (Fst)-encoding and antitoxin components, respectively. Previous work showed that structures at the 5' end of RNA I are important in regulating its translation. The work presented here reveals that a stem-loop sequestering the Fst ribosome binding site is required for translational repression but a helix sequestering the 5' end of RNA I is not. Furthermore, disruption of the stem-loop prevented RNA II-mediated repression of Fst translation in vivo. Finally, although Fst-encoding wild-type RNA I is not toxic in Escherichia coli, mutations affecting stem-loop stability resulted in toxicity in this host, presumably due to increased translation.
Collapse
|
265
|
Abstract
Many small RNA (sRNA) genes in bacteria act as posttranscriptional regulators of target messenger RNAs. Here, we present TargetRNA, a web tool for predicting mRNA targets of sRNA action in bacteria. TargetRNA takes as input a genomic sequence that may correspond to an sRNA gene. TargetRNA then uses a dynamic programming algorithm to search each annotated message in a specified genome for mRNAs that evince basepair-binding potential to the input sRNA sequence. Based on the calculated basepair-binding potential of each message with the given sRNA regulator, TargetRNA outputs a ranked list of candidate mRNA targets along with the predicted basepairing interaction of each target to the sRNA. The predictive performance of TargetRNA has been validated experimentally in several bacterial organisms. TargetRNA is freely available at http://snowwhite.wellesley.edu/targetRNA.
Collapse
Affiliation(s)
- Brian Tjaden
- Computer Science Department, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
266
|
Urban JH, Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 2008; 6:e64. [PMID: 18351803 PMCID: PMC2267818 DOI: 10.1371/journal.pbio.0060064] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/29/2008] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs (sRNA) can function as posttranscriptional activators of gene expression to regulate stress responses and metabolism. We here describe the mechanisms by which two sRNAs, GlmY and GlmZ, activate the Escherichia coli glmS mRNA, coding for an essential enzyme in amino-sugar metabolism. The two sRNAs, although being highly similar in sequence and structure, act in a hierarchical manner. GlmZ, together with the RNA chaperone, Hfq, directly activates glmS mRNA translation by an anti-antisense mechanism. In contrast, GlmY acts upstream of GlmZ and positively regulates glmS by antagonizing GlmZ RNA inactivation. We also report the first example, to our knowledge, of mRNA expression being controlled by the poly(A) status of a chromosomally encoded sRNA. We show that in wild-type cells, GlmY RNA is unstable due to 3′ end polyadenylation; whereas in an E. coli pcnB mutant defective in RNA polyadenylation, GlmY is stabilized and accumulates, which in turn stabilizes GlmZ and causes GlmS overproduction. Our study reveals hierarchical action of two well-conserved sRNAs in a complex regulatory cascade that controls the glmS mRNA. Similar cascades of noncoding RNA regulators may operate in other organisms. Hierarchical action of regulators is a fundamental principle in gene expression control, and is well understood in protein-based signaling pathways. We have discovered that small noncoding RNAs (sRNAs), a new class of gene expression regulators, can also act hierarchically and form a regulatory cascade. Two highly similar sRNAs function after transcription to activate the Escherichia coli glmS mRNA, which codes for an essential function in amino-sugar metabolism. It is somewhat unusual for two sRNAs to act upon the same target mRNA, and despite their seeming homology, these two sRNAs (GlmY and GlmZ) employ different molecular mechanisms and function hierarchically to activate glmS expression: GlmZ directly activates glmS translation via disruption of an mRNA structure that inhibits translation, whereas GlmY controls the processing of GlmZ to prevent the inactivation of this direct activator. We also found that GlmY is itself controlled by an RNA processing event (3′ end polyadenylation), which typically destabilizes bacterial RNA. Our data unequivocally demonstrate that E. coli glmS is exceptionally dependent on RNA-based mechanisms for its genetic control. Given the large number of noncoding RNAs of unknown function, we believe that similar regulatory RNA cascades may operate in other organisms. A regulatory RNA cascade that posttranscriptionally activates the glmS mRNA is identified, with two highly similar small noncoding RNAs acting hierarchically in a manner thus far known only in protein-based regulatory circuits.
Collapse
Affiliation(s)
- Johannes H Urban
- Max Planck Institute for Infection Biology, RNA Biology Group, Berlin, Germany
| | - Jörg Vogel
- Max Planck Institute for Infection Biology, RNA Biology Group, Berlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
267
|
Abstract
AbstractA large variety of RNA-based mechanisms have been uncovered in all living organisms to regulate gene expression in response to internal and external changes, and to rapidly adapt cell growth in response to these signals. In bacteria, structural elements in the 5′ leader regions of mRNAs have direct effects on translation initiation of the downstream coding sequences. The docking and unfolding of these mRNAs on the 30S subunit are critical steps in the initiation process directly modulating and timing translation. Structural elements can also undergo conformational changes in response to environmental cues (i.e., temperature sensors) or upon binding of a variety oftrans-acting factors, such as metabolites, non-coding RNAs or regulatory proteins. These RNA switches can temporally regulate translation, leading either to repression or to activation of protein synthesis.
Collapse
|
268
|
Kang Z, Wang Q, Zhang H, Qi Q. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 2008; 79:203-8. [DOI: 10.1007/s00253-008-1428-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
269
|
Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 2008; 68:298-313. [DOI: 10.1111/j.1365-2958.2008.06146.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
270
|
Lee T, Feig AL. The RNA binding protein Hfq interacts specifically with tRNAs. RNA (NEW YORK, N.Y.) 2008; 14:514-23. [PMID: 18230766 PMCID: PMC2248270 DOI: 10.1261/rna.531408] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 11/28/2007] [Indexed: 05/24/2023]
Abstract
Hfq is an RNA binding protein that has been studied extensively for its role in the biology of small noncoding RNAs (ncRNAs) in bacteria, where it facilitates post-transcriptional gene regulation during stress responses. We show that Hfq also binds with high specificity and nanomolar affinity to tRNAs despite their lack of a canonical A/U rich single-stranded sequence. This affinity is comparable to that of Hfq for its validated ncRNA targets. Two sites on tRNAs are protected by Hfq binding, one on the D-stem and the other on the T-stem. Mutational analysis and competitive binding experiments indicate that Hfq uses its proximal surface (also called the L4 face) to bind tRNAs, the same surface that interacts with ncRNAs but a site distinct from where poly(A) oligonucleotides bind. hfq knockout strains are known to have broad pleiotropic phenotypes, but none of them are easily explained by or imply a role for tRNA binding. We show that hfq deletion strains have a previously unrecognized phenotype associated with mistranslation and significantly reduced translational fidelity. We infer that tRNA binding and reduced fidelity are linked by a role for Hfq in tRNA modification.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Escherichia coli K12/genetics
- Escherichia coli K12/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Genes, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Quaternary
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
271
|
Mitobe J, Morita-Ishihara T, Ishihama A, Watanabe H. Involvement of RNA-binding Protein Hfq in the Post-transcriptional Regulation of invE Gene Expression in Shigella sonnei. J Biol Chem 2008; 283:5738-47. [DOI: 10.1074/jbc.m710108200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
272
|
Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2008; 21:2804-17. [PMID: 17974919 DOI: 10.1101/gad.447207] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases (oppA, dppA), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions -57 to -45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets.
Collapse
Affiliation(s)
- Cynthia M Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
273
|
Ulvé VM, Sevin EW, Chéron A, Barloy-Hubler F. Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021. BMC Genomics 2007; 8:467. [PMID: 18093320 PMCID: PMC2245857 DOI: 10.1186/1471-2164-8-467] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 12/19/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Small untranslated RNAs (sRNAs) seem to be far more abundant than previously believed. The number of sRNAs confirmed in E. coli through various approaches is above 70, with several hundred more sRNA candidate genes under biological validation. Although the total number of sRNAs in any one species is still unclear, their importance in cellular processes has been established. However, unlike protein genes, no simple feature enables the prediction of the location of the corresponding sequences in genomes. Several approaches, of variable usefulness, to identify genomic sequences encoding sRNA have been described in recent years. RESULTS We used a combination of in silico comparative genomics and microarray-based transcriptional profiling. This approach to screening identified ~60 intergenic regions conserved between Sinorhizobium meliloti and related members of the alpha-proteobacteria sub-group 2. Of these, 14 appear to correspond to novel non-coding sRNAs and three are putative peptide-coding or 5' UTR RNAs (ORF smaller than 100 aa). The expression of each of these new small RNA genes was confirmed by Northern blot hybridization. CONCLUSION Small non coding RNA (sra) genes can be found in the intergenic regions of alpha-proteobacteria genomes. Some of these sra genes are only present in S. meliloti, sometimes in genomic islands; homologues of others are present in related genomes including those of the pathogens Brucella and Agrobacterium.
Collapse
Affiliation(s)
- Vincent M Ulvé
- CNRS UMR6061 Génétique et Développement, Groupe Modèles Génétiques, Université de Rennes 1, IFR140 GFAS, Faculté de médecine, 2 avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| | | | | | | |
Collapse
|
274
|
Abstract
The alternative sigma factor RpoS (sigma38 or sigmaS) plays a central role in the reciprocal regulation of the virulence-associated major outer surface proteins OspC and OspA in Borrelia burgdorferi, the Lyme disease spirochete. Temperature is one of the key environmental signals controlling RpoS, but the molecular mechanism by which the signal is transduced remains unknown. Herein, we identify and describe a small non-coding RNA, DsrABb, that regulates the temperature-induced increase in RpoS. A novel 5' end of the rpoS mRNA was identified and DsrABb has the potential to extensively base-pair with the upstream region of this rpoS transcript. We demonstrate that B. burgdorferi strains lacking DsrABb do not upregulate RpoS and OspC in response to an increase in temperature, but do regulate RpoS and OspC in response to changes in pH and cell density. Analyses of the rpoS and ospC steady-state mRNA levels in the dsrABb mutant indicate that DsrABb regulates RpoS post-transcriptionally. The 5' and 3' ends of DsrABb were mapped, demonstrating that at least four species exist with sizes ranging from 213 to 352 nucleotides. We hypothesize that DsrABb binds to the upstream region of the rpoS mRNA and stimulates translation by releasing the Shine-Dalgarno sequence and start site from a stable secondary structure. Therefore, we postulate that DsrABb is a molecular thermometer regulating RpoS in Borrelia burgdorferi.
Collapse
MESH Headings
- 5' Untranslated Regions/biosynthesis
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Bacterial Outer Membrane Proteins/biosynthesis
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Base Pairing
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/physiology
- Gene Expression Regulation, Bacterial/physiology
- Genetic Complementation Test
- Hydrogen-Ion Concentration
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/metabolism
- RNA, Untranslated/physiology
- Sequence Deletion
- Sigma Factor/biosynthesis
- Sigma Factor/genetics
- Temperature
Collapse
Affiliation(s)
- Meghan C Lybecker
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812-4824, USA
| | | |
Collapse
|
275
|
Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Bläsi U. The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res 2007; 36:133-43. [PMID: 18000007 PMCID: PMC2248732 DOI: 10.1093/nar/gkm985] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.
Collapse
Affiliation(s)
- Branislav Vecerek
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
276
|
Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 2007; 190:476-86. [PMID: 17993530 DOI: 10.1128/jb.00926-07] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1 structural genes. Expression of hilC, hilD, and rtsA is controlled by a number of regulators that respond to a variety of environmental signals. In this work, we show that one such signal is iron mediated by Fur (ferric uptake regulator). Fur activates hilA transcription in a HilD-dependent manner. Fur regulation of HilD does not appear to be simply at the transcriptional or translational level but rather requires the presence of the HilD protein. Fur activation of SPI1 is not mediated through the Fur-regulated small RNAs RfrA and RfrB, which are the Salmonella ortholog and paralog of RyhB that control expression of sodB. Fur regulation of HilD is also not mediated through the known SPI1 repressor HilE or the CsrABC system. Although understanding the direct mechanism of Fur action on HilD requires further analysis, this work is an important step toward elucidating how various global regulatory systems control SPI1.
Collapse
|
277
|
Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 2007; 3:138. [PMID: 17893699 PMCID: PMC2013925 DOI: 10.1038/msb4100181] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/23/2007] [Indexed: 01/02/2023] Open
Abstract
The importance of post-transcriptional regulation by small non-coding RNAs has recently been recognized in both pro- and eukaryotes. Small RNAs (sRNAs) regulate gene expression post-transcriptionally by base pairing with the mRNA. Here we use dynamical simulations to characterize this regulation mode in comparison to transcriptional regulation mediated by protein–DNA interaction and to post-translational regulation achieved by protein–protein interaction. We show quantitatively that regulation by sRNA is advantageous when fast responses to external signals are needed, consistent with experimental data about its involvement in stress responses. Our analysis indicates that the half-life of the sRNA–mRNA complex and the ratio of their production rates determine the steady-state level of the target protein, suggesting that regulation by sRNA may provide fine-tuning of gene expression. We also describe the network of regulation by sRNA in Escherichia coli, and integrate it with the transcription regulation network, uncovering mixed regulatory circuits, such as mixed feed-forward loops. The integration of sRNAs in feed-forward loops provides tight repression, guaranteed by the combination of transcriptional and post-transcriptional regulations.
Collapse
Affiliation(s)
- Yishai Shimoni
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Gilgi Friedlander
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Guy Hetzroni
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Gali Niv
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ofer Biham
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel. Tel.: +972 2 658 4363; Fax: +972 2 652 0089;
| | - Hanah Margalit
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel. Tel.: +972 2 675 8614; Fax: +972 2 675 7308;
| |
Collapse
|
278
|
Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 2007; 8:776-90. [PMID: 17846637 PMCID: PMC4689321 DOI: 10.1038/nrg2172] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
279
|
Prévost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Massé E. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 2007; 64:1260-73. [PMID: 17542919 DOI: 10.1111/j.1365-2958.2007.05733.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RyhB is a small RNA (sRNA) that downregulates about 20 genes involved in iron metabolism. It is expressed under low iron conditions and pairs with specific mRNAs to trigger their rapid degradation by the RNA degradosome. In contrast to this, another study has suggested that RyhB also activates several genes by increasing their mRNA level. Among these activated genes is shiA, which encodes a permease of shikimate, an aromatic compound participating in the biosynthesis of siderophores. Here, we demonstrate in vivo and in vitro that RyhB directly pairs at the 5'-untranslated region (5'-UTR) of the shiA mRNA to disrupt an intrinsic inhibitory structure that sequesters the ribosome-binding site (Shine-Dalgarno) and the first translation codon. This is the first demonstration of direct gene activation by RyhB, which has been exclusively described in degradation of mRNAs. Our physiological results indicate that the transported compound of the ShiA permease, shikimate, is important under conditions of RyhB expression, that is, iron starvation. This is demonstrated by growth assays in which shikimate or the siderophore enterochelin correct the growth defect observed for a ryhB mutant in iron-limited media.
Collapse
Affiliation(s)
- Karine Prévost
- Département de Biochimie, Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
280
|
Abstract
In Vibrio cholerae, bioinformatic approaches have been used to predict the locations of numerous small RNA (sRNA)-encoding genes, but biological roles have been determined for very few. Here, we describe the expression, processing and biological role of an sRNA (previously known as A10) that was identified through such analyses. We have renamed this sRNA MicX as, like the Escherichia coli sRNAs MicA, MicC and MicF, it regulates expression of an outer membrane protein (OMP). MicX appears to be a direct negative regulator of vc0972, which encodes an uncharacterized OMP, and vc0620, which encodes the periplasmic component of a peptide ABC transporter. Hfq is apparently not required for MicX's interactions with and regulation of these targets. The sequence encoding MicX overlaps with vca0943; however, primary transcripts of MicX are processed in an RNase E- and Hfq-dependent fashion to a shorter, still active and much more stable form consisting largely of the vca0943 3′ untranslated region. Our data suggest that processing of MicX enhances its effectiveness, and that sRNA cleavage is not simply a means to sRNA inactivation and clearance.
Collapse
Affiliation(s)
- Brigid M Davis
- Channing Laboratory, Brigham and Women's Hospital, and Howard Hughes Medical Institute, Boston, MA 02111, USA.
| | | |
Collapse
|
281
|
Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D. Small RNA regulators and the bacterial response to stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:1-11. [PMID: 17381274 PMCID: PMC3592358 DOI: 10.1101/sqb.2006.71.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have uncovered dozens of regulatory small RNAs in bacteria. A large number of these small RNAs act by pairing to their target mRNAs. The outcome of pairing can be either stimulation or inhibition of translation. Pairing in vivo frequently depends on the RNA-binding protein Hfq. Synthesis of these small RNAs is tightly regulated at the level of transcription; many of the well-studied stress response regulons have now been found to include a regulatory RNA. Expression of the small RNA can help the cell cope with environmental stress by redirecting cellular metabolism, exemplified by RyhB, a small RNA expressed upon iron starvation. Although small RNAs found in Escherichia coli can usually be identified by sequence comparison to closely related enterobacteria, other approaches are necessary to find the equivalent RNAs in other bacterial species. Nonetheless, it is becoming increasingly clear that many if not all bacteria encode significant numbers of these important regulators. Tracing their evolution through bacterial genomes remains a challenge.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
- Corresponding author: Bldg. 37, Rm. 5132, National Cancer Institute, Bethesda, MD. 20892; phone: 301-496-3524; fax: 301-496-3875;
| | - Colleen McCullen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Maude Guillier
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Carin Vanderpool
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Jihane Benhammou
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Karl Thompson
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Peter FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - Nathaniel Sowa
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD. 20892
| |
Collapse
|
282
|
Vogel J, Wagner EGH. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10:262-70. [PMID: 17574901 DOI: 10.1016/j.mib.2007.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/01/2007] [Indexed: 01/08/2023]
Abstract
Small noncoding RNAs have been discovered at a staggering rate in Escherichia coli and many other bacteria. Most of the sRNAs of known function regulate gene expression by binding to specific mRNAs or proteins. Given the scores of sRNAs of unknown function, the identification of their cellular targets has become urgent. Here, we review the diverse strategies that have been used to identify and validate bacterial sRNA targets. These include the pulse-expression of sRNAs followed by global transcriptome analysis (microarrays), new biocomputational prediction algorithms, and novel gfp reporter gene fusions to validate candidate target gene regulation.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
283
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
284
|
Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 2007; 189:6011-20. [PMID: 17557827 PMCID: PMC1952038 DOI: 10.1128/jb.00014-07] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The regulatory network for the uptake of Escherichia coli autoinducer 2 (AI-2) is comprised of a transporter complex, LsrABCD; its repressor, LsrR; and a cognate signal kinase, LsrK. This network is an integral part of the AI-2 quorum-sensing (QS) system. Because LsrR and LsrK directly regulate AI-2 uptake, we hypothesized that they might play a wider role in regulating other QS-related cellular functions. In this study, we characterized physiological changes due to the genomic deletion of lsrR and lsrK. We discovered that many genes were coregulated by lsrK and lsrR but in a distinctly different manner than that for the lsr operon (where LsrR serves as a repressor that is derepressed by the binding of phospho-AI-2 to the LsrR protein). An extended model for AI-2 signaling that is consistent with all current data on AI-2, LuxS, and the LuxS regulon is proposed. Additionally, we found that both the quantity and architecture of biofilms were regulated by this distinct mechanism, as lsrK and lsrR knockouts behaved identically. Similar biofilm architectures probably resulted from the concerted response of a set of genes including flu and wza, the expression of which is influenced by lsrRK. We also found for the first time that the generation of several small RNAs (including DsrA, which was previously linked to QS systems in Vibrio harveyi) was affected by LsrR. Our results suggest that AI-2 is indeed a QS signal in E. coli, especially when it acts through the transcriptional regulator LsrR.
Collapse
Affiliation(s)
- Jun Li
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
285
|
Hammer BK, Bassler BL. Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2007; 104:11145-9. [PMID: 17556542 PMCID: PMC1888797 DOI: 10.1073/pnas.0703860104] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a process called quorum sensing (QS), bacteria communicate with extracellular signal molecules called autoinducers (AIs). Response to AIs allows bacteria to coordinate gene expression on a population-wide scale and thereby carry out particular behaviors in unison, much like multicellular organisms. In Vibrio cholerae El Tor, the etiological agent of the current cholera pandemic, AI information is transduced internally through a phosphorelay circuit that impinges on the transcription of multiple small regulatory RNAs (sRNAs). These RNAs base-pair with, and repress the translation of, the mRNA encoding the master transcriptional regulator HapR. In V. cholerae, HapR controls virulence factor expression and biofilm formation. Here we identify a sRNA-dependent, HapR-independent QS pathway in which the sRNAs base-pair with a new target mRNA and activate translation by preventing formation of a translation-inhibiting stem-loop structure. We show that the classical V. cholerae strain, which caused previous pandemics and is reportedly incapable of QS because of a nonfunctional HapR, nonetheless exhibits QS-controlled gene expression through this new HapR-independent pathway.
Collapse
Affiliation(s)
| | - Bonnie L. Bassler
- *Department of Molecular Biology, Princeton University, and
- Howard Hughes Medical Institute, Princeton, NJ 08544-1014
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
286
|
Ranquet C, Gottesman S. Translational regulation of the Escherichia coli stress factor RpoS: a role for SsrA and Lon. J Bacteriol 2007; 189:4872-9. [PMID: 17449615 PMCID: PMC1913435 DOI: 10.1128/jb.01838-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cell viability during starvation is strongly dependent on the expression of the rpoS gene, encoding the RpoS sigma subunit of RNA polymerase. RpoS abundance has been reported to be regulated at many levels, including transcription initiation, translation, and protein stability. The regulatory RNA SsrA (or tmRNA) has both tRNA and mRNA activities, relieving ribosome stalling and cotranslationally tagging proteins. We report here that SsrA is needed for the correct high-level translation of RpoS. The ATP-dependent protease Lon was also found to negatively affect RpoS translation, but only at low temperature. We suggest that SsrA may indirectly improve RpoS translation by limiting ribosome stalling and depletion of some component of the translation machinery.
Collapse
Affiliation(s)
- Caroline Ranquet
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
287
|
Thompson KM, Rhodius VA, Gottesman S. SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 2007; 189:4243-56. [PMID: 17416652 PMCID: PMC1913397 DOI: 10.1128/jb.00020-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RybB is a small, Hfq-binding noncoding RNA originally identified in a screen of conserved intergenic regions in Escherichia coli. Fusions of the rybB promoter to lacZ were used to screen plasmid genomic libraries and genomic transposon mutants for regulators of rybB expression. A number of plasmids, including some carrying rybB, negatively regulated the fusion. An insertion in the rep helicase and one upstream of dnaK decreased expression of the fusion. Multicopy suppressors of these insertions led to identification of two plasmids that stimulated the fusion. One contained the gene for the response regulator OmpR; the second contained mipA, encoding a murein hydrolase. The involvement of MipA and OmpR in cell surface synthesis suggested that the rybB promoter might be dependent on sigma(E). The sequence upstream of the +1 of rybB contains a consensus sigma(E) promoter. The activity of rybB-lacZ was increased in cells lacking the RseA anti-sigma factor and when sigma(E) was overproduced from a heterologous promoter. The activity of rybB-lacZ and the detection of RybB were totally abolished in an rpoE-null strain. In vitro, sigma(E) efficiently transcribes from this promoter. Both a rybB mutation and an hfq mutation significantly increased expression of both rybB-lacZ and rpoE-lacZ fusions, consistent with negative regulation of the sigma(E) response by RybB and other small RNAs. Based on the plasmid screens, NsrR, a repressor sensitive to nitric oxide, was also found to negatively regulate sigma(E)-dependent promoters in an RseA-independent fashion.
Collapse
Affiliation(s)
- Karl M Thompson
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
288
|
Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 2007; 10:134-9. [PMID: 17383928 DOI: 10.1016/j.mib.2007.03.010] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/14/2007] [Indexed: 01/29/2023]
Abstract
The stress-induced small RNAs SgrS and RyhB in Escherichia coli form a specific ribonucleoprotein complex with RNAse E and Hfq resulting in translation inhibition, RNAse E-dependent degradation of target mRNAs. Translation inhibition is the primary event for gene silencing and degradation of these small RNAs is coupled with the degradation of target mRNAs. The crucial base-pairs for action of SgrS are confined to the 6 nt region overlapping the Shine-Dalgarno sequence of the target mRNA. Hfq accelerates the rate of duplex formation between SgrS and the target mRNA. Membrane localization of target mRNA contributes to efficient SgrS action by competing with ribosome loading.
Collapse
Affiliation(s)
- Hiroji Aiba
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
289
|
Croxen MA, Ernst PB, Hoffman PS. Antisense RNA modulation of alkyl hydroperoxide reductase levels in Helicobacter pylori correlates with organic peroxide toxicity but not infectivity. J Bacteriol 2007; 189:3359-68. [PMID: 17337572 PMCID: PMC1855876 DOI: 10.1128/jb.00012-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of the gene content of the human gastric pathogen Helicobacter pylori ( approximately 1.7-Mb genome) is considered essential. This view is based on the completeness of metabolic pathways, infrequency of nutritional auxotrophies, and paucity of pathway redundancies typically found in bacteria with larger genomes. Thus, genetic analysis of gene function is often hampered by lethality. In the absence of controllable promoters, often used to titrate gene function, we investigated the feasibility of an antisense RNA interference strategy. To test the antisense approach, we targeted alkyl hydroperoxide reductase (AhpC), one of the most abundant proteins expressed by H. pylori and one whose function is essential for both in vitro growth and gastric colonization. Here, we show that antisense ahpC (as-ahpC) RNA expression from shuttle vector pDH37::as-ahpC achieved an approximately 72% knockdown of AhpC protein levels, which correlated with increased susceptibilities to hydrogen peroxide, cumene, and tert-butyl hydroperoxides but not with growth efficiency. Compensatory increases in catalase levels were not observed in the knockdowns. Expression of single-copy antisense constructs (expressed under the urease promoter and containing an fd phage terminator) from the rdxA locus of mouse-colonizing strain X47 achieved a 32% knockdown of AhpC protein levels (relative to wild-type X47 levels), which correlated with increased susceptibility to organic peroxides but not with mouse colonization efficiency. Our studies indicate that high levels of AhpC are not required for in vitro growth or for primary gastric colonization. Perhaps AhpC, like catalase, assumes a greater role in combating exogenous peroxides arising from lifelong chronic inflammation. These studies also demonstrate the utility of antisense RNA interference in the evaluation of gene function in H. pylori.
Collapse
Affiliation(s)
- Matthew A Croxen
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
290
|
Stork M, Di Lorenzo M, Welch TJ, Crosa JH. Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 2007; 189:3479-88. [PMID: 17337574 PMCID: PMC1855896 DOI: 10.1128/jb.00619-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The iron transport-biosynthesis (ITB) operon in Vibrio anguillarum includes four genes for ferric siderophore transport, fatD, -C, -B, and -A, and two genes for siderophore biosynthesis, angR and angT. This cluster plays an important role in the virulence mechanisms of this bacterium. Despite being part of the same polycistronic mRNA, the relative levels of transcription for the fat portion and for the whole ITB message differ profoundly, the levels of the fat transcript being about 17-fold higher. Using S1 nuclease mapping, lacZ transcriptional fusions, and in vitro studies, we were able to show that the differential gene expression within the ITB operon is due to termination of transcription between the fatA and angR genes, although a few transcripts proceeded beyond the termination site to the end of this operon. This termination process requires a 427-nucleotide antisense RNA that spans the intergenic region and acts as a novel transcriptional terminator.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology and Immunology L-220, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
291
|
Stefan A, Tabler M, Hochkoeppler A. Efficient silencing of the gene coding for the epsilon subunit of DNA polymerase III in Escherichia coli is triggered by antisense RNAs featuring stability in vivo. FEMS Microbiol Lett 2007; 270:277-83. [PMID: 17343677 DOI: 10.1111/j.1574-6968.2007.00679.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli gene dnaQ coding for the epsilon subunit of DNA polymerase III was suppressed in vivo via antisense RNAs. To this aim, different fragments of dnaQ were cloned in reverse orientation into the pBAD-HisB vector or into pT3T7, and the corresponding antisense RNAs were conditionally expressed in vivo. Antisense transcripts featuring fast hybridization in vitro with dnaQ mRNA but lacking stability in vivo did not suppress the target gene. Moreover, the in vivo concentration of an antisense transcript was positively correlated to its silencing effectiveness.
Collapse
Affiliation(s)
- Alessandra Stefan
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Firenze, Italy
| | | | | |
Collapse
|
292
|
Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007; 35:1018-37. [PMID: 17264113 PMCID: PMC1807950 DOI: 10.1093/nar/gkl1040] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression. Most of the regulatory Escherichia coli sRNAs known to date modulate translation of trans-encoded target mRNAs. We studied the specificity of sRNA target interactions using gene fusions to green fluorescent protein (GFP) as a novel reporter of translational control by bacterial sRNAs in vivo. Target sequences were selected from both monocistronic and polycistronic mRNAs. Upon expression of the cognate sRNA (DsrA, GcvB, MicA, MicC, MicF, RprA, RyhB, SgrS and Spot42), we observed highly specific translation repression/activation of target fusions under various growth conditions. Target regulation was also tested in mutants that lacked Hfq or RNase III, or which expressed a truncated RNase E (rne701). We found that translational regulation by these sRNAs was largely independent of full-length RNase E, e.g. despite the fact that ompA fusion mRNA decay could no longer be promoted by MicA. This is the first study in which multiple well-defined E.coli sRNA target pairs have been studied in a uniform manner in vivo. We expect our GFP fusion approach to be applicable to sRNA targets of other bacteria, and also demonstrate that Vibrio RyhB sRNA represses a Vibrio sodB fusion when co-expressed in E.coli.
Collapse
Affiliation(s)
| | - Jörg Vogel
- To whom correspondence should be addressed. Tel: +49 30 28460 265; Fax: +49 30 28460 244;
| |
Collapse
|
293
|
Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 2007; 35:962-74. [PMID: 17259222 PMCID: PMC1807966 DOI: 10.1093/nar/gkl1096] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
To identify noncoding RNAs (ncRNAs) in the pathogenic bacterium Listeria monocytogenes, we analyzed the intergenic regions (IGRs) of strain EGD-e by in silico-based approaches. Among the twelve ncRNAs found, nine are novel and specific to the Listeria genus, and two of these ncRNAs are expressed in a growth-dependent manner. Three of the ncRNAs are transcribed in opposite direction to overlapping open reading frames (ORFs), suggesting that they act as antisense on the corresponding mRNAs. The other ncRNA genes appear as single transcription units. One of them displays five repeats of 29 nucleotides. Five of these new ncRNAs are absent from the non-pathogenic species L. innocua, raising the possibility that they might be involved in virulence. To predict mRNA targets of the ncRNAs, we developed a computational method based on thermodynamic pairing energies and known ncRNA–mRNA hybrids. Three ncRNAs, including one of the putative antisense ncRNAs, were predicted to have more than one mRNA targets. Several of them were shown to bind efficiently to the ncRNAs suggesting that our in silico approach could be used as a general tool to search for mRNA targets of ncRNAs.
Collapse
Affiliation(s)
- Pierre Mandin
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France; INSERM, U604, Paris, F-75015 France; INRA, USC2020, Paris, F-75015 France, CNRS URA 2171, Institut Pasteur, UP Génétique in silico, Paris, F-75015 France and UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Srasbourg, F-67084 France
| | - Francis Repoila
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France; INSERM, U604, Paris, F-75015 France; INRA, USC2020, Paris, F-75015 France, CNRS URA 2171, Institut Pasteur, UP Génétique in silico, Paris, F-75015 France and UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Srasbourg, F-67084 France
| | - Massimo Vergassola
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France; INSERM, U604, Paris, F-75015 France; INRA, USC2020, Paris, F-75015 France, CNRS URA 2171, Institut Pasteur, UP Génétique in silico, Paris, F-75015 France and UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Srasbourg, F-67084 France
| | - Thomas Geissmann
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France; INSERM, U604, Paris, F-75015 France; INRA, USC2020, Paris, F-75015 France, CNRS URA 2171, Institut Pasteur, UP Génétique in silico, Paris, F-75015 France and UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Srasbourg, F-67084 France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France; INSERM, U604, Paris, F-75015 France; INRA, USC2020, Paris, F-75015 France, CNRS URA 2171, Institut Pasteur, UP Génétique in silico, Paris, F-75015 France and UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Srasbourg, F-67084 France
- *To whom correspondence should be addressed. Tel: (33) 145688841; Fax: (33) 145688706; E-mail:
| |
Collapse
|
294
|
Lee HJ, Bang SH, Lee KH, Park SJ. Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J Bacteriol 2007; 189:2629-36. [PMID: 17237166 PMCID: PMC1855807 DOI: 10.1128/jb.01791-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In pathogenic bacteria, the ability to acquire iron, which is mainly regulated by the ferric uptake regulator (Fur), is essential to maintain growth as well as its virulence. In Vibrio vulnificus, a human pathogen causing gastroenteritis and septicemia, fur gene expression is positively regulated by Fur when the iron concentration is limited (H.-J. Lee et al., J. Bacteriol. 185:5891-5896, 2003). Footprinting analysis revealed that an upstream region of the fur gene was protected by the Fur protein from DNase I under iron-depleted conditions. The protected region, from -142 to -106 relative to the transcription start site of the fur gene, contains distinct AT-rich repeats. Mutagenesis of this repeated sequence resulted in abolishment of binding by Fur. To confirm the role of this cis-acting element in Fur-mediated control of its own gene in vivo, fur expression was monitored in V. vulnificus strains using a transcriptional fusion containing the mutagenized Fur-binding site (fur(mt)::luxAB). Expression of fur(mt)::luxAB showed that it was not regulated by Fur and was not influenced by iron concentration. Therefore, this study demonstrates that V. vulnificus Fur acts as a positive regulator under iron-limited conditions by direct interaction with the fur upstream region.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Parasitology, Yonsei University School of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 152-750, Republic of Korea
| | | | | | | |
Collapse
|
295
|
Heidrich N, Chinali A, Gerth U, Brantl S. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 2007; 62:520-36. [PMID: 17020585 DOI: 10.1111/j.1365-2958.2006.05384.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas about 70 small non-coding RNAs have been found in the Escherichia coli genome, relatively little is known about regulatory RNAs from Gram-positive bacteria. Here, we demonstrate that the recently identified small untranslated RNA SR1 from the Bacillus subtilis genome is a regulatory RNA involved in fine-tuning of arginine catabolism. 2D protein gel electrophoresis indicated three possible SR1 targets that are regulated by the transcriptional activator AhrC, which was shown to be the primary target of SR1. In vitro pairing studies and an in vivo reporter gene test demonstrated a specific interaction between SR1 and ahrC mRNA. This interaction did not lead to degradation of ahrC mRNA, but inhibited translation at a post-initiation stage. Our data show that the Hfq chaperone was not required for the stabilization of SR1 in vivo. The amount of SR1 was increased upon addition of l-arginine and l-ornithine, but not l-citrulline or l-proline.
Collapse
Affiliation(s)
- Nadja Heidrich
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | | | | | | |
Collapse
|
296
|
Vanderpool CK, Gottesman S. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J Bacteriol 2007; 189:2238-48. [PMID: 17209026 PMCID: PMC1899371 DOI: 10.1128/jb.01689-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SgrR is the first characterized member of a family of bacterial transcription factors containing an N-terminal DNA binding domain and a C-terminal solute binding domain. Previously, we reported genetic evidence that SgrR activates the divergently transcribed gene sgrS, which encodes a small RNA required for recovery from glucose-phosphate stress. In this study, we examined the regulation of sgrR expression and found that SgrR negatively autoregulates its own transcription in the presence and absence of stress. An SgrR binding site in the sgrR-sgrS intergenic region is required in vivo for both SgrR-dependent activation of sgrS and autorepression of sgrR. Purified SgrR binds specifically to sgrS promoter DNA in vitro; a mutation in the site required for in vivo activation and autorepression abrogates in vitro SgrR binding. A plasmid library screen identified clones that alter expression of a P(sgrS)-lacZ fusion; some act by titrating endogenous SgrR. The yfdZ gene, encoding a putative aminotransferase, was identified in this screen; the yfdZ promoter contains an SgrR binding site, and transcriptional fusions indicate that yfdZ is activated by SgrR. Clones containing mlc, which encodes a glucose-specific repressor protein, also downregulate P(sgrS)-lacZ. The mlc clones do not appear to titrate the SgrR protein, indicating that Mlc affects sgrS expression by an alternative mechanism.
Collapse
Affiliation(s)
- Carin K Vanderpool
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
297
|
Klauck E, Typas A, Hengge R. The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 2007; 90:103-27. [PMID: 17725229 PMCID: PMC10368345 DOI: 10.3184/003685007x215922] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigmaS (RpoS) subunit of RNA polymerase in Escherichia coli is a key master regulator which allows this bacterial model organism and important pathogen to adapt to and survive environmentally rough times. While hardly present in rapidly growing cells, sigmaS strongly accumulates in response to many different stress conditions, partly replaces the vegetative sigma subunit in RNA polymerase and thereby reprograms this enzyme to transcribe sigmaS-dependent genes (up to 10% of the E. coli genes). In this review, we summarize the extremely complex regulation of sigmaS itself and multiple signal input at the level of this master regulator, we describe the way in which sigmaS specifically recognizes "stress" promoters despite their similarity to vegetative promoters, and, while being far from comprehensive, we give a short overview of the far-reaching physiological impact of sigmaS. With sigmaS being a central and multiple signal integrator and master regulator of hundreds of genes organized in regulatory cascades and sub-networks or regulatory modules, this system also represents a key model system for analyzing complex cellular information processing and a starting point for understanding the complete regulatory network of an entire cell.
Collapse
Affiliation(s)
| | - Athanasios Typas
- Aristotle University of Thessaloniki in Greece, Freie Universität Berlin
| | - Regine Hengge
- University of Konstanz. University of Princeton (NJ, USA)
| |
Collapse
|
298
|
Guisbert E, Rhodius VA, Ahuja N, Witkin E, Gross CA. Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol 2006; 189:1963-73. [PMID: 17158661 PMCID: PMC1855744 DOI: 10.1128/jb.01243-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hfq, a chaperone for small noncoding RNAs, regulates many processes in Escherichia coli, including the sigma(S)-mediated general stress response. Here we used microarray analysis to identify the changes in gene expression resulting from lack of Hfq. We identify several potential new targets for Hfq regulation, including genes encoding outer membrane proteins, enzymes, factors, and transporters. Many of these genes are involved in amino acid uptake and biosynthesis, sugar uptake and metabolism, and cell energetics. In addition, we find altered regulation of the sigma(E)- and sigma(32)-mediated stress responses, which we analyze further. We show that cells lacking Hfq induce the sigma(E)-mediated envelope stress response and are defective in sigma(E)-mediated repression of outer membrane proteins. We also show that the sigma(32)-mediated cytoplasmic stress response is repressed in cells lacking Hfq due to increased expression of DnaK. Furthermore, we show that cells lacking Hfq are defective in the "long-term adaptation" of sigma(32) to chronic chaperone overexpression. Together, our results indicate that Hfq may play a general role in stress response regulation in E. coli.
Collapse
Affiliation(s)
- Eric Guisbert
- Departments of Biochemistry and Biophysics, Microbiology and Immunology, Cell and Tissue Biology, University of California, San Francisco, California
| | - Virgil A. Rhodius
- Departments of Biochemistry and Biophysics, Microbiology and Immunology, Cell and Tissue Biology, University of California, San Francisco, California
| | - Nidhi Ahuja
- Departments of Biochemistry and Biophysics, Microbiology and Immunology, Cell and Tissue Biology, University of California, San Francisco, California
| | - Emily Witkin
- Departments of Biochemistry and Biophysics, Microbiology and Immunology, Cell and Tissue Biology, University of California, San Francisco, California
| | - Carol A. Gross
- Departments of Biochemistry and Biophysics, Microbiology and Immunology, Cell and Tissue Biology, University of California, San Francisco, California
- Corresponding author. Mailing address: Genentech Hall, Rm. S376, 600 16th St., University of California at San Francisco, San Francisco, CA 94158. Phone: (415) 476-4161. Fax: (415) 514-4080. E-mail:
| |
Collapse
|
299
|
Schurdell MS, Woodbury GM, McCleary WR. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J Bacteriol 2006; 189:1150-3. [PMID: 17142395 PMCID: PMC1797327 DOI: 10.1128/jb.01482-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the Pho regulon, phosphate starvation also stimulates the accumulation of RpoS. Several deletion mutations within the pstSCAB-phoU operon were tested for the accumulation of RpoS during exponential growth. Our data suggest that the processed 3' end of the pstA message stimulates translation of rpoS.
Collapse
Affiliation(s)
- Michael S Schurdell
- Department of Microbiology and Molecular Biology, Brigham Young University, 775 WIDB, Provo, UT 84602-5253, USA
| | | | | |
Collapse
|
300
|
Abstract
MicF, one of the first chromosomally encoded regulatory small RNAs (sRNAs) to be discovered, was found to modulate the expression of OmpF, an abundant outer membrane protein. Several recent papers have now shown that this is not an isolated case. At least five other sRNAs also regulate the synthesis of outer membrane porins, and additional sRNAs modulate the expression of other outer membrane proteins. Here we review what is known about these sRNAs and discuss the implications of this regulation.
Collapse
Affiliation(s)
- Maude Guillier
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda 20892, Maryland, USA
| | | | | |
Collapse
|