251
|
Xu T, Han J, Zhang J, Chen J, Wu N, Zhang W, Zhang Y. Absence of Protoheme IX Farnesyltransferase CtaB Causes Virulence Attenuation but Enhances Pigment Production and Persister Survival in MRSA. Front Microbiol 2016; 7:1625. [PMID: 27822202 PMCID: PMC5076432 DOI: 10.3389/fmicb.2016.01625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023] Open
Abstract
The membrane protein CtaB in S. aureus is a protoheme IX farnesyltransferase involved in the synthesis of the heme containing terminal oxidases of bacterial respiratory chain. In this study, to assess the role of CtaB in S. aureus virulence, pigment production, and persister formation, we constructed a ctaB mutant in the methicillin-resistant Staphylococcus aureus (MRSA) strain USA500. We found that deletion of ctaB attenuated growth and virulence in mice but enhanced pigment production and formation of quinolone tolerant persister cells in stationary phase. RNA-seq analysis showed that deletion of ctaB caused decreased transcription of several virulence genes including RNAIII which is consistent with its virulence attenuation. In addition, transcription of 20 ribosomal genes and 24 genes involved in amino acid biosynthesis was significantly down-regulated in the ctaB knockout mutant compared with the parent strain. These findings suggest the importance of heme biosynthesis in virulence and persister formation of S. aureus.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Jian Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou UniversityLanzhou, China
| | - Jia Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Jiazhen Chen
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Nan Wu
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Wenhong Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Ying Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
252
|
Omardien S, Brul S, Zaat SAJ. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4:111. [PMID: 27790614 PMCID: PMC5063857 DOI: 10.3389/fcell.2016.00111] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.
Collapse
Affiliation(s)
- Soraya Omardien
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
253
|
Atila M, Katselis G, Chumala P, Luo Y. Characterization of N-Succinylation of L-Lysylphosphatidylglycerol in Bacillus subtilis Using Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1606-1613. [PMID: 27506207 DOI: 10.1007/s13361-016-1455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Phospholipids generally dominate in bacterial lipids. The negatively charged nature of phospholipids renders bacteria susceptible to cationic antibiotic peptides. In comparison with Gram-negative bacteria, Gram-positive bacteria in general have much less zwitterionic phosphatidylethanolamine. However, they are known for producing aminoacylated phosphatidylglycerol (PG), especially positively charged L-lysyl-PG, which is catalyzed by lysyl-PG synthase MprF, which appears to have a broad range of specificity for L-aminoacyl transfer RNAs. In addition, many Gram-positive bacteria also have a dlt-gene-coded D-alanylation pathway for lipoteichoic acids and wall teichoic acids covalently attached to a glycolipid or peptidoglycan. D-Alanylation also masks the dominant negative charge of the phosphate-rich polymers of teichoic acids. Using mass spectrometry, we have recently observed that precursor scans in negative mode for deprotonated amino acid fragments were most sensitive for ester-linked amino acids. Such a scan for precursors generating an m/z 145 lysyl anion revealed lysyl-PG as well as an additional species 100 m/z units greater than lysyl-PG. This unexpected species corresponded precisely to the expected mass of N-succinylated lysyl-PG. Tandem mass spectrometry revealed a precise match to the fragmentation pattern of this putative new species. PG, lysyl-PG, and N-succinyl-lysyl-PG may form a complete loop of charge reversal from -1 to +1 and then back to -1. Analogous charge reversal by N-succinylation of lysine residues in the bacterial as well as eukaryotic proteomes has been recently discovered as a major posttranslational modification. Such modification in bacterial lipids is possibly catalyzed by an enzyme homologous to the enzymes that modify lysine residues in proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George Katselis
- Canadian Centre for Health and Safety in Agriculture/Department of Medicine, Core Mass Spectrometry Facility, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Canadian Centre for Health and Safety in Agriculture/Department of Medicine, Core Mass Spectrometry Facility, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yu Luo
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
254
|
Raafat D, Leib N, Wilmes M, François P, Schrenzel J, Sahl HG. Development of in vitro resistance to chitosan is related to changes in cell envelope structure of Staphylococcus aureus. Carbohydr Polym 2016; 157:146-155. [PMID: 27987856 DOI: 10.1016/j.carbpol.2016.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
The bacterial cell envelope is believed to be a principal target for initiating the staphylocidal pathway of chitosan. The present study was therefore designed to investigate possible changes in cell surface phenotypes related to the in vitro chitosan resistance development in the laboratory strain S. aureus SG511-Berlin. Following a serial passage experiment, a stable chitosan-resistant variant (CRV) was identified, exhibiting >50-fold reduction in its sensitivity towards chitosan. Our analyses of the CRV identified phenotypic and genotypic features that readily distinguished it from its chitosan-susceptible parental strain, including: (i) a lower overall negative cell surface charge; (ii) cross-resistance to a number of antimicrobial agents; (iii) major alterations in cell envelope structure, cellular bioenergetics and metabolism (based on transcriptional profiling); and (iv) a repaired sensor histidine kinase GraS. Our data therefore suggest a close nexus between changes in cell envelope properties with the in vitro chitosan-resistant phenotype in S. aureus SG511-Berlin.
Collapse
Affiliation(s)
- Dina Raafat
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Nicole Leib
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Miriam Wilmes
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Patrice François
- Genomic Research Laboratory, Division of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva, Switzerland.
| | - Hans-Georg Sahl
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| |
Collapse
|
255
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
256
|
Eckhard LH, Houri-Haddad Y, Sol A, Zeharia R, Shai Y, Beyth S, Domb AJ, Bachrach G, Beyth N. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens. PLoS One 2016; 11:e0162537. [PMID: 27606830 PMCID: PMC5015835 DOI: 10.1371/journal.pone.0162537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022] Open
Abstract
The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer.
Collapse
Affiliation(s)
- Lea H. Eckhard
- Department of Prosthodontics, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
| | - Asaf Sol
- Institute of Dental Science, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
| | - Rotem Zeharia
- Department of Prosthodontics, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Beyth
- Orthopedic Surgery Department, Hadassah Medical Center, Jerusalem, Israel
| | - Abraham J. Domb
- Institute for Drug Research, School of Pharmacology, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Gilad Bachrach
- Institute of Dental Science, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, the Hebrew University–Faculty of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
257
|
Montalbán-López M, van Heel AJ, Kuipers OP. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol Rev 2016; 41:5-18. [PMID: 27591436 DOI: 10.1093/femsre/fuw034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
258
|
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 2016; 48:298-304. [DOI: 10.1016/j.ijantimicag.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/23/2022]
|
259
|
Nguyen LT, Vogel HJ. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 2016; 6:31817. [PMID: 27554435 PMCID: PMC4995489 DOI: 10.1038/srep31817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein's α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
260
|
Multidrug Intrinsic Resistance Factors in Staphylococcus aureus Identified by Profiling Fitness within High-Diversity Transposon Libraries. mBio 2016; 7:mBio.00950-16. [PMID: 27531908 PMCID: PMC4992970 DOI: 10.1128/mbio.00950-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections worldwide. The MIC of an antibiotic against S. aureus, as well as other microbes, is determined by the affinity of the antibiotic for its target in addition to a complex interplay of many other cellular factors. Identifying nontarget factors impacting resistance to multiple antibiotics could inform the design of new compounds and lead to more-effective antimicrobial strategies. We examined large collections of transposon insertion mutants in S. aureus using transposon sequencing (Tn-Seq) to detect transposon mutants with reduced fitness in the presence of six clinically important antibiotics—ciprofloxacin, daptomycin, gentamicin, linezolid, oxacillin, and vancomycin. This approach allowed us to assess the relative fitness of many mutants simultaneously within these libraries. We identified pathways/genes previously known to be involved in resistance to individual antibiotics, including graRS and vraFG (graRS/vraFG), mprF, and fmtA, validating the approach, and found several to be important across multiple classes of antibiotics. We also identified two new, previously uncharacterized genes, SAOUHSC_01025 and SAOUHSC_01050, encoding polytopic membrane proteins, as important in limiting the effectiveness of multiple antibiotics. Machine learning identified similarities in the fitness profiles of graXRS/vraFG, SAOUHSC_01025, and SAOUHSC_01050 mutants upon antibiotic treatment, connecting these genes of unknown function to modulation of crucial cell envelope properties. Therapeutic strategies that combine a known antibiotic with a compound that targets these or other intrinsic resistance factors may be of value for enhancing the activity of existing antibiotics for treating otherwise-resistant S. aureus strains. Bacterial resistance to every major class of antibiotics has emerged, and we are entering a “post-antibiotic era” where relatively minor infections can lead to serious complications or even death. The utility of an antibiotic for a specific pathogen is limited by both intrinsic and acquired factors. Identifying the repertoire of intrinsic resistance factors of an antibiotic for Staphylococcus aureus, a leading cause of community- and hospital-acquired infections, would inform the design of new drugs as well as the identification of compounds that enhance the activity of existing drugs. To identify factors that limit the activity of antibiotics against S. aureus, we used Tn-Seq to simultaneously assess fitness of transposon mutants in every nonessential gene in the presence of six clinically important antibiotics. This work provides an efficient approach for identifying promising targets for drugs that can enhance susceptibility or restore sensitivity to existing antibiotics.
Collapse
|
261
|
Ulm H, Schneider T. Targeting bactoprenol-coupled cell envelope precursors. Appl Microbiol Biotechnol 2016; 100:7815-25. [PMID: 27495122 DOI: 10.1007/s00253-016-7732-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially.
Collapse
Affiliation(s)
- Hannah Ulm
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany
| | - Tanja Schneider
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany. .,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
262
|
Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors. PLoS Pathog 2016; 12:e1005812. [PMID: 27490492 PMCID: PMC4973975 DOI: 10.1371/journal.ppat.1005812] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. The complex and dynamic microbial communities of human body surfaces are of utmost importance for human body functions in health and diseases. Human microbiomes contribute to metabolic processes, instruct the immune system, and often include antibiotic-resistant pathogens, responsible for the majority of severe bacterial infections. It is generally accepted that microbiota composition is strongly affected by mechanisms of microbial interference, but how specific bacteria may achieve fitness benefits and outcompete other microbes has remained largely unknown. We demonstrate that production of antimicrobial bacteriocins is not an occasional trait but a dominant and highly variable strategy among human nasal bacteria for limiting the growth of competing microbes. We found that more than 80% of nasal Staphylococcus isolates produce bacteriocins with highly diverse activity spectra, in particular under habitat-specific stress conditions such as iron limitation and exposure to hydrogen peroxide. Inactivation of a representative bacteriocin diminished the producer’s competitive capability indicating that bacteriocins may be a major driving force for the dynamics of microbiomes in nutrient-poor habitats such as the human nose. The identification of bacteriocin genes on mobile genetic elements with composite structure suggests that they are subject to highly dynamic co-evolutionary processes.
Collapse
Affiliation(s)
- Daniela Janek
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Andreas Kulik
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- * E-mail:
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| |
Collapse
|
263
|
Schade J, Weidenmaier C. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett 2016; 590:3758-3771. [PMID: 27396949 DOI: 10.1002/1873-3468.12288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
Abstract
Cell wall glycopolymers (CWGs) of gram-positive bacteria have gained increasing interest with respect to their role in colonization and infection. In most gram-positive pathogens they constitute a large fraction of the cell wall biomass and represent major cell envelope determinants. Depending on their chemical structure they modulate interaction with complement factors and play roles in immune evasion or serve as nonprotein adhesins that mediate, especially under dynamic conditions, attachment to different host cell types. In particular, covalently peptidoglycan-attached CWGs that extend well above the cell wall seem to interact with glyco-receptors on host cell surfaces. For example, in the case of Staphylococcus aureus, the cell wall-attached teichoic acid (WTA) has been identified as a major CWG adhesin. A recent report indicates that a type-F scavenger receptor, termed SR-F1 (SREC-I), is the predominant WTA receptor in the nasal cavity and that WTA-SREC-I interaction plays an important role in S. aureus nasal colonization. Therefore, understanding the role of CWGs in complex processes that mediate colonization and infection will allow novel insights into the mechanisms of host-microbiota interaction.
Collapse
Affiliation(s)
- Jessica Schade
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany.,German Center for Infection Research (DZIF), Partnersite Tübingen, Germany
| |
Collapse
|
264
|
Efficacy of Lantibiotic Treatment of Staphylococcus aureus-Induced Skin Infections, Monitored by In Vivo Bioluminescent Imaging. Antimicrob Agents Chemother 2016; 60:3948-55. [PMID: 27067340 DOI: 10.1128/aac.02938-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/08/2016] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a bacterial pathogen responsible for the majority of skin and soft tissue infections. Antibiotics are losing their efficacy as treatment for skin and soft tissue infections as a result of increased resistance in a variety of pathogens, including S. aureus It is thus imperative to explore alternative antimicrobial treatments to ensure future treatment options for skin and soft tissue infections. A select few lantibiotics, a group of natural defense peptides produced by bacteria, inhibit the growth of numerous clinical S. aureus isolates, including methicillin-resistant strains. In this study, the antimicrobial activities of nisin, clausin, and amyloliquecidin, separately administered, were compared to that of a mupirocin-based ointment, which is commonly used as treatment for S. aureus-induced skin infections. Full-thickness excisional wounds, generated on the dorsal surfaces of mice, were infected with a bioluminescent strain of S. aureus (strain Xen 36). The infections were monitored in real time using in vivo bioluminescent imaging. Lantibiotic treatments significantly reduced the bioluminescence of S. aureus Xen 36 to a level similar to that recorded with mupirocin treatment. Wound closure, however, was more pronounced during lantibiotic treatment. Lantibiotics thus have the potential to be used as an alternative treatment option for S. aureus-induced skin infections.
Collapse
|
265
|
Zhao X, Shi C, Meng R, Liu Z, Huang Y, Zhao Z, Guo N. Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. Journal of Food Science and Technology 2016; 53:2644-53. [PMID: 27478220 DOI: 10.1007/s13197-016-2236-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
In the present study, in vitro interaction of nisin and perilla oil (PO) against 20 food-borne isolates of L. monocytogenes and S. aureus were assessed using a checkerboard microdilution method. Synergism was observed in tested strains with the fractional inhibitory concentration indexs (FICIs) ranges from 0.125-0.25 and 0.19-0.375, respectively. Scanning electron microscopy was carried out to investigate the effect of nisin and PO on the integrity of cell wall and membrane of L. monocytogenes and S. aureus. The results showed that nisin and PO were more effective in damaging cell wall and membrane in combination.
Collapse
Affiliation(s)
- Xingchen Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| | - Ce Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| | - Rizeng Meng
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062 China
| | - Zonghui Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| | - Yanjun Huang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| | - Ziwen Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| | - Na Guo
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062 China
| |
Collapse
|
266
|
Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus. G3-GENES GENOMES GENETICS 2016; 6:1535-9. [PMID: 27172179 PMCID: PMC4889650 DOI: 10.1534/g3.115.023622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background.
Collapse
|
267
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
268
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
269
|
Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43-57. [DOI: 10.1016/j.drup.2016.04.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
270
|
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:936-46. [DOI: 10.1016/j.bbamem.2015.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
271
|
Modulation of Staphylococcus aureus spreading by water. Sci Rep 2016; 6:25233. [PMID: 27125382 PMCID: PMC4850448 DOI: 10.1038/srep25233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/12/2016] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts water from the medium and floats on water at 2.5 h after inoculation, which could be observed using phase contrast microscopy. The floating of the bacteria on water could be verified by confocal microscopy using an S. aureus strain that constitutively expresses green fluorescence protein. This study also found that as the density of bacterial colony increases, a quorum sensing response is triggered, resulting in the synthesis of the biosurfactants, phenolic-soluble modulins (PSMs), which weakens water surface tension, causing water to flood the medium surface to allow the bacteria to spread rapidly. This study reveals a mechanism that explains how an organism lacking a flagellar motor is capable of spreading rapidly on a medium surface, which is important to the understanding of how S. aureus spreads in human tissues to cause infections.
Collapse
|
272
|
Gottschalk S, Ingmer H, Thomsen LE. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus. Peptides 2016; 78:24-9. [PMID: 26851701 DOI: 10.1016/j.peptides.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/26/2023]
Abstract
The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained activity under host physiological conditions of NaCl, MgCl2 and pH. However, when exposed to serum, LP5 lost activity. Furthermore, when increasing NaCl concentration and lowering pH, the peptide showed reduces activity. When investigating the tolerance mechanisms of S. aureus toward antimicrobial peptides, we found that LP5 was protease resistant. However, the dltA and vraF genes, involved in reducing the net anionic charge of the bacterial cell envelope and sensing of antimicrobial peptides, respectively, played a role in the tolerance of S. aureus against LP5. In addition, the exposure of S. aureus to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti-virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S. aureus, which is crucial information for designing new peptides for optimizing antimicrobial therapy.
Collapse
Affiliation(s)
- Sanne Gottschalk
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| | - Line E Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
273
|
VraH Is the Third Component of the Staphylococcus aureus VraDEH System Involved in Gallidermin and Daptomycin Resistance and Pathogenicity. Antimicrob Agents Chemother 2016; 60:2391-401. [PMID: 26856834 DOI: 10.1128/aac.02865-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 12/21/2022] Open
Abstract
In bacteria, extracellular signals are transduced into the cell predominantly by two-component systems (TCSs) comprising a regulatory unit triggered by a specific signal. Some of the TCSs control executing units such as ABC transporters involved in antibiotic resistance. For instance, inStaphylococcus aureus, activation of BraSR leads to the upregulation ofvraDEexpression that encodes an ABC transporter playing a role in bacitracin and nisin resistance. In this study, we show that the small staphylococcal transmembrane protein VraH forms, together with VraDE, a three-component system. Although the expression ofvraHin the absence ofvraDEwas sufficient to mediate low-level resistance, only this VraDEH entity conferred high-level resistance against daptomycin and gallidermin. In most staphylococcal genomes,vraHis located immediately downstream ofvraDE, forming an operon, whereas in some species it is localized differently. In an invertebrate infection model, VraDEH significantly enhancedS. aureuspathogenicity. In analogy to the TCS connectors, VraH can be regarded as an ABC connector that modulates the activity of ABC transporters involved in antibiotic resistance.
Collapse
|
274
|
McGuinness WA, Kobayashi SD, DeLeo FR. Evasion of Neutrophil Killing by Staphylococcus aureus. Pathogens 2016; 5:E32. [PMID: 26999220 PMCID: PMC4810153 DOI: 10.3390/pathogens5010032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions.
Collapse
Affiliation(s)
- Will A McGuinness
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
275
|
Kawada-Matsuo M, Shammi F, Oogai Y, Nakamura N, Sugai M, Komatsuzawa H. C55 bacteriocin produced by ETB-plasmid positiveStaphylococcus aureusstrains is a key factor for competition withS. aureusstrains. Microbiol Immunol 2016; 60:139-47. [DOI: 10.1111/1348-0421.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/27/2022]
Affiliation(s)
| | - Fariha Shammi
- Department of Oral Maxillofacial Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | | | - Norifumi Nakamura
- Department of Oral Maxillofacial Surgery; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Motoyuki Sugai
- Department of Bacteriology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | | |
Collapse
|
276
|
Shang D, Zhang Q, Dong W, Liang H, Bi X. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomater 2016; 33:153-65. [PMID: 26804205 DOI: 10.1016/j.actbio.2016.01.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 02/06/2023]
Abstract
A series of synthesized Trp-containing antimicrobial peptides showed significantly different antimicrobial activity against Gram-negative bacteria despite having similar components and amino acid sequences and the same net positive charge and hydrophobicity. Lipopolysaccharide (LPS) in the outer membrane is a permeability barrier to prevent antimicrobial peptides from crossing into Gram-negative bacteria. We investigated the interaction of five Trp-containing peptides, I1W, I4W, L5W, L11W and L12W, with LPS using circular dichroism (CD), IR spectroscopy, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta-potential measurements and confocal laser scanning microscopy, to address whether bacterial LPS is responsible for the different susceptibilities of Gram-negative bacteria to Trp-containing peptides. Our data indicate that I1W and I4W penetrated the LPS layer and killed Gram-negative bacteria by a "self-promoted uptake" pathway in which the peptides first approach LPS by electrostatic forces and then dissociate LPS micelle. This process results in disorganization of the LPS leaflet and promotes the ability of the peptide to cross the outer membrane into the inner membrane and disrupt the cytoplasmic membrane. Although L5W, L11W and L12W strongly bind to LPS bilayers and depolarize bacterial cytoplasmic membranes, similar to I1W and I4W, they are unable to destabilize LPS aggregates and traverse through the tightly packed LPS molecules. This study increases our understanding of the mechanism of action of these peptides in the LPS outer membrane and will help in the development of a potent broad-spectrum antibiotic for future therapeutic purposes. STATEMENT OF SIGNIFICANCE Tryptophan (Trp) residues show a strong preference for the interfacial region of biological membranes, and this property endows Trp-containing peptides with the unique ability to interact with the surface of bacterial cell membranes. In this manuscript, we report the membrane interaction of Trp-containing peptide to address whether bacterial LPS is responsible for the different susceptibilities of Gram-negative bacteria to Trp-containing peptides. Based on the data collected, we propose a molecular mechanism for the peptide-LPS interactions that allows the peptides to traverse or prevents them from transversing the LPS layer and the target inner membrane. The data should help in the development of a potent broad-spectrum antibiotic for future therapeutic purposes.
Collapse
|
277
|
Lund LD, Ingmer H, Frøkiær H. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells. PLoS One 2016; 11:e0149092. [PMID: 26872029 PMCID: PMC4752283 DOI: 10.1371/journal.pone.0149092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/27/2016] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.
Collapse
Affiliation(s)
- Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
278
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as
Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
279
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
280
|
The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids. mBio 2016; 7:e02070-15. [PMID: 26861022 PMCID: PMC4752606 DOI: 10.1128/mbio.02070-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakthrough in understanding FmtA function. We show that FmtA hydrolyzes the ester bond between d-Ala and the backbone of teichoic acids, which are polyglycerol-phosphate or polyribitol-phosphate polymers found in the S. aureus cell envelope. FmtA contains two conserved motifs found in serine active-site penicillin-binding proteins (PBPs) and β-lactamases. The conserved SXXK motif was found to be important for the d-amino esterase activity of FmtA. Moreover, we show that deletion of fmtA (ΔfmtA) led to higher levels of d-Ala in teichoic acids, and this effect was reversed by complementation of ΔfmtA with fmtA. The positive charge on d-Ala partially masks the negative charge of the polyol-phosphate backbone of teichoic acids; hence, a change in the d-Ala content will result in modulation of their charge. Cell division, biofilm formation, autolysis, and colonization are among the many processes in S. aureus affected by the d-Ala content and overall charge of the cell surface teichoic acids. The esterase activity of FmtA and the regulation of fmtA suggest that FmtA functions as a modulator of teichoic acid charge, thus FmtA may be involved in S. aureus cell division, biofilm formation, autolysis, and colonization. IMPORTANCE Teichoic acids are involved in cell division, cell wall synthesis, biofilm formation, attachment of bacteria to artificial surfaces, and colonization. However, the function of teichoic acids is not fully understood. Modification by glycosylation and/or d-alanylation of the polyol-phosphate backbone of teichoic acids is important in the above cell processes. The intrinsic negative charge of teichoic acid backbone plays a role in the charge and/or pH of the bacterial surface, and d-alanylation represents a means through which bacteria modulate the charge or the pH of their surfaces. We discovered that FmtA removes d-Ala from teichoic acids. We propose FmtA may provide a temporal and spatial regulation of the bacterial cell surface charge in two ways, by removing the d-Ala from LTA to make it available to wall teichoic acid (WTA) in response to certain conditions and by removing it from WTA to allow the cell to reset its surface charge to a previous condition.
Collapse
|
281
|
Atila M, Luo Y. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . F1000Res 2016; 5:121. [PMID: 26998233 PMCID: PMC4792211 DOI: 10.12688/f1000research.7842.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Cationic modulation of the dominantly negative electrostatic structure of phospholipids plays an important role in bacterial response to changes in the environment. In addition to zwitterionic phosphatidylethanolamine, Gram-positive bacteria are also abundant in positively charged lysyl-phosphatidylglycerol. Increased amounts of both types of lipids render Gram-positive bacterial cells more resistant to cationic antibiotic peptides such as defensins. Lysyl and alanyl-phosphatidylglycerol as well as alanyl-cardiolipin have also been studied by mass spectroscopy. Phospholipids modified by other amino acids have been discovered by chemical analysis of the lipid lysate but have yet to be studied by mass spectroscopy. We exploited the high sensitivity of modern mass spectroscopy in searching for substructures in complex mixtures to establish a sensitive and thorough screen for aminoacylated phospholipids. The search for deprotonated aminoacyl anions in lipid extracted from
Bacillus subtilis strain 168 yielded strong evidence as well as relative abundance of aminoacyl-phosphatidylglycerols, which serves as a crude measure of the specificity of aminoacyl-phosphatidylglycerol synthase MprF. No aminoacyl-cardiolipin was found. More importantly, the second most abundant species in this category is D-alanyl-phosphatidylglycerol, suggesting a possible role in the D-alanylation pathway of wall- and lipo-teichoic acids.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
282
|
Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:926-35. [PMID: 26751595 DOI: 10.1016/j.bbamem.2015.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
|
283
|
Covas G, Vaz F, Henriques G, Pinho MG, Filipe SR. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus. Methods Mol Biol 2016; 1440:201-13. [PMID: 27311674 DOI: 10.1007/978-1-4939-3676-2_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE).
Collapse
Affiliation(s)
- Gonçalo Covas
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal
| | - Gabriela Henriques
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal. .,UCIBIO@REQUIMTE, Departamento de Ciências da Vida/ Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
284
|
Pasquina L, Maria JPS, Wood BM, Moussa SH, Matano L, Santiago M, Martin SES, Lee W, Meredith TC, Walker S. A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat Chem Biol 2016; 12:40-5. [PMID: 26619249 PMCID: PMC4684722 DOI: 10.1038/nchembio.1967] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/14/2015] [Indexed: 01/12/2023]
Abstract
The majority of bacterial proteins are dispensable for growth in the laboratory but nevertheless have important physiological roles. There are no systematic approaches to identify cell-permeable small-molecule inhibitors of these proteins. We demonstrate a strategy to identify such inhibitors that exploits synthetic lethal relationships both for small-molecule discovery and for target identification. Applying this strategy in Staphylococcus aureus, we have identified a compound that inhibits DltB, a component of the teichoic acid D-alanylation machinery that has been implicated in virulence. This D-alanylation inhibitor sensitizes S. aureus to aminoglycosides and cationic peptides and is lethal in combination with a wall teichoic acid inhibitor. We conclude that DltB is a druggable target in the D-alanylation pathway. More broadly, the work described demonstrates a systematic method to identify biologically active inhibitors of major bacterial processes that can be adapted to numerous organisms.
Collapse
Affiliation(s)
- Lincoln Pasquina
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John P. Santa Maria
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - B. McKay Wood
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samir H. Moussa
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh Matano
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara E. S. Martin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy C. Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
285
|
Hagiya H, Haruki Y, Uchida T, Wada T, Shiota S, Ishida T, Ogawa H, Murase T, Otsuka F. Emergence of Daptomycin-Resistant Staphylococcus aureus during Treatment. Intern Med 2016; 55:73-8. [PMID: 26726090 DOI: 10.2169/internalmedicine.55.4763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 68-year-old man with persistent bacteremia accompanying a large iliopsoas abscess, vertebral osteomyelitis, discitis and central venous port infection caused by methicillin-resistant Staphylococcus aureus (MRSA) was admitted to our hospital. During the course of treatment, the emergence of a daptomycin (DAP)-resistant MRSA strain was confirmed; the minimum inhibitory concentration was 1 to 2 μg/mL for vancomycin and more than 1 μg/mL for DAP. Although the bacterial cell wall was not significantly thickened, an increased positive surface charge and single-nucleotide polymorphism within mprF have been confirmed in DAP-resistant strains. Still rare, but clinicians need to be cautious of the emergence of DAP-resistant MRSA during treatment.
Collapse
Affiliation(s)
- Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE, Hutkins RW, Walter J. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ Microbiol 2015; 18:2172-84. [PMID: 26530032 DOI: 10.1111/1462-2920.13108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts.
Collapse
Affiliation(s)
- Janina A Krumbeck
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan L Marsteller
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
287
|
Thewes N, Thewes A, Loskill P, Peisker H, Bischoff M, Herrmann M, Santen L, Jacobs K. Stochastic binding of Staphylococcus aureus to hydrophobic surfaces. SOFT MATTER 2015; 11:8913-8919. [PMID: 26294050 DOI: 10.1039/c5sm00963d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential.
Collapse
Affiliation(s)
- Nicolas Thewes
- Experimental Physics, Saarland University, Campus E2 9, D-66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Nyawade EA, Friedrich HB, Omondi B, Chenia HY, Singh M, Gorle S. Synthesis and characterization of new α,α′-diaminoalkane-bridged dicarbonyl(η 5 -cyclopentadienyl)ruthenium(II) complex salts: Antibacterial activity tests of η 5 -cyclopentadienyl dicarbonyl ruthenium(II) amine complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
289
|
Gottschalk S, Gottlieb CT, Vestergaard M, Hansen PR, Gram L, Ingmer H, Thomsen LE. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus. J Med Microbiol 2015; 64:1504-1513. [DOI: 10.1099/jmm.0.000177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sanne Gottschalk
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Caroline T. Gottlieb
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Vestergaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
290
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
291
|
Skindersoe ME, Krogfelt KA, Blom A, Jiang G, Prestwich GD, Mansell JP. Dual Action of Lysophosphatidate-Functionalised Titanium: Interactions with Human (MG63) Osteoblasts and Methicillin Resistant Staphylococcus aureus. PLoS One 2015; 10:e0143509. [PMID: 26605796 PMCID: PMC4659682 DOI: 10.1371/journal.pone.0143509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Titanium (Ti) is a widely used material for surgical implants; total joint replacements (TJRs), screws and plates for fixing bones and dental implants are forged from Ti. Whilst Ti integrates well into host tissue approximately 10% of TJRs will fail in the lifetime of the patient through a process known as aseptic loosening. These failures necessitate revision arthroplasties which are more complicated and costly than the initial procedure. Finding ways of enhancing early (osseo)integration of TJRs is therefore highly desirable and continues to represent a research priority in current biomaterial design. One way of realising improvements in implant quality is to coat the Ti surface with small biological agents known to support human osteoblast formation and maturation at Ti surfaces. Lysophosphatidic acid (LPA) and certain LPA analogues offer potential solutions as Ti coatings in reducing aseptic loosening. Herein we present evidence for the successful bio-functionalisation of Ti using LPA. This modified Ti surface heightened the maturation of human osteoblasts, as supported by increased expression of alkaline phosphatase. These functionalised surfaces also deterred the attachment and growth of Staphylococcus aureus, a bacterium often associated with implant failures through sepsis. Collectively we provide evidence for the fabrication of a dual-action Ti surface finish, a highly desirable feature towards the development of next-generation implantable devices.
Collapse
Affiliation(s)
- Mette Elena Skindersoe
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department for Infection and Microbiology Control, Statens Serum Institut, Copenhagen S, Denmark
| | - Karen A. Krogfelt
- Department for Infection and Microbiology Control, Statens Serum Institut, Copenhagen S, Denmark
| | - Ashley Blom
- Musculoskeletal Research Unit, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, United Kingdom
| | - Guowei Jiang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108, United States of America
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108, United States of America
| | - Jason Peter Mansell
- Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Frenchay Campus, Bristol, BS16 1QY, United Kingdom
- * E-mail:
| |
Collapse
|
292
|
Dastgheyb SS, Otto M. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol 2015; 10:1981-95. [PMID: 26584249 DOI: 10.2217/fmb.15.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Host niches can differ strongly regarding, for example, oxygen tension, pH or nutrient availability. Staphylococcus aureus and other staphylococci are common colonizers of human epithelia as well as important human pathogens. The phenotypes that they show in different host environments, and the corresponding bacterial transcriptomes and proteomes, are currently under intense investigation. In this review, we examine the available literature describing staphylococcal phenotypes, such as expression of virulence factors, gross morphologic characteristics and growth patterns, in various physiological environments. Going forward, these studies will help researchers and clinicians to form an enhanced and more detailed picture of the interactions existing between the host and staphylococci as some of its most frequent colonizers and invaders.
Collapse
Affiliation(s)
- Sana S Dastgheyb
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
293
|
Goh S, Loeffler A, Lloyd DH, Nair SP, Good L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol 2015; 15:262. [PMID: 26560174 PMCID: PMC4642645 DOI: 10.1186/s12866-015-0599-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/05/2015] [Indexed: 01/29/2023] Open
Abstract
Background Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Results Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p < 0.05). At these PNA concentrations, 66 % of MRSA and 92 % of MRSP cells were killed by oxacillin (p < 0.01). Anti-ftsZ PNA at 7.5 and 2.5 μM reduced ftsZ mRNA in MRSA and MRSP, respectively (p ≤ 0.05). At these PNA concentrations, 86 % of MRSA cells and 95 % of MRSP cells were killed by oxacillin (p < 0.05). Anti-ftsZ PNAs resulted in swelling of bacterial cells. Scrambled PNA controls did not affect MRSA but sensitized MRSP moderately to oxacillin without affecting mRNA levels. Conclusions The antisense PNAs effects observed provide in vitro proof of concept that this approach can be used to reverse β-lactam resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0599-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Goh
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK.
| | - Anette Loeffler
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK
| | - David H Lloyd
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Liam Good
- Pathology and Pathogen Biology, Royal Veterinary College, Royal College Street, London, UK
| |
Collapse
|
294
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
295
|
The functional dlt operon of Clostridium butyricum controls the d-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe 2015; 35:105-14. [DOI: 10.1016/j.anaerobe.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023]
|
296
|
Blodkamp S, Kadlec K, Gutsmann T, Naim HY, von Köckritz-Blickwede M, Schwarz S. In vitro activity of human and animal cathelicidins against livestock-associated methicillin-resistant Staphylococcus aureus. Vet Microbiol 2015; 194:107-111. [PMID: 26453316 DOI: 10.1016/j.vetmic.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022]
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic pathogen. An emerging problem in treating S. aureus infections is the increasing resistance against antibiotics. A possible way to overcome this issue is to boost the host immune system and one target are antimicrobial peptides (AMPs), especially cathelicidins. The aim of this study was to characterize the antimicrobial activity of cathelicidins from different animal species against LA-MRSA and to reveal whether major antimicrobial resistance mechanisms influence the bactericidal activity of these peptides. The MICs of 153 LA-MRSA field isolates for different cathelicidins (LL-37, mCRAMP, CAP18, BMAP-27 and BMAP-28) were analysed. The cathelicidin MICs of S. aureus RN4220 and isogenic transformants, that carried 14 functionally active antimicrobial resistance genes, were determined. These resistance genes have been identified in LA-MRSA and specify the resistance mechanisms active efflux, enzymatic inactivation and modification/protection/replacement of target sites. The data showed that mode MIC values for the cathelicidins did not differ among the LA-MRSA isolates of different animal origin. However, distinct differences were detected between the MIC values for the different cathelicidins. MIC values were lowest for bovine cathelicidins (BMAP-27 and BMAP-28) and highest for the human and mouse cathelicidins (LL-37 and mCRAMP). None of the tested antimicrobial resistance genes affected the antimicrobial activity of the cathelicidins. The findings obtained in this study support the hypothesis that cathelicidins might be a promising target to support the host defense against LA-MRSA, especially since the antimicrobial activity of these peptides is not affected by common staphylococcal antimicrobial resistance genes.
Collapse
Affiliation(s)
- Stefanie Blodkamp
- Department of Physiological Chemistry, University for Veterinary Medicine, Hannover, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Thomas Gutsmann
- Research group Biophysics, Research Centre Borstel, Borstel, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University for Veterinary Medicine, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University for Veterinary Medicine, Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine, Hannover, Germany.
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany.
| |
Collapse
|
297
|
Mitchell MA, Iannetta AA, Jennings MC, Fletcher MH, Wuest WM, Minbiole KPC. Scaffold-Hopping of Multicationic Amphiphiles Yields Three New Classes of Antimicrobials. Chembiochem 2015; 16:2299-303. [PMID: 26316312 DOI: 10.1002/cbic.201500381] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 11/06/2022]
Abstract
Quaternary ammonium compounds (QACs) are a vital class of antiseptics. Recent investigations into their construction are uncovering novel and potent multicationic variants. Based on a trisQAC precedent, we have implemented a scaffold-hopping approach to develop alternative QAC architectures that display 1-3 long alkyl chains in specific projections from cyclic and branched core structures bearing 3-4 nitrogen atoms. The preparation of 30 QAC structures allowed for correlation of scaffold structure with antimicrobial activity. We identified QACs with limited conformational flexibility that have improved bioactivity against planktonic bacteria as compared to their linear counterparts. We also confirmed that resistance, as evidenced by an increased minimum inhibitory concentration (MIC) for methicillin-resistant Staphylococcus aureus (MRSA) compared to methicillin-susceptible Staphylococcus aureus (MSSA), can reduce efficacy up to 64-fold for monocationic QACs. Differentiation of antimicrobial and anti-biofilm activity, however, was not observed, suggesting that these compounds utilize a non-specific mode of eradication.
Collapse
Affiliation(s)
- Myles A Mitchell
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA
| | - Anthony A Iannetta
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA
| | - Megan C Jennings
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Madison H Fletcher
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - William M Wuest
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
298
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
299
|
Pence MA, Haste NM, Meharena HS, Olson J, Gallo RL, Nizet V, Kristian SA. Beta-Lactamase Repressor BlaI Modulates Staphylococcus aureus Cathelicidin Antimicrobial Peptide Resistance and Virulence. PLoS One 2015; 10:e0136605. [PMID: 26305782 PMCID: PMC4549145 DOI: 10.1371/journal.pone.0136605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
BlaI is a repressor of BlaZ, the beta-lactamase responsible for penicillin resistance in Staphylococcus aureus. Through screening a transposon library in S. aureus Newman for susceptibility to cathelicidin antimicrobial peptide, we discovered BlaI as a novel cathelicidin resistance factor. Additionally, through integrational mutagenesis in S. aureus Newman and MRSA Sanger 252 strains, we confirmed the role of BlaI in resistance to human and murine cathelidicin and showed that it contributes to virulence in human whole blood and murine infection models. We further demonstrated that BlaI could be a target for innate immune-based antimicrobial therapies; by removing BlaI through subinhibitory concentrations of 6-aminopenicillanic acid, we were able to sensitize S. aureus to LL-37 killing.
Collapse
Affiliation(s)
- Morgan A. Pence
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States of America
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Nina M. Haste
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Hiruy S. Meharena
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States of America
| | - Joshua Olson
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Richard L. Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
- VA San Diego Healthcare System, San Diego, CA, United States of America
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (VN); (SAK)
| | - Sascha A. Kristian
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (VN); (SAK)
| |
Collapse
|
300
|
Xi D, Wang X, Teng D, Mao R. Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. Biometals 2015; 27:957-68. [PMID: 25015218 DOI: 10.1007/s10534-014-9768-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
The tri-hybrid peptide-LHP7 has the potent activity against Gram-positive and Gram-negative as well as fungi, but its mechanism of action has remained elusive. The effluences of LHP7 on the Staphylococcus aureus cell membrane and targets of intracellular action were investigated. LHP7 exhibited an inhibitory effect on the S. aureus growth, similar to those achieved by plectasin, vancomycin and gramicidin. The membrane integrity studies confirmed that LHP7 disrupted the cell membrane, indicating a membrane permeabilizing killing action. A marginal decline in the intensity fluorescence indicated no significant depolarization of the membrane potential following LHP7 treatment. Furthermore, electron microscopy showed that cell shrinkage, cell wall thickening, cellular content leakage, and cell disruption were observed in the cells treated with LHP7. A gel retardation assay showed that LHP7 bound to the genomic DNA of S. aureus or plasmid DNA at a mass ratio of 2.5–10 (peptide/DNA). Circular dichroism indicated that LHP7 inserted into the groove of DNA. The cell cycle analysis showed that after the treatment with LHP7 for 30 and 60 min, the proportion of cells in I-phase increased from 8.71 to 12.09 % and from 8.71 to 15.68 %, indicating that LHP7 induced arrest of cells in the I-phase. These results would conduce to elucidate its underlying antibacterial mechanism.
Collapse
|