251
|
Abstract
Apoptosis of male germ cells is a complex phenomenon in many animal species. Understanding its mechanisms could be useful in the diagnosis and therapy of male infertility. To examine the differences of distribution of apoptosis among mouse strains, the terminal transferase-mediated nick end labelling (TUNEL) method was employed. In the testes of MRL mice, many TUNEL-positive cells were identified at the metaphases of meiotic spermatocytes. Morphometrical analysis revealed that metaphase-specific apoptosis occurred at the region between secondary spermatocytes and step 1 spermatids in stage XII seminiferous tubules. In the investigation of the developing first-wave of seminiferous tubules, there were some metaphases showing apoptotic morphology prior to becoming secondary spermatocytes. Details of the apoptotic structure revealed by electron microscopy showed that cellular arrest occurred after the beginning of the M phase of the cell cycle. These results suggested that metaphase-specific apoptosis in the testis of the MRL mouse strain took place at least at the first meiotic division, perhaps showing the spindle assembly checkpoint of the cell cycle.
Collapse
Affiliation(s)
- Y Kon
- Laboratory of Experimental Animal Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
252
|
Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 2000; 150:1233-50. [PMID: 10995431 PMCID: PMC2150717 DOI: 10.1083/jcb.150.6.1233] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spindle checkpoint prevents errors in chromosome segregation by inhibiting anaphase onset until all chromosomes have aligned at the spindle equator through attachment of their sister kinetochores to microtubules from opposite spindle poles. A key checkpoint component is the mitotic arrest-deficient protein 2 (Mad2), which localizes to unattached kinetochores and inhibits activation of the anaphase-promoting complex (APC) through an interaction with Cdc20. Recent studies have suggested a catalytic model for kinetochore function where unattached kinetochores provide sites for assembling and releasing Mad2-Cdc20 complexes, which sequester Cdc20 and prevent it from activating the APC. To test this model, we examined Mad2 dynamics in living PtK1 cells that were either injected with fluorescently labeled Alexa 488-XMad2 or transfected with GFP-hMAD2. Real-time, digital imaging revealed fluorescent Mad2 localized to unattached kinetochores, spindle poles, and spindle fibers depending on the stage of mitosis. FRAP measurements showed that Mad2 is a transient component of unattached kinetochores, as predicted by the catalytic model, with a t(1/2) of approximately 24-28 s. Cells entered anaphase approximately 10 min after Mad2 was no longer detectable on the kinetochores of the last chromosome to congress to the metaphase plate. Several observations indicate that Mad2 binding sites are translocated from kinetochores to spindle poles along microtubules. First, Mad2 that bound to sites on a kinetochore was dynamically stretched in both directions upon microtubule interactions, and Mad2 particles moved from kinetochores toward the poles. Second, spindle fiber and pole fluorescence disappeared upon Mad2 disappearance at the kinetochores. Third, ATP depletion resulted in microtubule-dependent depletion of Mad2 fluorescence at kinetochores and increased fluorescence at spindle poles. Finally, in normal cells, the half-life of Mad2 turnover at poles, 23 s, was similar to kinetochores. Thus, kinetochore-derived sites along spindle fibers and at spindle poles may also catalyze Mad2 inhibitory complex formation.
Collapse
Affiliation(s)
- B J Howell
- Department of Biology, CB#3280, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
253
|
Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102:817-26. [PMID: 11030625 DOI: 10.1016/s0092-8674(00)00070-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Accurate chromatid separation is monitored by a checkpoint mechanism that delays anaphase onset until all centromeres are correctly attached to the mitotic spindle. Using Xenopus egg extracts, the kinetochore-associated microtubule motor protein CENP-E is now found to be required for establishing and maintaining this checkpoint. When CENP-E function is disrupted by immunodepletion or antibody addition, extracts fail to arrest in response to spindle damage. Mitotic arrest can be restored by addition of high levels of soluble MAD2, demonstrating that the absence of CENP-E eliminates kinetochore-dependent signaling but not the downstream steps in checkpoint signal transduction. Because it directly binds both to spindle microtubules and to the kinetochore-associated checkpoint kinase BUBR1, CENP-E is a central component in the vertebrate checkpoint that modulates signaling activity in a microtubule-dependent manner.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla 92093-0660, USA
| | | | | | | |
Collapse
|
254
|
Kalitsis P, Earle E, Fowler KJ, Choo KH. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 2000; 14:2277-82. [PMID: 10995385 PMCID: PMC316933 DOI: 10.1101/gad.827500] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bub3 is a conserved component of the mitotic spindle assembly complex. The protein is essential for early development in Bub3 gene-disrupted mice, evident from their failure to survive beyond day 6.5-7.5 postcoitus (pc). Bub3 null embryos appear normal up to day 3.5 pc but accumulate mitotic errors from days 4.5-6.5 pc in the form of micronuclei, chromatin bridging, lagging chromosomes, and irregular nuclear morphology. Null embryos treated with a spindle-depolymerising agent fail to arrest in metaphase and show an increase in mitotic disarray. The results confirm Bub3 as a component of the essential spindle checkpoint pathway that operates during early embryogenesis.
Collapse
Affiliation(s)
- P Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Melbourne, Australia
| | | | | | | |
Collapse
|
255
|
Hennebold JD, Tanaka M, Saito J, Hanson BR, Adashi EY. Ovary-selective genes I: the generation and characterization of an ovary-selective complementary deoxyribonucleic acid library. Endocrinology 2000; 141:2725-34. [PMID: 10919256 DOI: 10.1210/endo.141.8.7627] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The importance of several ovary-selective/specific genes, i.e. genes preferentially or exclusively expressed in the ovary, has been established. Indeed, null mutant female mice for the c-mos, growth and differentiation factor-9, alpha-inhibin, and zona pellucida-3 genes proved sterile. A loss of function mutation of the human FSH receptor gene established its critical role in ovarian function. These data support the hypothesis that genes expressed selectively or specifically in the ovary are probably essential for the normal functioning of this organ system. We have used the differential screening technique suppression subtractive hybridization to systematically isolate and clone genes that are expressed in an ovary-selective/specific manner. The resultant target complementary DNA (cDNA) library has been exhaustively screened to a point at which additional sequencing was increasingly unlikely (< or = 4%) to yield additional previously unencountered cDNAs. In toto, 844 clones were sequenced and analyzed for homology to known genes using the Basic Local Alignment Tool (BLAST). Of those, 342 were determined to be independent (nonredundant). One hundred and fifty-nine independent clones proved identical to previously characterized genes, whereas an additional 100 independent clones proved significantly homologous (but not identical) to previously characterized genes. Yet 83 other independent clones did not display significant homology to previously characterized genes now listed in the publicly accessible nonredundant databases. As such, these latter genes were deemed novel. Of these 83 novel genes, a total of 36 displayed ovary-specific/selective expression, as determined by probing mouse multitissue Northern blots with 32P-labeled/PCR-amplified cDNA inserts. Under these circumstances, the false positive rate was minimal, as only one novel clone was expressed at a higher level in nonovarian tissues relative to ovary. Of the 36 ovary-specific/ selective novel genes, 22 proved subject to hormonal regulation during a simulated estrous cycle. In this communication we focus on 2 such novel ovary-specific/hormonally-dependent genes, the full-length sequences of which were isolated using rapid amplification of 3'-cDNA ends technology. Taken together, the present study accomplished systematic identification of those genes that are restricted in their expression to the ovary. These ovary-selective genes may have significant implications for the understanding of ovarian function in molecular terms and for the development of innovative strategies for the promotion of fertility or its control.
Collapse
Affiliation(s)
- J D Hennebold
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
256
|
Abstract
Ubiquitin-mediated proteolysis of cell cycle regulators is a crucial process during the cell cycle. The anaphase-promoting complex (APC) is a large, multiprotein complex whose E3-ubiquitin ligase activity is required for the ubiquitination of mitotic cyclins and other regulatory proteins that are targeted for destruction during cell division. The recent identification of new APC subunits and regulatory proteins has begun to reveal some of the intricate mechanisms that govern APC regulation. One mechanism is the use of specificity factors to impose temporal control over substrate degradation. A second mechanism is the APC-mediated proteolysis of specific APC regulators. Finally, components of both the APC and the SCF E3 ubiquitin-ligase complex contain several conserved sequence motifs, including WD-40 repeats and cullin homology domains, which suggest that both complexes may use a similar mechanism for substrate ubiquitination.
Collapse
Affiliation(s)
- A M Page
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
257
|
Rudner AD, Hardwick KG, Murray AW. Cdc28 activates exit from mitosis in budding yeast. J Cell Biol 2000; 149:1361-76. [PMID: 10871278 PMCID: PMC2175138 DOI: 10.1083/jcb.149.7.1361] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Accepted: 05/17/2000] [Indexed: 11/30/2022] Open
Abstract
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.
Collapse
Affiliation(s)
- Adam D. Rudner
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| | - Kevin G. Hardwick
- Department of Physiology, University of California, San Francisco, California 94143-0444
| | - Andrew W. Murray
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| |
Collapse
|
258
|
Brinkley BR, Goepfert TM. Supernumerary centrosomes and cancer: Boveri's hypothesis resurrected. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:281-8. [PMID: 9858153 DOI: 10.1002/(sici)1097-0169(1998)41:4<281::aid-cm1>3.0.co;2-c] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- B R Brinkley
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
259
|
Myrie KA, Percy MJ, Azim JN, Neeley CK, Petty EM. Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett 2000; 152:193-9. [PMID: 10773412 DOI: 10.1016/s0304-3835(00)00340-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetic instability is a hallmark feature of breast, colorectal and other types of cancers. One type characterized by chromosomal instability is thought to be important in the pathogenesis of many solid tumors displaying aneuploidy. Two related protein kinases and homologues of the yeast checkpoint genes, hBUB1 and hBUB1B, have been implicated in the pathogenesis of colorectal cancers. Mutations in hBUB1 have demonstrated a dominant negative effect by disrupting the mitotic checkpoint when transfected into euploid colon cancer cell lines. In Brca2 deficient murine cells, Bub1 mutants potentiate growth and cellular transformation. This would suggest that aneuploidy in solid tumors including breast, could be the result of defects in mitotic checkpoint genes and may be responsible for a chromosomal instability phenotype contributing to tumor progression. We conducted mutational analysis of 19 aneuploid breast cancer cell lines. No mutations were found but we identified nine sequence variations including five previously unreported sequence variants in hBUB1B, two of which affect restrictions sites. None of these nucleotide changes predict significant changes in the predicted protein structure. Expression analysis by Northern blot of breast cell lines showed variable expression of hBUB1 and hBUB1B genes. This suggest that while regulation of expression of these genes may be important in cancer, the lack of putative deleterious mutations in the coding sequence does not support a frequent role for mutant hBUB1 and hBUB1B alleles in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- K A Myrie
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109-0638, USA
| | | | | | | | | |
Collapse
|
260
|
Abstract
The spindle checkpoint is an evolutionarily conserved mitotic regulatory mechanism that ensures that anaphase is not attempted until chromosomes are properly aligned on the spindle. Two different cell-cycle transitions must be inhibited by the spindle checkpoint to arrest cells at metaphase and prevent mitotic exit. The checkpoint proteins interact in ways that are more complex than was originally envisioned. This review summarizes the evidence for two pathways of spindle-checkpoint regulation in budding yeast. We describe how the proteins are involved in these pathways and discuss the ways in which the spindle checkpoint inhibits the cell-cycle machinery.
Collapse
Affiliation(s)
- R D Gardner
- Dept of Biochemistry and Molecular Genetics, University of Virginia HSC, Box 800733, USA.
| | | |
Collapse
|
261
|
Abstract
Each year many reviews deal with checkpoint control.((1-5)) Here we discuss checkpoint pathways that control mitosis. We address four checkpoint systems in depth: budding yeast DNA damage, the DNA replication checkpoint, the spindle assembly checkpoint and the mammalian G2 topoisomerase II-dependent checkpoint. A main focus of the review is the organization of these checkpoint pathways. Recent work has elucidated the order-of-function of several checkpoint components, and has revealed that the S phase, DNA damage and spindle assembly checkpoints each have at least two parallel branches. These steps forward have largely come from kinetic studies of checkpoint-defective mutants.
Collapse
Affiliation(s)
- D J Clarke
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
262
|
Hardwick KG, Johnston RC, Smith DL, Murray AW. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol 2000; 148:871-82. [PMID: 10704439 PMCID: PMC2174553 DOI: 10.1083/jcb.148.5.871] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH(2)-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.
Collapse
Affiliation(s)
- K G Hardwick
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| | | | | | | |
Collapse
|
263
|
Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R. A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 2000; 275:4391-7. [PMID: 10660610 DOI: 10.1074/jbc.275.6.4391] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Widespread alteration of the genomic DNA is a hallmark of tumors, and alteration of genes involved in DNA maintenance have been shown to contribute to the tumorigenic process. The DNA polymerase zeta of Saccharomyces cerevisiae is required for error-prone repair following DNA damage and consists of a complex between three proteins, scRev1, scRev3, and scRev7. Here we describe a candidate human homolog of S. cerevisiae Rev7 (hREV7), which was identified in a yeast two-hybrid screen using the human homolog of S. cerevisiae Rev3 (hREV3). The hREV7 gene product displays 23% identity and 53% similarity with scREV7, as well as 23% identity and 54% similarity with the human mitotic checkpoint protein hMAD2. hREV7 is located on human chromosome 1p36 in a region of high loss of heterozygosity in human tumors, although no alterations of hREV3 or hREV7 were found in primary human tumors or human tumor cell lines. The interaction domain between hREV3 and hREV7 was determined and suggests that hREV7 probably functions with hREV3 in the human DNA polymerase zeta complex. In addition, we have identified an interaction between hREV7 and hMAD2 but not hMAD1. While overexpression of hREV7 does not lead to cell cycle arrest, we entertain the possibility that it may act as an adapter between DNA repair and the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Y Murakumo
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
264
|
Schramm C, Elliott S, Shevchenko A, Schiebel E. The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. EMBO J 2000; 19:421-33. [PMID: 10654940 PMCID: PMC305579 DOI: 10.1093/emboj/19.3.421] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In budding yeast, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope via its central plaque structure. Here, we describe the identification of BBP1 in a suppressor screen with a conditional lethal allele of SPC29. Bbp1p was detected at the central plaque periphery of the SPB and bbp1-1 cells were found to be defective in SPB duplication. bbp1-1 cells extend their satellite into a duplication plaque like wild-type cells; however, this duplication plaque then fails to insert properly into the nuclear envelope and does not assemble a functional inner plaque. This function in SPB duplication is probably fulfilled by a stable complex of Bbp1p and Mps2p, a nuclear envelope protein that is also essential for duplication plaque insertion. In addition, we found that Bbp1p interacts with Spc29p and the half-bridge component Kar1p. These interactions are likely to play a role in connecting the SPB with the nuclear envelope and the central plaque with the half-bridge.
Collapse
Affiliation(s)
- C Schramm
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | | | |
Collapse
|
265
|
Abstract
Cell viability requires accurate chromosome segregation at mitosis. The spindle checkpoint ensures that anaphase is not attempted until the sister chromatids of each chromosome are attached to spindle microtubules from opposite poles. The checkpoint mechanism involves a signal transduction cascade that is more complex than was originally envisioned.
Collapse
Affiliation(s)
- D J Burke
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22906, USA.
| |
Collapse
|
266
|
Sreenivasan A, Kellogg D. The elm1 kinase functions in a mitotic signaling network in budding yeast. Mol Cell Biol 1999; 19:7983-94. [PMID: 10567524 PMCID: PMC84883 DOI: 10.1128/mcb.19.12.7983] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In budding yeast, the Clb2 mitotic cyclin initiates a signaling network that negatively regulates polar bud growth during mitosis. This signaling network appears to require the function of a Clb2-binding protein called Nap1, the Cdc42 GTPase, and two protein kinases called Gin4 and Cla4. In this study, we demonstrate that the Elm1 kinase also plays a role in the control of bud growth during mitosis. Cells carrying a deletion of the ELM1 gene undergo a prolonged mitotic delay, fail to negatively regulate polar bud growth during mitosis, and show defects in septin organization. In addition, Elm1 is required in vivo for the proper regulation of both the Cla4 and Gin4 kinases and interacts genetically with Cla4, Gin4, and the mitotic cyclins. Previous studies have suggested that Elm1 may function to negatively regulate the Swe1 kinase. To further understand the functional relationship between Elm1 and Swe1, we have characterized the phenotype of Deltaelm1 Deltaswe1 cells. We found that Deltaelm1 Deltaswe1 cells are inviable at 37 degrees C and that a large proportion of Deltaelm1 Deltaswe1 cells grown at 30 degrees C contain multiple nuclei, suggesting severe defects in cytokinesis. In addition, we found that Elm1 is required for the normal hyperphosphorylation of Swe1 during mitosis. We propose a model in which the Elm1 kinase functions in a mitotic signaling network that controls events required for normal bud growth and cytokinesis, while the Swe1 kinase functions in a checkpoint pathway that delays nuclear division in response to defects in these events.
Collapse
Affiliation(s)
- A Sreenivasan
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
267
|
Beltraminelli N, Murone M, Simanis V. The S. pombe zfs1 gene is required to prevent septation if mitotic progression is inhibited. J Cell Sci 1999; 112 Pt 18:3103-14. [PMID: 10462526 DOI: 10.1242/jcs.112.18.3103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Schizosaccharomyces pombe cdc16p is required to limit the cell to forming a single division septum per cell cycle; the heat-sensitive loss-of-function mutant cdc16-116 completes mitosis, and then undergoes multiple rounds of septum formation without cell cleavage. cdc16p is a homologue of Saccharomyces cerevisiae BUB2p, and has also been implicated in the spindle assembly checkpoint function in S. pombe. To identify other proteins involved in regulating septum formation, we have screened for multicopy suppressors of the cdc16-116 mutation. In this paper, we describe one of these suppressors, zfs1. The null allele (zfs1-D1) is viable. However, at low temperatures it divides at a reduced size, while at higher temperatures, it partially suppresses heat sensitive mutants in genes signalling the onset of septum formation. Zfs1-D1 cells show an increased rate of chromosome loss during exponential growth. Moreover, if assembly of the spindle is prevented, zfs1-D1 cells do not arrest normally, but the activity of cdc2p kinase decays, and cells form a division septum without completing a normal mitosis. We conclude that zfs1 function is required to prevent septum formation and exit from mitosis if the mitotic spindle is not assembled. The suppression of cdc16-116 by zfs1 is independent of dma1 function and the spindle assembly checkpoint genes mad2 and mph1. The genetic interactions of zfs1 with genes regulating septum formation suggest that it may be a modulator of the signal transduction network controlling the onset of septum formation and exit from mitosis.
Collapse
Affiliation(s)
- N Beltraminelli
- Cell Cycle Control Laboratory, ISREC, Chemin des Boveresses, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
268
|
Chan G, Jablonski S, Sudakin V, Hittle J, Yen T. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 1999; 146:941-54. [PMID: 10477750 PMCID: PMC2169490 DOI: 10.1083/jcb.146.5.941] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1999] [Accepted: 08/04/1999] [Indexed: 11/22/2022] Open
Abstract
Human cells express two kinases that are related to the yeast mitotic checkpoint kinase BUB1. hBUB1 and hBUBR1 bind to kinetochores where they are postulated to be components of the mitotic checkpoint that monitors kinetochore activities to determine if chromosomes have achieved alignment at the spindle equator (Jablonski, S.A., G.K.T. Chan, C.A. Cooke, W.C. Earnshaw, and T.J. Yen. 1998. Chromosoma. 107:386-396). In support of this, hBUB1 and the homologous mouse BUB1 have been shown to be important for the mitotic checkpoint (Cahill, D.P., C. Lengauer, J. Yu, G.J. Riggins, J.K. Willson, S.D. Markowitz, K.W. Kinzler, and B. Vogelstein. 1998. Nature. 392:300-303; Taylor, S.S., and F. McKeon. 1997. Cell. 89:727-735). We now demonstrate that hBUBR1 is also an essential component of the mitotic checkpoint. hBUBR1 is required by cells that are exposed to microtubule inhibitors to arrest in mitosis. Additionally, hBUBR1 is essential for normal mitotic progression as it prevents cells from prematurely entering anaphase. We establish that one of hBUBR1's checkpoint functions is to monitor kinetochore activities that depend on the kinetochore motor CENP-E. hBUBR1 is expressed throughout the cell cycle, but its kinase activity is detected after cells have entered mitosis. hBUBR1 kinase activity was rapidly stimulated when the spindle was disrupted in mitotic cells. Finally, hBUBR1 was associated with the cyclosome/anaphase-promoting complex (APC) in mitotically arrested cells but not in interphase cells. The combined data indicate that hBUBR1 can potentially provide two checkpoint functions by monitoring CENP-E-dependent activities at the kinetochore and regulating cyclosome/APC activity.
Collapse
Affiliation(s)
- G.K.T. Chan
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - S.A. Jablonski
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - V. Sudakin
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - J.C. Hittle
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - T.J. Yen
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
269
|
Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 1999; 10:2607-18. [PMID: 10436016 PMCID: PMC25492 DOI: 10.1091/mbc.10.8.2607] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spindle checkpoint arrests the cell cycle at metaphase in the presence of defects in the mitotic spindle or in the attachment of chromosomes to the spindle. When spindle assembly is disrupted, the budding yeast mad and bub mutants fail to arrest and rapidly lose viability. We have cloned the MAD2 gene, which encodes a protein of 196 amino acids that remains at a constant level during the cell cycle. Gel filtration and co-immunoprecipitation analyses reveal that Mad2p tightly associates with another spindle checkpoint component, Mad1p. This association is independent of cell cycle stage and the presence or absence of other known checkpoint proteins. In addition, Mad2p binds to all of the different phosphorylated isoforms of Mad1p that can be resolved on SDS-PAGE. Deletion and mutational analysis of both proteins indicate that association of Mad2p with Mad1p is critical for checkpoint function and for hyperphosphorylation of Mad1p.
Collapse
Affiliation(s)
- R H Chen
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143-0444, USA.
| | | | | | | | | |
Collapse
|
270
|
Jones MH, Bachant JB, Castillo AR, Giddings TH, Winey M. Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol Biol Cell 1999; 10:2377-91. [PMID: 10397771 PMCID: PMC25456 DOI: 10.1091/mbc.10.7.2377] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have identified a mutant allele of the DAM1 gene in a screen for mutations that are lethal in combination with the mps1-1 mutation. MPS1 encodes an essential protein kinase that is required for duplication of the spindle pole body and for the spindle assembly checkpoint. Mutations in six different genes were found to be lethal in combination with mps1-1, of which only DAM1 was novel. The remaining genes encode a checkpoint protein, Bub1p, and four chaperone proteins, Sti1p, Hsc82p, Cdc37p, and Ydj1p. DAM1 is an essential gene that encodes a protein recently described as a member of a microtubule binding complex. We report here that cells harboring the dam1-1 mutation fail to maintain spindle integrity during anaphase at the restrictive temperature. Consistent with this phenotype, DAM1 displays genetic interactions with STU1, CIN8, and KAR3, genes encoding proteins involved in spindle function. We have observed that a Dam1p-Myc fusion protein expressed at endogenous levels and localized by immunofluorescence microscopy, appears to be evenly distributed along short mitotic spindles but is found at the spindle poles at later times in mitosis.
Collapse
Affiliation(s)
- M H Jones
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder Colorado 80309-0347, USA
| | | | | | | | | |
Collapse
|
271
|
Farr KA, Cohen-Fix O. The metaphase to anaphase transition: a case of productive destruction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:14-9. [PMID: 10429181 DOI: 10.1046/j.1432-1327.1999.00510.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metaphase to anaphase transition is a point of no return; the duplicated sister chromatids segregate to the future daughter cells, and any mistake in this process may be deleterious to both progeny. At the heart of this process lies the anaphase inhibitor, which must be degraded in order for this transition to take place. The degradation of the anaphase inhibitor occurs via the ubiquitin-degradation pathway, and it involves the activity of the cyclosome/anaphase promoting complex (APC). The fidelity of the metaphase to anaphase transition is ensured by several different regulatory mechanisms that modulate the activity of the cyclosome/APC. Great advancements have been made in this field in the past few years, but many questions still remain to be answered.
Collapse
Affiliation(s)
- K A Farr
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD, USA
| | | |
Collapse
|
272
|
Hardwick KG, Li R, Mistrot C, Chen RH, Dann P, Rudner A, Murray AW. Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics 1999; 152:509-18. [PMID: 10353895 PMCID: PMC1460633 DOI: 10.1093/genetics/152.2.509] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The spindle checkpoint arrests cells in mitosis in response to defects in the assembly of the mitotic spindle or errors in chromosome alignment. We determined which spindle defects the checkpoint can detect by examining the interaction of mutations that compromise the checkpoint (mad1, mad2, and mad3) with those that damage various structural components of the spindle. Defects in microtubule polymerization, spindle pole body duplication, microtubule motors, and kinetochore components all activate the MAD-dependent checkpoint. In contrast, the cell cycle arrest caused by mutations that induce DNA damage (cdc13), inactivate the cyclin proteolysis machinery (cdc16 and cdc23), or arrest cells in anaphase (cdc15) is independent of the spindle checkpoint.
Collapse
Affiliation(s)
- K G Hardwick
- Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 1999; 58:181-7. [PMID: 10366450 DOI: 10.1006/geno.1999.5831] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aneuploidy is a characteristic of the majority of human cancers, and recent work has suggested that mitotic checkpoint defects play a role in its development. To further explore this issue, we isolated a novel human gene, MAD2B (MAD2L2), which is homologous to the spindle checkpoint gene MAD2 (MAD2L1). We determined the chromosomal localization of it and other spindle checkpoint genes, including MAD1L1, MAD2, BUB3, TTK (MPS1L1), and CDC20. In addition, we resolved the genomic intron-exon structure of the human BUB1 gene. We then searched for mutations in these genes in a panel of 19 aneuploid colorectal tumors. No new mutations were identified, suggesting that genes yet to be discovered are responsible for most of the checkpoint defects observed in aneuploid cancers.
Collapse
Affiliation(s)
- D P Cahill
- Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | | | | | | | | | | |
Collapse
|
274
|
Fraschini R, Formenti E, Lucchini G, Piatti S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 1999; 145:979-91. [PMID: 10352016 PMCID: PMC2133126 DOI: 10.1083/jcb.145.5.979] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.
Collapse
Affiliation(s)
- R Fraschini
- Dipartimento di Genetica e Biologia dei Microrganismi, 20133 Milano, Italy
| | | | | | | |
Collapse
|
275
|
Alexandru G, Zachariae W, Schleiffer A, Nasmyth K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J 1999; 18:2707-21. [PMID: 10329618 PMCID: PMC1171353 DOI: 10.1093/emboj/18.10.2707] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, anaphase entry depends on Pds1 proteolysis, while chromosome re-duplication in the subsequent S-phase involves degradation of mitotic cyclins such as Clb2. Sequential proteolysis of Pds1 and mitotic cyclins is mediated by the anaphase-promoting complex (APC). Lagging chromosomes or spindle damage are detected by surveillance mechanisms (checkpoints) which block anaphase onset, cytokinesis and DNA re-replication. Until now, the MAD and BUB genes implicated in this regulation were thought to function in a single pathway that blocks APC activity. We show that spindle damage blocks sister chromatid separation solely by inhibiting APCCdc20-dependent Pds1 proteolysis and that this process requires Mad2. Blocking APCCdh1-mediated Clb2 proteolysis and chromosome re-duplication does not require Mad2 but a different protein, Bub2. Our data imply that Mad1, Mad2, Mad3 and Bub1 regulate APCCdc20, whereas Bub2 regulates APCCdh1.
Collapse
Affiliation(s)
- G Alexandru
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
276
|
Li R. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc Natl Acad Sci U S A 1999; 96:4989-94. [PMID: 10220406 PMCID: PMC21804 DOI: 10.1073/pnas.96.9.4989] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1999] [Accepted: 03/09/1999] [Indexed: 11/18/2022] Open
Abstract
The coordination of mitotic events is ensured through the spindle assembly checkpoint. BFA1 is required for this checkpoint in budding yeast because its disruption abolishes the mitotic arrest when spindle assembly is inhibited. Analysis of the genetic interaction of BFA1 with known mitotic checkpoint genes suggest that Bfa1 functions in the same pathway with Bub2 but not with Mad1 or Mad2. Both Bfa1 and Bub2 localize to spindle poles, and overexpression of Bfa1 arrests the cell cycle in anaphase. These findings suggest a bifurcation of the spindle assembly checkpoint: whereas one branch of the pathway, consisting of Mad1-3, Bub1 and 3, and Mps1, may prevent premature disjunction of sister chromosomes, the other, consisting of Bfa1 and Bub2, may function at spindle poles to prevent cytokinesis before the completion of chromosome segregation.
Collapse
Affiliation(s)
- R Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
277
|
Seeley TW, Wang L, Zhen JY. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem Biophys Res Commun 1999; 257:589-95. [PMID: 10198256 DOI: 10.1006/bbrc.1999.0514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The BUB/MAD signaling pathway monitors attachment of chromosomes to spindle poles in mitotic cells. Mutations of the human BUB1 locus were identified in cancer cells exhibiting an unstable chromosomal complement. We report that the human BUB3 gene maps to a site on chromosome 10 subject to frequent modification in cancers. Thus, defects in BUB/MAD signaling may contribute to genetic instability and to cancer progression. In vitro, BUB1 and BUB3 proteins form a complex of monomers of each protein. These proteins interact with the human MAD1 gene product, a target of the HTLV-1 tax oncogene. This multiprotein complex exhibits a kinase activity with a requirement for lysine 821 in the BUB1 kinase motif, resulting in BUB1 autophosphorylation and phosphorylation of associated MAD1.
Collapse
Affiliation(s)
- T W Seeley
- Chiron Corporation, 4560 Horton Street, Emeryville, California, 94608, USA
| | | | | |
Collapse
|
278
|
Lee J, Hwang HS, Kim J, Song K. Ibd1p, a possible spindle pole body associated protein, regulates nuclear division and bud separation in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:239-53. [PMID: 10209303 DOI: 10.1016/s0167-4889(99)00015-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
279
|
Clarke AS, Lowell JE, Jacobson SJ, Pillus L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 1999; 19:2515-26. [PMID: 10082517 PMCID: PMC84044 DOI: 10.1128/mcb.19.4.2515] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histones are dynamically modified during chromatin assembly, as specific transcriptional patterns are established, and during mitosis and development. Modifications include acetylation, phosphorylation, ubiquitination, methylation, and ADP-ribosylation, but the biological significance of each of these is not well understood. For example, distinct acetylation patterns correlate with nucleosome formation and with transcriptionally activated or silenced chromatin, yet mutations in genes encoding several yeast histone acetyltransferase (HAT) activities result in either no cellular phenotype or only modest growth defects. Here we report characterization of ESA1, an essential gene that is a member of the MYST family that includes two yeast silencing genes, human genes associated with leukemia and with the human immunodeficiency virus type 1 Tat protein, and Drosophila mof, a gene essential for male dosage compensation. Esa1p acetylates histones in a pattern distinct from those of other yeast enzymes, and temperature-sensitive mutant alleles abolish enzymatic activity in vitro and result in partial loss of an acetylated isoform of histone H4 in vivo. Strains carrying these mutations are also blocked in the cell cycle such that at restrictive temperatures, esa1 mutants succeed in replicating their DNA but fail to proceed normally through mitosis and cytokinesis. Recent studies show that Esa1p enhances transcription in vitro and thus may modulate expression of genes important for cell cycle control. These observations therefore link an essential HAT activity to cell cycle progression, potentially through discrete transcriptional regulatory events.
Collapse
Affiliation(s)
- A S Clarke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
280
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
281
|
Abstract
Prior to sister-chromatid separation, the spindle checkpoint inhibits cell-cycle progression in response to a signal generated by mitotic spindle damage or by chromosomes that have not attached to microtubules. Recent work has shown that the spindle checkpoint inhibits cell-cycle progression by direct binding of components of the spindle checkpoint pathway to components of a specialized ubiquitin-conjugating system that is responsible for triggering sister-chromatid separation.
Collapse
Affiliation(s)
- A Amon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
282
|
Barral Y, Parra M, Bidlingmaier S, Snyder M. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev 1999; 13:176-87. [PMID: 9925642 PMCID: PMC316392 DOI: 10.1101/gad.13.2.176] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/1998] [Accepted: 11/23/1998] [Indexed: 11/24/2022]
Abstract
The mechanisms that couple cell cycle progression with the organization of the peripheral cytoskeleton are poorly understood. In Saccharomyces cerevisiae, the Swe1 protein has been shown previously to phosphorylate and inactivate the cyclin-dependent kinase, Cdc28, thereby delaying the onset of mitosis. The nim1-related protein kinase, Hsl1, induces entry into mitosis by negatively regulating Swe1. We have found that Hsl1 physically associates with the septin cytoskeleton in vivo and that Hsl1 kinase activity depends on proper septin function. Genetic analysis indicates that two additional Hsl1-related kinases, Kcc4 and Gin4, act redundantly with Hsl1 to regulate Swe1. Kcc4, like Hsl1 and Gin4, was found to localize to the bud neck in a septin-dependent fashion. Interestingly, hsl1 kcc4 gin4 triple mutants develop a cellular morphology extremely similar to that of septin mutants. Consistent with the idea that Hsl1, Kcc4, and Gin4 link entry into mitosis to proper septin organization, we find that septin mutants incubated at the restrictive temperature trigger a Swe1-dependent mitotic delay that is necessary to maintain cell viability. These results reveal for the first time how cells monitor the organization of their cytoskeleton and demonstrate the existence of a cell cycle checkpoint that responds to defects in the peripheral cytoskeleton. Moreover, Hsl1, Kcc4, and Gin4 have homologs in higher eukaryotes, suggesting that the regulation of Swe1/Wee1 by this class of kinases is highly conserved.
Collapse
Affiliation(s)
- Y Barral
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103 USA
| | | | | | | |
Collapse
|
283
|
Bernard P, Hardwick K, Javerzat JP. Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J Cell Biol 1998; 143:1775-87. [PMID: 9864354 PMCID: PMC2175213 DOI: 10.1083/jcb.143.7.1775] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1998] [Revised: 11/12/1998] [Indexed: 11/22/2022] Open
Abstract
The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1(+) is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Deltabub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1(+ )function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase-anaphase transition.
Collapse
Affiliation(s)
- P Bernard
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique, Unité Propre de Recherche 9026, 33077 Bordeaux, Cedex, France
| | | | | |
Collapse
|
284
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
285
|
Hofmann C, Cheeseman IM, Goode BL, McDonald KL, Barnes G, Drubin DG. Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J Cell Biol 1998; 143:1029-40. [PMID: 9817759 PMCID: PMC2132964 DOI: 10.1083/jcb.143.4.1029] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Revised: 09/23/1998] [Indexed: 11/22/2022] Open
Abstract
In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP-Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis.
Collapse
Affiliation(s)
- C Hofmann
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
286
|
Chen RH, Shevchenko A, Mann M, Murray AW. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol 1998; 143:283-95. [PMID: 9786942 PMCID: PMC2132829 DOI: 10.1083/jcb.143.2.283] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Revised: 09/14/1998] [Indexed: 11/22/2022] Open
Abstract
The spindle checkpoint prevents the metaphase to anaphase transition in cells containing defects in the mitotic spindle or in chromosome attachment to the spindle. When the checkpoint protein Xmad2 is depleted from Xenopus egg extracts, adding Xmad2 to its endogenous concentration fails to restore the checkpoint, suggesting that other checkpoint component(s) were depleted from the extract through their association with Xmad2. Mass spectrometry provided peptide sequences from an 85-kD protein that coimmunoprecipitates with Xmad2 from egg extracts. This information was used to clone XMAD1, which encodes a homologue of the budding yeast (Saccharomyces cerevisiae) checkpoint protein Mad1. Xmad1 is essential for establishing and maintaining the spindle checkpoint in egg extracts. Like Xmad2, Xmad1 localizes to the nuclear envelope and the nucleus during interphase, and to those kinetochores that are not bound to spindle microtubules during mitosis. Adding an anti-Xmad1 antibody to egg extracts inactivates the checkpoint and prevents Xmad2 from localizing to unbound kinetochores. In the presence of excess Xmad2, neither chromosomes nor Xmad1 are required to activate the spindle checkpoint, suggesting that the physiological role of Xmad1 is to recruit Xmad2 to kinetochores that have not bound microtubules.
Collapse
Affiliation(s)
- R H Chen
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
287
|
Wassmann K, Benezra R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc Natl Acad Sci U S A 1998; 95:11193-8. [PMID: 9736712 PMCID: PMC21618 DOI: 10.1073/pnas.95.19.11193] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the mitotic checkpoint pathway in response to mitotic spindle damage in eukaryotic cells delays the exit from mitosis in an attempt to prevent chromosome missegregation. One component of this pathway, hsMad2, has been shown in mammalian cells to physically associate with components of a ubiquitin ligase activity (termed the anaphase promoting complex or APC) when the checkpoint is activated, thereby preventing the degradation of inhibitors of the mitotic exit machinery. In the present report, we demonstrate that the inhibitory association between Mad2 and the APC component Cdc27 also takes place transiently during the early stages of a normal mitosis and is lost before mitotic exit. We also show that Mad2 associates with the APC regulatory protein p55Cdc in mammalian cells as has been reported in yeast. In contrast, however, this complex is present only in nocodazole-arrested or early mitotic cells and is associated with the APC as a Mad2/p55Cdc/Cdc27 ternary complex. Evidence for a Mad2/Cdc27 complex that forms independent of p55Cdc also is presented. These results suggest a model for the regulation of the APC by Mad2 and may explain how the spindle assembly checkpoint apparatus controls the timing of mitosis under normal growth conditions.
Collapse
Affiliation(s)
- K Wassmann
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
288
|
Abstract
A replicated chromosome possesses two discrete, complex, dynamic, macromolecular assemblies, known as kinetochores, that are positioned on opposite sides of the primary constriction of the chromosome. Here, the authors review how kinetochores control chromosome segregation during mitosis in vertebrates. They attach the chromosome to the opposing spindle poles by trapping the dynamic plus-ends of microtubules growing from the poles. They then produce much of the force for chromosome poleward motion, regulate when this force is applied, and act as a site for microtubule assembly and disassembly. Finally, they control the metaphase-anaphase transition by inhibiting chromatid separation until the chromatids are properly attached.
Collapse
Affiliation(s)
- C L Rieder
- Division of Molecular Medicine, Wadsworth Center, New York State Dept of Health, Albany 12201-0509, USA.
| | | |
Collapse
|
289
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, UK.
| |
Collapse
|
290
|
Taylor SS, Ha E, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 1998; 142:1-11. [PMID: 9660858 PMCID: PMC2133037 DOI: 10.1083/jcb.142.1.1] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Revised: 06/01/1998] [Indexed: 02/08/2023] Open
Abstract
A feedback control mechanism, or cell cycle checkpoint, delays the onset of anaphase until all the chromosomes are correctly aligned on the mitotic spindle. Previously, we showed that the murine homologue of Bub1 is not only required for checkpoint response to spindle damage, but also restrains progression through a normal mitosis (Taylor, S.S., and F. McKeon. 1997. Cell. 89:727-735). Here, we describe the identification of a human homologue of Bub3, a 37-kD protein with four WD repeats. Like Bub1, Bub3 localizes to kinetochores before chromosome alignment. In addition, Bub3 and Bub1 interact in mammalian cells. Deletion mapping was used to identify the domain of Bub1 required for binding Bub3. Significantly, this same domain is required for kinetochore localization of Bub1, suggesting that the role of Bub3 is to localize Bub1 to the kinetochore, thereby activating the checkpoint in response to unattached kinetochores. The identification of a human Mad3/Bub1-related protein kinase, hBubR1, which can also bind Bub3 in mammalian cells, is described. Ectopically expressed hBubR1 also localizes to kinetochores during prometaphase, but only when hBub3 is overexpressed. We discuss the implications of the common interaction between Bub1 and hBubR1 with hBub3 for checkpoint control.
Collapse
Affiliation(s)
- S S Taylor
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
291
|
He X, Jones MH, Winey M, Sazer S. Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 1998; 111 ( Pt 12):1635-47. [PMID: 9601094 DOI: 10.1242/jcs.111.12.1635] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint pathway is not essential for normal mitosis but ensures accurate nuclear division by blocking the metaphase to anaphase transition in response to a defective spindle. Here, we report the isolation of a new spindle checkpoint gene, mph1 (Mps1p-like pombe homolog), in the fission yeast Schizosaccharomyces pombe, that is required for checkpoint activation in response to spindle defects. mph1 functions upstream of mad2, a previously characterized component of the spindle checkpoint. Overexpression of mph1, like overexpression of mad2, mimics activation of the checkpoint and imposes a metaphase arrest. mph1 protein shares sequence similarity with Mps1p, a dual specificity kinase that functions in the spindle checkpoint of the budding yeast Saccharomyces cerevisiae. Complementation analysis demonstrates that mph1 and Mps1p are functionally related. They differ in that Mps1p, but not mph1, has an additional essential role in spindle pole body duplication. We propose that mph1 is the MPS1 equivalent in the spindle checkpoint pathway but not in the SPB duplication pathway. Overexpression of mad2 does not require mph1 to impose a metaphase arrest, which indicates a mechanism of spindle checkpoint activation other than mph1/Mps1p kinase-dependent phosphorylation. In the same screen which led to the isolation of mad2 and mph1, we also isolated dph1, a cDNA that encodes a protein 46% identical to an S. cerevisiae SPB duplication protein, Dsk2p. Our initial characterization indicates that S.p. dph1 and S.c. DSK2 are functionally similar. Together these results suggest that the budding and fission yeasts share common elements for SPB duplication, despite differences in SPB structure and the timing of SPB duplication relative to mitotic entry.
Collapse
Affiliation(s)
- X He
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
292
|
Muhua L, Adames NR, Murphy MD, Shields CR, Cooper JA. A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 1998; 393:487-91. [PMID: 9624007 PMCID: PMC2365721 DOI: 10.1038/31014] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Checkpoint controls ensure that events of the cell-division cycle are completed with fidelity and in the correct order. In budding yeast with a mutation in the motor protein dynein, the mitotic spindle is often misaligned and therefore slow to enter the neck between mother cell and budding daughter cell. When this occurs, cytokinesis (division of the cytoplasm into two) is delayed until the spindle is properly positioned. Here we describe mutations that abolish this delay, indicating the existence of a new checkpoint mechanism. One mutation lies in the gene encoding the yeast homologue of EB1, a human protein that binds the adenomatous polyposis coli (APC) protein, a tumour suppressor. EB1 is located on microtubules of the mitotic spindle and is important in spindle assembly. EB1 may therefore, by associating with microtubules, contribute to the sensor mechanism that activates the checkpoint. Another mutation affects Stt4, a phosphatidylinositol-4-OH kinase. Cold temperature is an environmental stimulus that causes misalignment of the mitotic spindle in yeast and appears to activate this checkpoint mechanism.
Collapse
Affiliation(s)
- L Muhua
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
293
|
Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17:3052-65. [PMID: 9606188 PMCID: PMC1170645 DOI: 10.1093/emboj/17.11.3052] [Citation(s) in RCA: 957] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic and biochemical studies in lower eukaryotes have identified several proteins that ensure accurate segregation of chromosomes. These include the Drosophila aurora and yeast Ipl1 kinases that are required for centrosome maturation and chromosome segregation. We have identified two human homologues of these genes, termed aurora1 and aurora2, that encode cell-cycle-regulated serine/threonine kinases. Here we demonstrate that the aurora2 gene maps to chromosome 20q13, a region amplified in a variety of human cancers, including a significant number of colorectal malignancies. We propose that aurora2 may be a target of this amplicon since its DNA is amplified and its RNA overexpressed, in more than 50% of primary colorectal cancers. Furthermore, overexpression of aurora2 transforms rodent fibroblasts. These observations implicate aurora2 as a potential oncogene in many colon, breast and other solid tumors, and identify centrosome-associated proteins as novel targets for cancer therapy.
Collapse
Affiliation(s)
- J R Bischoff
- SUGEN, Inc., Redwood City, California 94063, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Farr KA, Hoyt MA. Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol Cell Biol 1998; 18:2738-47. [PMID: 9566893 PMCID: PMC110653 DOI: 10.1128/mcb.18.5.2738] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Accepted: 02/23/1998] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces cerevisiae BUB1 encodes a protein kinase required for spindle assembly checkpoint function. In the presence of spindle damage, BUB1 is required to prevent cell cycle progression into anaphase. We have identified a dominantly acting BUB1 allele that appears to activate the spindle assembly checkpoint pathway in cells with undamaged spindles. High-level expression of BUB1-5 did not cause detectable spindle damage, yet it delayed yeast cells in mitosis at a stage following bipolar spindle assembly but prior to anaphase spindle elongation. Delayed cells possessed a G2 DNA content and elevated Clb2p mitotic cyclin levels. Unlike cells delayed in mitosis by spindle damage or MPS1 kinase overexpression, hyperphosphorylated forms of the Mad1p checkpoint protein did not accumulate. Similar to cells overexpressing MPS1, the BUB1-5 delay was dependent upon the functions of the other checkpoint genes, including BUB2 and BUB3 and MAD1, MAD2, and MAD3. We found that the mitotic delay caused by BUB1-5 or MPS1 overexpression was interdependent upon the function of the other. This suggests that the Bub1p and Mps1p kinases act together at an early step in generating the spindle damage signal.
Collapse
Affiliation(s)
- K A Farr
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
295
|
Brachat A, Kilmartin JV, Wach A, Philippsen P. Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol Biol Cell 1998; 9:977-91. [PMID: 9571234 PMCID: PMC25323 DOI: 10.1091/mbc.9.5.977] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Delta1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Delta1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.
Collapse
Affiliation(s)
- A Brachat
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
296
|
Rieder CL, Khodjakov A. Mitosis and checkpoints that control progression through mitosis in vertebrate somatic cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:301-12. [PMID: 9552424 DOI: 10.1007/978-1-4615-5371-7_24] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During mitosis in vertebrates the sister kinetochores on each replicated chromosome interact with two separating arrays of astral microtubules to form a bipolar spindle that produces and/or directs the forces for chromosome motion. In order to ensure faithful chromosome segregation cells have evolved mechanisms that delay progress into and out of mitosis until certain events are completed. At least two of these mitotic "checkpoint controls" can be identified in vertebrates. The first prevents nuclear envelope breakdown, and thus spindle formation, when the integrity of some nuclear component(s) is compromised. The second prevents chromosome disjunction and exit from mitosis until all of the kinetochores are attached to the spindle.
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Wadsworth Center, Albany, New York 12201-0509, USA
| | | |
Collapse
|
297
|
Paoletti A, Bornens M. Organisation and functional regulation of the centrosome in animal cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:285-99. [PMID: 9552423 DOI: 10.1007/978-1-4615-5371-7_23] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular characterisation of centrosomal components is slowly progressing. Recent results indicate that the major aspects of centrosome-mediated microtubule nucleation may soon be understood at the molecular level. In contrast, centrosome reproduction, which is an important aspect of animal cell division, remains terra incognita. The most challenging issue for the future is to understand the molecular mechanisms which control centrosome biogenesis. There is a urgent need to identify with certainty proteins implicated in this process. Comparison between organisms with structurally different centrosomes might be critical for a better understanding of centrosome duplication if a general mechanism has been conserved throughout evolution.
Collapse
Affiliation(s)
- A Paoletti
- Biologie du Cycle Cellulaire et de la Motilité, UMR 144, CNRS-Institut Curie, Paris, France
| | | |
Collapse
|
298
|
Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998; 93:81-91. [PMID: 9546394 DOI: 10.1016/s0092-8674(00)81148-4] [Citation(s) in RCA: 401] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In searching for cellular targets of the HTLV-I oncoprotein Tax, we identified TXBP181, which we characterized as the human homolog of yeast mitotic checkpoint MAD1 protein. Evidence supporting TXBP181 as HsMAD1 includes sequence conservation with yeast MAD1, hyperphosphorylation during S/G2/M phases and upon treatment of cells with nocodazole, and binding to HsMAD2. HsMAD1 functions as a homodimer. It localizes to the centrosome during metaphase and to the spindle midzone and the midbody during anaphase and telophase. Expression of either Tax or a transdominant-negative TXBP181 results in multinucleated cells, a phenotype consistent with a loss of HsMAD1 function. We propose a model of viral transformation in which Tax targets TXBP181, thereby abrogating a mitotic checkpoint.
Collapse
Affiliation(s)
- D Y Jin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
299
|
Pereira G, Knop M, Schiebel E. Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 1998; 9:775-93. [PMID: 9529377 PMCID: PMC25305 DOI: 10.1091/mbc.9.4.775] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the gamma-tubulin complex containing the gamma-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.
Collapse
Affiliation(s)
- G Pereira
- Max-Planck Institut für Biochemie, 82152 Martinsried, Germany
| | | | | |
Collapse
|
300
|
Komarnitsky SI, Chiang YC, Luca FC, Chen J, Toyn JH, Winey M, Johnston LH, Denis CL. DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Mol Cell Biol 1998; 18:2100-7. [PMID: 9528782 PMCID: PMC121440 DOI: 10.1128/mcb.18.4.2100] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1997] [Accepted: 01/23/1998] [Indexed: 02/07/2023] Open
Abstract
The DBF2 gene of the budding yeast Saccharomyces cerevisiae encodes a cell cycle-regulated protein kinase that plays an important role in the telophase/G1 transition. As a component of the multisubunit CCR4 transcriptional complex, DBF2 is also involved in the regulation of gene expression. We have found that MOB1, an essential protein required for a late mitotic event in the cell cycle, genetically and physically interacts with DBF2. DBF2 binds MOB1 in vivo and can bind it in vitro in the absence of other yeast proteins. We found that the expression of MOB1 is also cell cycle regulated, its expression peaking slightly before that of DBF2 at the G2/M boundary. While overexpression of DBF2 suppressed phenotypes associated with mob1 temperature-sensitive alleles, it could not suppress a mob1 deletion. In contrast, overexpression of MOB1 suppressed phenotypes associated with a dbf2-deleted strain and suppressed the lethality associated with a dbf2 dbf20 double deletion. A mob1 temperature-sensitive allele with a dbf2 disruption was also found to be synthetically lethal. These results are consistent with DBF2 acting through MOB1 and aiding in its function. Moreover, the ability of temperature-sensitive mutated versions of the MOB1 protein to interact with DBF2 was severely reduced, confirming that binding of DBF2 to MOB1 is required for a late mitotic event. While MOB1 and DBF2 were found to be capable of physically associating in a complex that did not include CCR4, MOB1 did interact with other components of the CCR4 transcriptional complex. We discuss models concerning the role of DBF2 and MOB1 in controlling the telophase/G1 transition.
Collapse
Affiliation(s)
- S I Komarnitsky
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824, USA
| | | | | | | | | | | | | | | |
Collapse
|