251
|
Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA. Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 2011; 51:195-206. [PMID: 21470303 DOI: 10.1111/j.1600-079x.2011.00876.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis or programmed cell death plays a critical role in both inflammatory and immune responses. Recent evidence demonstrates that control of leukocyte apoptosis is one of the most striking immune system-related roles of melatonin. For this reason, this study evaluated the protective effects of melatonin on human leukocyte apoptosis induced by sustained cytosolic calcium increases. Such protective effects are likely mediated by melatonin's free-radical scavenging actions. Treatments with the specific inhibitor of cytosolic calcium re-uptake, thapsigargin (TG), and/or the calcium-mobilizing agonist, N-formyl-methionyl-leucyl-phenylalanine (FMLP), induced intracellular reactive oxygen species (ROS) production, caspase activation as well as DNA fragmentation in human leukocytes. Also, TG- and/or FMLP-induced apoptosis was dependent on both cytosolic calcium increases and calcium uptake into mitochondria, because when cells were preincubated with the cytosolic calcium chelator, dimethyl BAPTA, and the inhibitor of mitochondrial calcium uptake, Ru360, TG- and FMLP-induced apoptosis was largely inhibited. Importantly, melatonin treatment substantially prevented intracellular ROS production, reversed caspase activation, and forestalled DNA fragmentation induced by TG and FMLP. Similar results were obtained by preincubating the cells with another well-known antioxidant, i.e., N-acetyl-L-cysteine. To sum up, depletion of intracellular calcium stores induced by TG and/or FMLP triggers different apoptotic events in human leukocytes that are dependent on calcium signaling. The protective effects resulting from melatonin administration on leukocyte apoptosis likely depend on melatonin's antioxidant action because we proved that this protection is melatonin receptor independent. These findings help to understand how melatonin controls apoptosis in cells of immune/inflammatory relevance.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
252
|
Lee MR, Moon SH, Choi AR, Lee SC, Ahn KH, Park HR. Neuroprotective Effects of Extracts from Diospyros kaki L. Peel. ACTA ACUST UNITED AC 2011. [DOI: 10.9724/kfcs.2011.27.4.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
253
|
Abstract
Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs) occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS). Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive,National University of Singapore, Singapore.
| | | | | |
Collapse
|
254
|
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 2011; 43:464-78. [PMID: 21404285 DOI: 10.1002/mus.21987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well-designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells.
Collapse
Affiliation(s)
- Chad D Markert
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
255
|
Abstract
Two principal pathways exist by which cells can undergo apoptotic death, known as the extrinsic and the intrinsic pathways. Binding of a ligand to a death receptor activates the extrinsic pathway. In the intrinsic pathway, an apoptotic stimulus, such as neurotrophin withdrawal or exposure to a toxin, causes a proapoptotic member of the Bcl-2 family of proteins, such as Bax, to permeabilize the outer mitochondrial membrane. This allows redistribution of cytochrome c from the mitochondrial intermembrane space into the cytoplasm, where it causes activation of caspase proteases and, subsequently, cell death. A dramatic increase occurs in mitochondria-derived reactive oxygen species (ROS) during the apoptotic death of sympathetic, cerebellar granule, and cortical neurons. These ROS lie downstream of Bax in each cell type. Here I review possible mechanisms by which Bax causes increased ROS during neuronal apoptosis. I also discuss evidence that these ROS are an important part of the apoptotic cascade in these cells. Finally, I discuss evidence that suggests that neurotrophins prevent release of cytochrome c in neurons through activation of an antioxidant pathway.
Collapse
Affiliation(s)
- James L Franklin
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 Green St., Athens, GA 30602, USA.
| |
Collapse
|
256
|
Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells. Mol Cell Biochem 2011; 354:97-112. [PMID: 21461609 DOI: 10.1007/s11010-011-0809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/24/2011] [Indexed: 12/14/2022]
Abstract
The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.
Collapse
|
257
|
Hoechst 33342 induced reactive oxygen species and impaired expression of cytochrome c oxidase subunit 1 leading to cell death in irradiated human cancer cells. Mol Cell Biochem 2011; 352:281-92. [DOI: 10.1007/s11010-011-0764-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/24/2011] [Indexed: 01/18/2023]
|
258
|
Joodi G, Ansari N, Khodagholi F. Chitooligosaccharide-mediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. Int J Biol Macromol 2011; 48:726-35. [PMID: 21356235 DOI: 10.1016/j.ijbiomac.2011.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 12/13/2022]
Abstract
There is mounting evidence implicating the role of oxidative stress induced by reactive oxygen species (ROS) in neurodegenerative disease, including Alzheimer's disease. In this study we aimed to investigate the possible protective effect of chitooligosaccharide (COS), an antioxidant oligosaccharide, on hydrogen peroxide induced apoptosis in NGF-differentitated rat pheochromocytoma (PC12) cells. COS treatment reversed the decrease of cell viability induced by H(2)O(2) and this was associated with diminished intracellular ROS and decreased level of cytosolic Ca(2+). Additionally, COS contributed to up-regulation of Bcl-2, down regulation of Bax protein and reduction of cleaved Caspase-3 protein. COS treatment stabilized Nrf2 in nucleus and increased the Hsp70 level within cell while down-regulated Hsp90 expression. Moreover, COS could inhibit the phosphorylation of different mitogen activated protein kinases (MAPKs), whose aberrant phosphorylation has been implicated in AD. Our findings suggest that heat shock response and MAPK cascades are both involved in cell survival, and by concomitantly regulating both pathways, COS can be a promising agent in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Golsa Joodi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
259
|
Yan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L, Li Q. Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol 2011; 652:23-32. [DOI: 10.1016/j.ejphar.2010.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 01/30/2023]
|
260
|
Effect of Magnetic Fields on Antioxidant System Enzymes in Mice with Ehrlich Ascites Carcinoma. Bull Exp Biol Med 2011; 150:365-7. [DOI: 10.1007/s10517-011-1143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
261
|
Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 2011; 30:16114-27. [PMID: 21123558 DOI: 10.1523/jneurosci.2862-10.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Bax- and, apparently, mitochondria-dependent increase in superoxide (O(2)(·-)) and other reactive oxygen species (ROS) occurs in apoptotic superior cervical ganglion (SCG) and cerebellar granule (CG) neurons. Here we show that Bax also lies upstream of ROS produced in nonapoptotic neurons and present evidence that caspases partially mediate the pro-oxidant effect of Bax. We used the O(2)(·-)-sensitive dye MitoSOX to monitor O(2)(·-) in neurons expressing different levels of Bax and mitochondrial superoxide dismutase (SOD2). Basal and apoptotic O(2)(·-) levels in both SCG and CG neurons were reduced in SOD2 wild-type (WT) cells having lower Bax concentrations. Apoptotic and nonapoptotic neurons from Bax-WT/SOD2-null but not Bax-null/SOD2-null mice had increased O(2)(·-) levels. A caspase inhibitor inhibited O(2)(·-) in both apoptotic and nonapoptotic SCG neurons. O(2)(·-) production increased when WT, but not Bax-null, SCG neurons were permeabilized and treated with active caspase 3. There was no apoptosis and little increase in O(2)(·-) in SCG neurons from caspase 3-null mice exposed to an apoptotic stimulus. O(2)(·-) levels in nonapoptotic caspase 3-null SCG neurons were lower than in WT cells but not as low as in caspase inhibitor-treated cells. These data indicate that Bax lies upstream of most O(2)(·-) produced in neurons, that caspase 3 is required for increased O(2)(·-) production during neuronal apoptosis, that caspase 3 is partially involved in O(2)(·-) production in nonapoptotic neurons, and that other caspases may also be involved in Bax-dependent O(2)(·-) production in nonapoptotic cells.
Collapse
|
262
|
Zhang HZ, Zhang FQ, Li CF, Yi D, Fu XL, Cui LX. A Cyanobacterial Toxin, Microcystin-LR, Induces Apoptosis of Sertoli Cells by Changing the Expression Levels of Apoptosis-Related Proteins. TOHOKU J EXP MED 2011; 224:235-42. [DOI: 10.1620/tjem.224.235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui-Zhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Feng-Quan Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University
- Shengzhou Center For Disease Control and Prevention
| | - Chao-Feng Li
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Dan Yi
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Xiao-Li Fu
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Liu-Xin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University
| |
Collapse
|
263
|
Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Pro-Oxidant Effect of Melatonin in Tumour Leucocytes: Relation with its Cytotoxic and Pro-Apoptotic Effects. Basic Clin Pharmacol Toxicol 2010; 108:14-20. [DOI: 10.1111/j.1742-7843.2010.00619.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
264
|
Li M, Li X, Li JC. Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Anat Rec (Hoboken) 2010; 293:986-92. [PMID: 20225201 DOI: 10.1002/ar.21142] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein that is isolated from the root tubers of the Chinese medicinal herb Trichosanthes kirilowii Maximowicz. TCS has been used as an abortifacient for 1,500 years in China because of its high toxicity on trophoblasts. Over the past 20 years, TCS has been the subject of much research because of its potential antitumor activities. Many reports have revealed that TCS is cytotoxic in a variety of tumor cell lines in vitro and in vivo. Monoclonal antibody-conjugated TCS could enhance its antitumor efficacy; thus, TCS is considered to be a potential biological agent for cancer treatment. TCS is able to inhibit protein synthesis and consequently induce necrosis. Recent studies have demonstrated that TCS does indeed induce apoptosis in several tumor cell lines. Although TCS-induced apoptosis of tumor cell lines is now well known, the underlying mechanisms remain to be elucidated. The purpose of this review was to investigate the effects of TCS and its possible mechanisms of action, based on published literature and the results of our own studies.
Collapse
Affiliation(s)
- Meng Li
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
265
|
Yoon SW, Kang S, Ryu SE, Poo H. Identification of tyrosine-nitrated proteins in HT22 hippocampal cells during glutamate-induced oxidative stress. Cell Prolif 2010; 43:584-93. [PMID: 21039997 DOI: 10.1111/j.1365-2184.2010.00708.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Nitration of tyrosine residues in protein is a post-translational modification, which occurs under oxidative stress, and is associated with several neurodegenerative diseases. To understand the role of nitrated proteins in oxidative stress-induced cell death, we identified nitrated proteins and checked correlation of their nitration in glutamate-induced HT22 cell death. MATERIALS AND METHODS Nitrated proteins were detected by western blotting using an anti-nitrotyrosine antibody, extracted from matching reference 2-dimensional electrophoresis gels, and identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS Glutamate treatment induced apoptosis in HT22 cells, while reactive oxygen species (ROS) inhibitor or neuronal nitric oxide synthase (nNOS) inhibitor blocked glutamate-induced HT22 cell death. Nitration levels of 13 proteins were increased after glutamate stimulation; six of them were involved in regulation of energy production and two were related to apoptosis. The other nitrated proteins were associated with calcium signal modulation, ER dysfunction, or were of unknown function. CONCLUSIONS The 13 tyrosine-nitrated proteins were detected in these glutamate-treated HT22 cells. Results demonstrated that cell death, ROS accumulation and nNOS expression were related to nitration of protein tyrosine in the glutamate-stimulated cells.
Collapse
Affiliation(s)
- S-W Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Korea
| | | | | | | |
Collapse
|
266
|
Chen HM, Yan XJ, Wang F, Xu WF, Zhang L. Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards Caco-2 cells. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
267
|
Saito Y, Nishio K, Akazawa YO, Yamanaka K, Miyama A, Yoshida Y, Noguchi N, Niki E. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 2010; 49:1542-9. [PMID: 20736061 DOI: 10.1016/j.freeradbiomed.2010.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/29/2010] [Accepted: 08/14/2010] [Indexed: 02/08/2023]
Abstract
Glutamate plays a critical role in pathological cell death within the nervous system. Vitamin E is known to protect cells from glutamate cytotoxicity, either by direct antioxidant action or by indirect nonantioxidant action. Further, α-tocotrienol (α-T3) has been reported to be more effective against glutamate-induced cytotoxicity than α-tocopherol (α-T). To shed more light on the function of vitamin E against glutamate toxicity, the protective effects of eight vitamin E homologues and related compounds, 2,2,5,7,8-pentamethyl-6-chromanol (PMC) and 2-carboxy-2,5,7,8-pentamethyl-6-chromanol (Trolox), against glutamate-induced cytotoxicity on immature primary cortical neurons were examined using different protocols. Glutamate induced the depletion of glutathione and generation of reactive oxygen species and lipid hydroperoxides, leading to cell death. α-, β-, γ-, and δ-T and -T3; PMC; and Trolox all exerted cytoprotective effects against glutamate-induced cytotoxicity, and a longer preincubation time increased both the cellular content and the cytoprotective effects of T more significantly than those of T3, the effect of preincubation being relatively small for T3 and PMC. The protective effect of Trolox was less potent than that of PMC. The cytoprotective effects of α-T and α-T3 corresponded to their intracellular content. Further, lipid peroxidation products were measured after reduction with triphenylphosphine followed by saponification with potassium hydroxide. It was found that glutamate treatment increased the formation of hydroxyeicosatetraenoic acid, hydroxyoctadecadienoic acid, and 8-F(2)-isoprostane 2α, which was suppressed by α-T. This study shows that vitamin E protects cells from glutamate-induced toxicity primarily by direct antioxidant action and that the apparent higher capacity of T3 compared to T is ascribed to the faster uptake of T3 compared to T into the cells. It is suggested that, considering the bioavailability, α-T should be more effective than α-T3 against glutamate toxicity in vivo.
Collapse
Affiliation(s)
- Yoshiro Saito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
268
|
The CD14(+/low)CD16(+) monocyte subset is more susceptible to spontaneous and oxidant-induced apoptosis than the CD14(+)CD16(-) subset. Cell Death Dis 2010; 1:e95. [PMID: 21368871 PMCID: PMC3032320 DOI: 10.1038/cddis.2010.69] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human monocytes can be classified into two subsets with distinctive characteristics. In this study, we report a difference in apoptotic potential between these two subsets with CD14+/lowCD16+ monocytes being more susceptible than CD14+CD16− monocytes to undergo spontaneous apoptosis and apoptosis induced by reactive oxygen species (ROS). By global transcriptomic and proteomic approaches, we observed that CD14+/lowCD16+ monocytes expressed higher levels of pro-apoptotic genes and proteins such as TNFα, caspase 3, Bax and cytochrome c and showed more caspases 3 and 7 activities. They also exhibited greater aerobic respiration resulting in a higher production of ROS from the mitochondria. CD14+CD16− monocytes, in contrast, showed higher expression of glutathione (GSH)-metabolizing genes such as GSH peroxidase and microsomal GSH S-transferase and were more resistant to oxidative stress than CD14+/lowCD16+ monocytes. The apoptosis of CD14+/lowCD16+ monocytes was ROS dependent as reducing ROS levels significantly reduced cell death. This is the first report of a differential apoptotic propensity of human monocyte subsets, and gaining a better understanding of this process may help to provide a better understanding of the roles of these subsets during homeostasis and under pathological conditions, particularly in situations in which high levels of oxidants are present.
Collapse
|
269
|
Um HJ, Kwon TK. Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in renal carcinoma Caki cells. J Pineal Res 2010; 49:283-90. [PMID: 20626587 DOI: 10.1111/j.1600-079x.2010.00793.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Melatonin is an indolamine initially found to be produced in the pineal gland but now known to be synthesized in a variety of other tissues as well. The mechanisms whereby melatonin regulates the apoptotic program remain only partially understood. Anti-/pro-apoptotic effects of exogenous melatonin on various stimuli-mediated apoptosis were investigated in this report. We investigated the combined effect of melatonin and death receptor-mediated ligands (TNF-α, TRAIL, and anti-Fas antibody) or endoplasmic reticulum (ER) stress-inducing agents (thapsigargin, brefeldin A, and tunicamycin) on apoptosis of cancer cells. Death receptor- or ER stress-induced apoptosis was not significantly influenced by melatonin treatment. However, pretreatment with melatonin significantly inhibited DNA damage-induced apoptosis and glutathione (GSH) depletion, suggesting the reactive oxygen species mediate oxaliplatin/etoposide-induced apoptosis. Interestingly, we also found the involvement of myeloid cell leukemia-1 (Mcl-1) downregulation in oxaliplatin-induced apoptosis; thus, pretreatment with melatonin inhibited Mcl-1 downregulation, and ectopic expression of Mcl-1 attenuated oxaliplatin-induced apoptosis. Taken together, the results demonstrate that melatonin attenuates oxaliplatin-induced apoptosis in cancer cells by inhibition of GSH depletion and Mcl-1 downregulation.
Collapse
Affiliation(s)
- Hee Jung Um
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | | |
Collapse
|
270
|
Shimada S, Hirabayashi M, Ishige K, Kosuge Y, Kihara T, Ito Y. Activation of dopamine D4 receptors is protective against hypoxia/reoxygenation-induced cell death in HT22 cells. J Pharmacol Sci 2010; 114:217-24. [PMID: 20921819 DOI: 10.1254/jphs.10134fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Several reports have shown that some dopamine receptor ligands modulate the ischemia-reperfusion injury in animal models; however, its underling mechanisms are still unclear. In this study, we sought to establish an in vitro experimental model of hypoxia/reoxygenation (H/R) using HT22 cells that originated from mouse hippocampal neurons and to examine protective the effect of dopamine-receptor ligands against H/R-induced cell injury. The treatment with hypoxia for 18 h followed by reoxygenation for 6 h induced the elevation of intracellular reactive oxygen species (ROS) and reduction of mitochondrial membrane potential; however, lactate dehydrogenase (LDH) release was not changed at this time point. LDH release was increased after reoxygenation for 18 h and longer, and this increase in LDH release was suppressed by dopamine receptor agonists such as apomorphine and apocodeine. The suppressive effects of these agonists were reversibly inhibited by L750667, a D(4)-receptor antagonist but not by D(2)- or D(3)-receptor antagonists. In addition, PD168077, a selective dopamine D(4)-receptor agonist, also protected against H/R-induced cell death. These results suggest that H/R causes oxidative stress-induced cell death and that the activation of dopamine D(4) receptors protects against H/R-induced cell death in HT22 cells.
Collapse
Affiliation(s)
- Saori Shimada
- Research Unit of Pharmacology, Department of Clinical Pharmacy, School of Pharmacy, Nihon University, Japan
| | | | | | | | | | | |
Collapse
|
271
|
Ha JS, Lim HM, Park SS. Extracellular hydrogen peroxide contributes to oxidative glutamate toxicity. Brain Res 2010; 1359:291-7. [PMID: 20816674 DOI: 10.1016/j.brainres.2010.08.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/26/2022]
Abstract
Oxidative glutamate toxicity is characterized by the inhibition of cystine uptake, the depletion of intracellular glutathione, and increased levels of intracellular reactive oxygen species, factors that lead to neuronal injury. We found that the presence of extracellular catalase protected cultured neuronal cells, such as HT22, SH-SY5Y and PC12 cells, from glutamate-induced cytotoxicity. Extracellular hydrogen peroxide (H₂O₂) accumulated in a time- and concentration-dependent manner in HT22 cells during prolonged exposure to glutamate. To investigate the involvement of NADPH oxidase in glutamate-induced H₂O₂ generation, we used small interference RNA (siRNA). Knockdown of Nox2 and Nox4 expression reduced H₂O₂ accumulation and increased cell survival. siRNA specific for Nox4 reduced the production of H₂O₂ by ~74% compared with control siRNA. Furthermore, H₂O₂ accumulation was also suppressed by U0126, a MEK/ERK inhibitor, in a concentration-dependent manner. These results suggest that glutamate triggers the Nox-dependent generation of extracellular H₂O₂ via ERK1/2 activation, which contributes to oxidative glutamate toxicity.
Collapse
Affiliation(s)
- Jong Seong Ha
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | |
Collapse
|
272
|
Jana K, Jana N, De DK, Guha SK. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Mol Reprod Dev 2010; 77:820-33. [DOI: 10.1002/mrd.21227] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
273
|
Senevirathne M, Kim SH, Jeon YJ. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line. Nutr Res Pract 2010; 4:183-90. [PMID: 20607062 PMCID: PMC2895697 DOI: 10.4162/nrp.2010.4.3.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/20/2010] [Accepted: 05/27/2010] [Indexed: 11/24/2022] Open
Abstract
Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H2O2-induced cell damage in vitro.
Collapse
Affiliation(s)
- Mahinda Senevirathne
- School of Food Technology and Nutrition, Chonnam National University, Yeosu 550-749, Korea
| | | | | |
Collapse
|
274
|
Ercan S, Öztürk N, Celik-Ozenci C, Gungor NE, Yargicoglu P. Sodium metabisulfite induces lipid peroxidation and apoptosis in rat gastric tissue. Toxicol Ind Health 2010; 26:425-31. [DOI: 10.1177/0748233710369665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sodium metabisulfite (Na 2S2O5) is used as an antioxidant and antimicrobial agent in a variety of drugs and functions as a preservative in many food preparations. This study was performed to elucidate the dose-dependent effects of sodium metabisulfite ingestion on rat gastric tissue apoptotic changes and lipid peroxidation. Forty male wistar rats, aged 3 months were used. They were randomly divided into four groups: control (C), the group treated with Na2S2O5 (10 mg/kg; S1), the group treated with Na2S2O5 (100 mg/kg; S2), the group treated with Na2S2O5 (260 mg/kg; S3). Na 2S2O5 was given by intragastric intubation for 35 days. In the S2 and S3 groups, malondialdehyde (MDA) levels increased markedly when compared with the control group. High doses of sulfite administration elevated number of apoptotic cells both in mucosa and submucosa layers of stomach in parallel with increased MDA levels. These results suggest that sodium metabisulfite increased lipid peroxidation and thus number of apoptotic cells on gastric tissue in dose-dependent manner.
Collapse
Affiliation(s)
- Sevim Ercan
- Akdeniz University, Vocational School of Health Services, Antalya, Turkey,
| | - Nihal Öztürk
- Akdeniz University, Faculty of Medicine, Department of Biophysics, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey
| | - Nazli Ece Gungor
- Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey
| | - Piraye Yargicoglu
- Akdeniz University, Faculty of Medicine, Department of Biophysics, Antalya, Turkey
| |
Collapse
|
275
|
Liu Q, Alinari L, Chen CS, Yan F, Dalton JT, Lapalombella R, Zhang X, Mani R, Lin T, Byrd JC, Baiocchi RA, Muthusamy N. FTY720 shows promising in vitro and in vivo preclinical activity by downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma. Clin Cancer Res 2010; 16:3182-92. [PMID: 20460491 DOI: 10.1158/1078-0432.ccr-09-2484] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite the progress that has been made in the treatment of mantle cell lymphoma (MCL), all patients invariably relapse with the currently available therapies. Because of the absence of curative therapy for MCL, we explored FTY720 as a novel agent against MCL. EXPERIMENTAL DESIGN The cytotoxic effect of FTY720 in primary MCL tumor cells and cell lines were evaluated in vitro. The effects of FTY720 on caspase activation, generation of reactive oxygen species, and modulation of Cyclin D1 and Akt, which are implied in the pathogenesis of MCL, were investigated. The in vivo efficacy of FTY720 was evaluated in a Jeko-severe combined immunodeficient xenograft model of human MCL. RESULTS FTY720 mediated time- and dose-dependent cytotoxicity in primary MCL tumor cells and MCL cell lines in vitro. FTY720-induced cytotoxicity occured independent of caspase activation but dependent on the generation of ROS in MCL. In addition, FTY720 treatment resulted in the time-dependent downmodulation of Cyclin D1 and accumulation of cells in G(0)-G(1) and G(2)-M phases of the cell cycle with concomitant decrease in S-phase entry. Furthermore, concentrations of FTY720 that induced cytotoxicity led to decreased phospho-Akt in primary MCL cells and cell lines. Most importantly, the in vivo therapeutic activity of FTY720 was shown in severe combined immunodeficient mice engrafted with the Jeko MCL cell line. CONCLUSIONS These results provide the first evidence for a potential use of FTY720 in targeting key pathways that are operable in the pathogenesis of MCL and warrant further investigation of FTY720 in clinical trials to treat patients with MCL.
Collapse
Affiliation(s)
- Qing Liu
- Division of Pharmaceutics, College of Pharmacy, the Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC, Chua BHL. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 2010; 1343:206-12. [PMID: 20451505 DOI: 10.1016/j.brainres.2010.04.080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/19/2022]
Abstract
Oxidative cell death contributes to neuronal cell death in many neurological diseases such as stroke, brain trauma, and Alzheimer's disease. In this study, we explored the involvement of poly(ADP-ribose)-polymerase (PARP) in oxidative stress-induced necroptosis. We showed that PJ34, a potent and specific inhibitor of PARP, can completely inhibit glutamate-induced necroptosis in HT-22 cells. This protective effect was still observed 8h after glutamate exposure followed by PJ34 treatment. These results suggest that PARP activation plays a critical role in glutamate-induced necroptosis. We also examined the interaction between PARP and a necroptosis inhibitor called necrostatin-1 (Nec-1). Previously, we showed that Nec-1 protects against glutamate-induced oxytosis by inhibiting the translocation of cellular apoptosis-inducing factor (AIF), a downstream target of PARP-1 activation. In this study, Nec-1 reduced PARP activity but had no effect on the expression of PARP-1 in cells treated with glutamate. Nec-1 also did not protect against cell death mediated by the PARP activator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), although PJ34 did protect against MNNG-mediated cell death. These findings suggest that Nec-1 is not a direct PARP inhibitor and that its signaling target is located upstream of PARP.
Collapse
Affiliation(s)
- Xingshun Xu
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou City, Jiangsu Province 215123, PR China.
| | | | | | | | | | | | | |
Collapse
|
277
|
Liu HT, He JL, Li WM, Yang Z, Wang YX, Bai XF, Yu C, Du YG. Chitosan oligosaccharides protect human umbilical vein endothelial cells from hydrogen peroxide-induced apoptosis. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
278
|
Sun ZW, Zhang L, Zhu SJ, Chen WC, Mei B. Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage. Neurosci Bull 2010; 26:8-16. [PMID: 20101268 DOI: 10.1007/s12264-010-0813-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To investigate the mechanisms of excitotoxic effects of glutamate on human neuroblastoma SH-SY5Y cells. METHODS SH-SY5Y cell viability was measured by MTT assay. Other damaged profile was detected by lactate dehydrogenase (LDH) release and by 4', 6-diamidino-2-phenylindole (DAPI) staining. The cytosolic calcium concentration was tested by calcium influx assay. The glutamate-induced oxidative stress was analyzed by cytosolic glutathione assay, superoxide dismutase (SOD) assay and extracellular malondialdehyde (MDA) assay. RESULTS Glutamate treatment caused damage in SH-SY5Y cells, including the decrease of cell viability, the increase of LDH release and the alterations of morphological structures. Furthermore, the concentration of cytoplasmic calcium in SH-SY5Y cells was not changed within 20 min following glutamate treatment, while cytosolic calcium concentration significantly increased within 24 h after glutamate treatment, which could not be inhibited by MK801, an antagonist of NMDA receptors, or by LY341495, an antagonist of metabotropic glutamate receptors. On the other hand, oxidative damage was observed in SH-SY5Y cells treated with glutamate, including decreases in glutathione content and SOD activity, and elevation of MDA level, all of which could be alleviated by an antioxidant Tanshinone IIA (Tan IIA, a major active ingredient from a Chinese plant Salvia Miltiorrhiza Bge). CONCLUSION Glutamate exerts toxicity in human neuroblastoma SH-SY5Y cells possibly through oxidative damage, not through calcium homeostasis destruction mediated by NMDA receptors.
Collapse
Affiliation(s)
- Zhong-Wei Sun
- Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
279
|
Abstract
This study investigated the potential of melatonin in ameliorating hypoxic damage to the periventricular white matter (PWM) in the neonatal brain. Vascular endothelial growth factor (VEGF), nitric oxide (NO), glutathione (GSH) and malondialdehyde (MDA) content in the PWM of 1-day-old rats subjected to hypoxia for a period of 2 hr was examined. Vascular endothelial growth factor, NO and MDA concentration was increased whereas that of GSH was reduced after the hypoxic exposure. Additionally, degenerating axons, apoptotic and necrotic cells and vacuolation of capillary endothelial cells were observed in the PWM. The neighboring ependymal and choroid plexus cells also appeared to undergo structural alterations. Increased vascular permeability in the PWM of hypoxic rats was evidenced by the leakage of rhodamine isothiocyanate (RhIC) which was taken up by the amoeboid microglial cells. In vitro experiments showed increased apoptosis in OLN-93 cells, an oligodendrocytic cell line, following hypoxic exposure. Hypoxic rats treated with melatonin showed reduced VEGF, NO and MDA concentrations, increased GSH content and reduced RhIC leakage in the PWM. The ultrastructure of axons, endothelial, ependymal and choroid plexus epithelial cells appeared relatively normal in the hypoxic animals treated with melatonin. The incidence of apoptotic OLN-93 cells was also reduced with melatonin treatment. We suggest that the protective effects of melatonin on various parameters in the PWM of hypoxic neonatal brains were due to its antioxidant properties.
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - V Sivakumar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E A Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
280
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
281
|
Fukui M, Zhu BT. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic Biol Med 2010; 48:821-30. [PMID: 20060889 PMCID: PMC2861908 DOI: 10.1016/j.freeradbiomed.2009.12.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/10/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022]
Abstract
Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We show that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and function at early time points after glutamate exposure. However, overexpression of SOD2 in these cells reduced the mitochondrial superoxide level, protected mitochondrial morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochondria are important early targets of glutamate-induced oxidative neurotoxicity.
Collapse
Affiliation(s)
- Masayuki Fukui
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
282
|
Kim HJ, Kang JS, Park HR, Hwang YI. Neuroprotective Effects of Methanolic Extracts from Peanut Sprouts. ACTA ACUST UNITED AC 2010. [DOI: 10.5352/jls.2010.20.2.253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
283
|
Lim CS, Jin DQ, Sung JY, Lee JH, Choi HG, Ha I, Han JS. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull 2010; 29:1212-6. [PMID: 16755019 DOI: 10.1248/bpb.29.1212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidant and anti-inflammatory properties of the marine red alga Neorhodomela aculeate (N. aculeata) Masuda were investigated with neuronal and microglial cells. Extracts of N. aculeata had potent neuroprotective effects on glutamate-induced neurotoxicity and inhibited reactive oxygen species (ROS) generation in the murine hippocampal HT22 cell line. Also, extracts of N. aculeata inhibited H2O2-induced lipid peroxidation in rat brain homogenates. The properties of the extract as an anti-inflammatory agent were investigated in microglial activation by interferon-gamma (IFN-gamma): it reduced the inducible nitric oxide synthase that consequently resulted in the reduction of nitric oxide. These results suggest that the marine red alga N. aculeata could be considered as a potential source for reducing reactive oxygen species and inflammation related to neurological diseases.
Collapse
Affiliation(s)
- Chol Seung Lim
- Graduate Program in Neuroscience, Institute for Brain Science and Technology (IBST), Inje University, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
284
|
Lewerenz J, Dargusch R, Maher P. Lactacidosis modulates glutathione metabolism and oxidative glutamate toxicity. J Neurochem 2010; 113:502-14. [PMID: 20132475 DOI: 10.1111/j.1471-4159.2010.06621.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lactate and acidosis increase infarct size in humans and in animal models of cerebral ischemia but the mechanisms by which they exert their neurotoxic effects are poorly understood. Oxidative glutamate toxicity is a form of nerve cell death, wherein glutamate inhibits cystine uptake via the cystine/glutamate antiporter system leading to glutathione depletion, accumulation of reactive oxygen species and, ultimately, programmed cell death. Using the hippocampal cell line, HT22, we show that lactate and acidosis exacerbate oxidative glutamate toxicity and further decrease glutathione levels. Acidosis but not lactate inhibits system , whereas both acidosis and lactate inhibit the enzymatic steps of glutathione synthesis downstream of cystine uptake. In contrast, when glutathione synthesis is completely inhibited by cystine-free medium, acidosis partially protects against glutathione depletion and cell death. Both effects of acidosis are also present in primary neuronal and astrocyte cultures. Furthermore, we show that some neuroprotective compounds are much less effective in the presence of lactacidosis. Our findings indicate that lactacidosis modulates glutathione metabolism and neuronal cell death. Furthermore, lactacidosis may interfere with the action of some neuroprotective drugs rendering these less likely to be therapeutically effective in cerebral ischemia.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department for Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
285
|
Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 2010; 285:667-74. [PMID: 19850931 PMCID: PMC2804214 DOI: 10.1074/jbc.m109.053058] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/08/2009] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H(2)TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.
Collapse
Affiliation(s)
- Chisato Kubota
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University and
- the Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi 371-8512, Japan
| | - Seiji Torii
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University and
| | - Ni Hou
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University and
| | - Nobuhito Saito
- the Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi 371-8512, Japan
| | - Yuhei Yoshimoto
- the Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi 371-8512, Japan
| | - Hideaki Imai
- the Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi 371-8512, Japan
| | - Toshiyuki Takeuchi
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University and
| |
Collapse
|
286
|
Khanna S, Parinandi NL, Kotha SR, Roy S, Rink C, Bibus D, Sen CK. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. J Neurochem 2009; 112:1249-60. [PMID: 20028458 DOI: 10.1111/j.1471-4159.2009.06550.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous works have elucidated that the 12-lipoxygenase pathway is directly implicated in glutamate-induced neural cell death, and that such that toxicity is prevented by nM concentrations of the natural vitamin E alpha-tocotrienol (TCT). In the current study we tested the hypothesis that phospholipase A(2) (PLA(2)) activity is sensitive to glutamate and mobilizes arachidonic acid (AA), a substrate for 12-lipoxygenase. Furthermore, we examined whether TCT regulates glutamate-inducible PLA(2) activity in neural cells. Glutamate challenge induced the release of [(3)H]AA from HT4 neural cells. Such response was attenuated by calcium chelators (EGTA and BAPTA), cytosolic PLA(2) (cPLA(2))-specific inhibitor (AACOCF(3)) as well as TCT at 250 nM. Glutamate also caused the elevation of free polyunsaturated fatty acid (AA and docosahexaenoic acid) levels and disappearance of phospholipid-esterified AA in neural cells. Furthermore, glutamate induced a time-dependent translocation and enhanced serine phosphorylation of cPLA(2) in the cells. These effects of glutamate on fatty acid levels and on cPLA(2) were significantly attenuated by nM TCT. The observations that AACOCF(3), transient knock-down of cPLA(2) as well as TCT significantly protected against the glutamate-induced death of neural cells implicate cPLA(2) as a TCT-sensitive mediator of glutamate induced neural cell death. This work presents first evidence recognizing glutamate-induced changes in cPLA(2) as a novel mechanism responsible for neuroprotection observed in response to nanomolar concentrations of TCT.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Liu Y, Schubert DR. The specificity of neuroprotection by antioxidants. J Biomed Sci 2009; 16:98. [PMID: 19891782 PMCID: PMC2779189 DOI: 10.1186/1423-0127-16-98] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 11/05/2009] [Indexed: 12/23/2022] Open
Abstract
Background Reactive oxygen species (ROS) play an important role in aging and age-related diseases such as Parkinson's disease and Alzheimer's disease. Much of the ROS production under conditions of toxic stress is from mitochondria, and multiple antioxidants prevent ROS accumulation. The aim of this study is to examine the specificity of the interaction between the antioxidants and ROS production in stressed cells. Methods Using fluorescent dyes for ROS detection and mitochondrial inhibitors of known specificities, we studied ROS production under three conditions where ROS are produced by mitochondria: oxidative glutamate toxicity, state IV respiration induced by oligomycin, and tumor necrosis factor-induced cell death. Results We demonstrated that there are at least four mitochondrial ROS-generating sites in cells, including the flavin mononucleotide (FMN) group of complex I and the three ubiquinone-binding sites in complexes I, II and III. ROS production from these sites is modulated in an insult-specific manner and the sites are differentially accessible to common antioxidants. Conclusion The inhibition of ROS accumulation by different antioxidants is specific to the site of ROS generation as well as the antioxidant. This information should be useful for devising new interventions to delay aging or treat ROS-related diseases.
Collapse
Affiliation(s)
- Yuanbin Liu
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies,10010 N, Torrey Pines Road, La Jolla, California 92037-1099 USA.
| | | |
Collapse
|
288
|
(Arylthio)cyclopentenones derivatives prevent glutamate-induced HT22 cell death through a PPARγ-dependent pathway. Brain Res 2009; 1296:196-202. [DOI: 10.1016/j.brainres.2009.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
|
289
|
Robertson SJ, Kania KD, Hladky SB, Barrand MA. P-glycoprotein expression in immortalised rat brain endothelial cells: comparisons following exogenously applied hydrogen peroxide and after hypoxia-reoxygenation. J Neurochem 2009; 111:132-41. [PMID: 19656260 DOI: 10.1111/j.1471-4159.2009.06306.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Levels of multidrug efflux transporter P-glycoprotein (P-gp) on endothelial cells lining brain blood vessels are important for limiting access of many compounds to the brain. In vivo studies have indicated that ischaemia-reperfusion that generates reactive oxygen species also increases P-gp levels in brain endothelial cells. To investigate possible mechanisms, in vitro studies were performed on immortalised (GPNT) and primary rat brain endothelial cells. Exposure to hydrogen peroxide (200 microM) resulted in intracellular oxidative stress as detected from higher levels of dichlorofluorescein fluorescence and raised levels of P-gp protein, mdr1a and mdr1b transcripts and, in GPNT cells, increased mdr1a and mdr1b promoter activity. The P-gp protein increases were abolished by pre-treatment with polyethylene glycol-catalase and were curtailed by co-culture with primary rat astrocytes. Exposure of GPNT cells to 6 h hypoxia followed by 24 h reoxygenation produced less intracellular oxidative stress as judged from smaller increments in dichlorofluorescein fluorescence but still resulted in raised levels of P-gp protein, an effect partially abolished by pre-treatment with polyethylene glycol-catalase. However, transcript levels and promoter activities were not significantly increased. These data suggest that hydrogen peroxide contributes to P-gp up-regulation following hypoxia-reoxygenation but the underlying mechanisms of its actions differ from those occurring after direct hydrogen peroxide application.
Collapse
|
290
|
Bejarano I, Espino J, González-Flores D, Casado JG, Redondo PC, Rosado JA, Barriga C, Pariente JA, Rodríguez AB. Role of Calcium Signals on Hydrogen Peroxide-Induced Apoptosis in Human Myeloid HL-60 Cells. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2009; 5:246-56. [PMID: 23675144 PMCID: PMC3614781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/03/2009] [Indexed: 11/20/2022]
Abstract
The present study is aimed to determine the role of calcium signaling evoked by the oxygen radical, hydrogen peroxide (H2O2) and the specific inhibitor of calcium reuptake thapsigargin on apoptosis in the human leukemia cell line HL-60. Our results show that treatment of HL-60 cells with 100 µM H2O2 and 1 µM thapsigargin induced a transient increase in cytosolic free calcium concentration ([Ca(2+)]c) due to calcium release from internal stores. These stimulatory effects on calcium signals were followed by activation of the mitochondrial permeability transition pore (mPTP), as well as a time-dependent increase in caspase-9 and -3 activities. Our results also show that H2O2 and thapsigargin were able to increase the relative content of fragmented DNA and phosphatidylserine externalization, as detected by double-staining with propidium iodide (PI) and annexin-V-FITC, respectively. Treatment of cells with H2O2 or thapsigargin resulted in activation of the proapoptotic protein Bid. Furthermore, coimmunoprecipitation experiments showed active Bax was bound to Bid, which regulates Bid activity and promotes apoptosis. Our findings suggest that H2O2(-) and thapsigargin-induced apoptosis is dependent on rises in [Ca(2+)]c in human myeloid HL-60 cells.
Collapse
|
291
|
Li W, Nie S, Yu Q, Xie M. (-)-Epigallocatechin-3-gallate induces apoptosis of human hepatoma cells by mitochondrial pathways related to reactive oxygen species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6685-6691. [PMID: 19601628 DOI: 10.1021/jf901396f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this study was to investigate the effects of (-)-epigallocatechin-3-gallate (EGCG) on the induction of apoptosis in hepatocarcinoma cell lines in vitro and further examine the molecular mechanisms of EGCG-induced apoptosis. In the present study, it was observed that EGCG rapidly induced apoptosis in hepatocarcinoma SMMC7721 cells. EGCG-induced apoptosis was in association with the attenuation of mitochondrial transmembrane potentials (Deltapsi(m)), the alteration of Bcl-2 family proteins, the release of cytochrome c from mitochondria into the cytosol, and the activation of caspase-3 and caspase-9. Elevation of intracellular reactive oxygen species (ROS) production was also shown during EGCG-induced apoptosis of hepatocarcinoma SMMC7721 cells. The antioxidant N-acetyl-l-cysteine (NAC) significantly reduced ROS production and EGCG-induced apoptosis, suggesting that ROS plays a key role in EGCG-induced apoptosis in hepatocarcinoma SMMC7721 cells. In summary, EGCG-induced apoptosis through mitochondrial pathways, and ROS affected EGCG-induced apoptosis in hepatocarcinoma SMMC7721 cells.
Collapse
Affiliation(s)
- WenJuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | | | | |
Collapse
|
292
|
Crystalline silica Min-U-Sil 5 induces oxidative stress in human bronchial epithelial cells BEAS-2B by reducing the efficiency of antiglycation and antioxidant enzymatic defenses. Chem Biol Interact 2009; 182:13-21. [PMID: 19679115 DOI: 10.1016/j.cbi.2009.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) play an important role as mediators of pulmonary damage in mineral dust-induced diseases. Studies carried out to date have largely focused on silica-induced production of ROS by lung phagocytes. In this study we investigated the hypothesis that crystalline silica Min-U-Sil 5 can induce elevations in intracellular ROS in human bronchial epithelial cells BEAS-2B, via an indirect mechanism that involves ROS-inducing intracellular factors, through a reduction of antiglycation (glyoxalase enzymes) and antioxidant (paraoxonase 1 and glutathione-S-transferases) enzymatic defenses. The results show that crystalline silica Min-U-Sil 5 causes a significant reduction in the efficiency of antiglycation and antioxidant enzymatic defenses, paralleled by an early and extensive ROS generation, thus preventing the cells from an efficient scavenging action, and eliciting oxidative damage. These results confirm the importance of ROS in development of crystalline silica-induced oxidative stress and emphasize the pivotal role of antiglycation/antioxidant and detoxifying systems in determining the level of protection from free radicals-induced injury for cells exposed to crystalline silica Min-U-Sil 5.
Collapse
|
293
|
Choe CU, Lewerenz J, Fischer G, Uliasz TF, Espey MG, Hummel FC, King SB, Schwedhelm E, Böger RH, Gerloff C, Hewett SJ, Magnus T, Donzelli S. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity. J Neurochem 2009; 110:1766-73. [PMID: 19619135 DOI: 10.1111/j.1471-4159.2009.06266.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.
Collapse
Affiliation(s)
- Chi-un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2009; 617:1-11. [PMID: 19580806 DOI: 10.1016/j.ejphar.2009.06.059] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 11/23/2022]
Abstract
Glutamate is an endogenous excitatory neurotransmitter. At high concentrations, it is neurotoxic and contributes to the development of certain neurodegenerative diseases. There is considerable controversy in the literature with regard to whether glutamate-induced cell death in cultured HT22 cells (an immortalized mouse hippocampal cell line) is apoptosis, necrosis, or a new form of cell death. The present study focused on investigating the mechanism of glutamate-induced cell death. We found that glutamate induced, in a time-dependent manner, both necrosis and apoptosis in HT22 cells. At relatively early time points (8-12 h), glutamate induced mostly necrosis, whereas at late time points (16-24 h), it induced mainly apoptosis. Glutamate-induced mitochondrial oxidative stress and dysfunction were crucial early events required for the induction of apoptosis through the release of the mitochondrial apoptosis-inducing factor (AIF), which catalyzed DNA fragmentation (an ATP-independent process). Glutamate-induced cell death proceeded independently of the Bcl-2 family proteins and caspase activation. The lack of caspase activation likely resulted from the lack of intracellular ATP when the mitochondrial functions were rapidly disrupted by the mitochondrial oxidative stress. In addition, it was observed that activation of JNK, p38, and ERK signaling molecules was also involved in the induction of apoptosis by glutamate. In conclusion, glutamate-induced apoptosis is AIF-dependent but caspase-independent, and is accompanied by DNA ladder formation but not chromatin condensation.
Collapse
|
295
|
Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer's disease. Expert Rev Neurother 2009; 9:617-30. [PMID: 19402773 DOI: 10.1586/ern.09.18] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a cluster of risk factors for Type 2 diabetes and vascular disease that include high blood glucose, obesity, high blood pressure, increased blood triacylglycerols and insulin resistance. All of these factors, both individually and collectively, increase the risk of Alzheimer's disease (AD) and vascular dementia. Alterations in insulin signaling, glucose and fatty acid metabolism, as well as the accumulation of oxidatively modified and glycated proteins, are associated with both diabetes and the dementias. Data from animal and cell culture models have shown that there is a synergistic interaction between most of these stresses in both AD and diabetes, and with the elevated beta-amyloid peptide levels that are also linked to AD. Some of these parameters can be modified by diet and others may require novel drugs. However, because of the multiplicity of physiological pathways involved, conventional drug therapies directed against a single target are not going to be effective in treating AD or the complications of diabetes. It is therefore likely that the only successful therapy will involve the use of drugs with multiple targets in concert with changes in diet and lifestyle.
Collapse
Affiliation(s)
- Pamela A Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.
| | | |
Collapse
|
296
|
Shi DH, Wu JH, Ge HM, Tan RX. Protective effect of hopeahainol A, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced injury in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:30-36. [PMID: 21783979 DOI: 10.1016/j.etap.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 01/30/2009] [Indexed: 05/31/2023]
Abstract
In this study, we evaluated the effects of hopeahainol A, a novel acetylcholinesterase inhibitor (AChEI) from Hopea hainanensis, on H(2)O(2)-induced cytotoxicity in PC12 cells and the possible mechanism. Exposure of PC12 cells to 200μM H(2)O(2) caused cell apoptosis, reduction in cell viability and antioxidant enzyme activities, increment in malondialdehyde (MDA) level, and leakage of lactate dehydrogenase (LDH). Pretreatment of the cells with hopeahainol A at 0.1-10μM before H(2)O(2) exposure significantly attenuated those changes in a dose-dependent manner. Moreover, hopeahainol A could mitigate intracellular accumulation of reactive oxygen species (ROS) and Ca(2+), the loss of mitochondrial membrane potential (MMP), and the increase of caspase-3, -8 and -9 activities induced by H(2)O(2). These results show that hopeahainol A protects PC12 cells from H(2)O(2) injury by modulating endogenous antioxidant enzymes, scavenging ROS and prevention of apoptosis. There was potential for hopeahainol A to be used in treating Alzheimer's disease (AD) that involved acetylcholinesterase, free radical, oxidative damage and cell apoptosis.
Collapse
Affiliation(s)
- Da Hua Shi
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | |
Collapse
|
297
|
Kaur C, Ling E. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog Neurobiol 2009; 87:264-80. [DOI: 10.1016/j.pneurobio.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/12/2008] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
298
|
Ha JS, Lee CS, Maeng JS, Kwon KS, Park SS. Chronic glutamate toxicity in mouse cortical neuron culture. Brain Res 2009; 1273:138-43. [PMID: 19344697 DOI: 10.1016/j.brainres.2009.03.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/26/2022]
Abstract
Two pathways for glutamate toxicity have been described, receptor-mediated excitotoxicity and non-receptor mediated oxidative glutamate toxicity. Here, we show that two distinct forms of receptor-mediated primary cortical neuronal death exist, chronic and acute glutamate toxicity, and that these depend on exposure time. In vitro, neuronal sensitivity to chronic glutamate exposure increased as neurons matured and the initial plating medium contributed as well. In immature neurons, high concentrations of glutamate induced neuronal death. The chronic glutamate toxicity was independent of neuronal density, whereas increased density potentiated acute glutamate toxicity. Activation of ionotropic glutamate receptors (iGluRs) contributed to induction of chronic and acute glutamate toxicity at similar rates at DIV14. Inactivation of the metabotropic glutamate receptors (mGluRs) by AIDA increased neuronal sensitivity to chronic glutamate exposure but not to acute exposure. Neuronal death by acute toxicity was much faster than by chronic toxicity in which activation of mGluRs was involved. These results suggest that acute glutamate toxicity is quite different from chronic toxicity, in which activation of mGluRs is associated with resistance to glutamate toxicity.
Collapse
Affiliation(s)
- Jong Seong Ha
- Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | |
Collapse
|
299
|
Schubert D, Soucek T, Blouw B. The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosci 2009; 29:1323-34. [PMID: 19519624 DOI: 10.1111/j.1460-9568.2009.06712.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reduced glucose metabolism and astrocyte activation in selective areas of the brain are pathological features of Alzheimer's disease (AD). The underlying mechanisms of low energy metabolism and a molecular basis for preventing astrocyte activation are not, however, known. Here we show that amyloid beta peptide (Abeta)-dependent astrocyte activation leads to a long-term decrease in hypoxia-inducible factor (HIF)-1alpha expression and a reduction in the rate of glycolysis. Glial activation and the glycolytic changes are reversed by the maintenance of HIF-1alpha levels with conditions that prevent the proteolysis of HIF-1alpha. Abeta increases the long-term production of reactive oxygen species (ROS) through the activation of nicotinamide adenine dinucleotide phosphate oxidase and reduces the amount of HIF-1alpha via the activation of the proteasome. ROS are not required for glial activation, but are required for the reduction in glycolysis. These data suggest a significant role for HIF-1alpha-mediated transcription in maintaining the metabolic integrity of the AD brain and identify the probable cause of the observed lower energy metabolism in afflicted areas. They may also explain the therapeutic success of metal chelators in animal models of AD.
Collapse
Affiliation(s)
- David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
300
|
Sang N, Hou L, Yun Y, Li G. SO(2) inhalation induces protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:879-884. [PMID: 18722661 DOI: 10.1016/j.ecoenv.2008.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 07/07/2008] [Accepted: 07/12/2008] [Indexed: 05/26/2023]
Abstract
Previous studies provide evidence for the possible neurotoxicity of SO(2), but little information is available about its mechanisms. In the present study, SO(2) inhalation-induced effects on the protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus were studied, by exposing Wistar rats to SO(2) at 14, 28 and 56mg/m(3). The results indicate that the protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with concentration-dependent properties. In addition, SO(2) inhalation at all concentrations tested caused the increases of caspase-3 activity and number of TUNEL positive staining neuron and the statistical difference was observed after 28 and 56mg/m(3) exposure, suggesting the occurrence of apoptosis. The results imply that attacking protein, nucleic acids and lipids by free radicals, generated via SO(2) derivatives in vivo, is one of the main mechanisms for SO(2)-induced injuries in central neuronal system.
Collapse
Affiliation(s)
- Nan Sang
- Center of Environmental Science and Engineering, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | | | | | | |
Collapse
|