251
|
Vavrova A, Jansova H, Mackova E, Machacek M, Haskova P, Tichotova L, Sterba M, Simunek T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS One 2013; 8:e76676. [PMID: 24116135 PMCID: PMC3792022 DOI: 10.1371/journal.pone.0076676] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023] Open
Abstract
Anthracyclines (such as doxorubicin or daunorubicin) are among the most effective anticancer drugs, but their usefulness is hampered by the risk of irreversible cardiotoxicity. Dexrazoxane (ICRF-187) is the only clinically approved cardioprotective agent against anthracycline cardiotoxicity. Its activity has traditionally been attributed to the iron-chelating effects of its metabolite with subsequent protection from oxidative stress. However, dexrazoxane is also a catalytic inhibitor of topoisomerase II (TOP2). Therefore, we examined whether dexrazoxane and two other TOP2 catalytic inhibitors, namely sobuzoxane (MST-16) and merbarone, protect cardiomyocytes from anthracycline toxicity and assessed their effects on anthracycline antineoplastic efficacy. Dexrazoxane and two other TOP2 inhibitors protected isolated neonatal rat cardiomyocytes against toxicity induced by both doxorubicin and daunorubicin. However, none of the TOP2 inhibitors significantly protected cardiomyocytes in a model of hydrogen peroxide-induced oxidative injury. In contrast, the catalytic inhibitors did not compromise the antiproliferative effects of the anthracyclines in the HL-60 leukemic cell line; instead, synergistic interactions were mostly observed. Additionally, anthracycline-induced caspase activation was differentially modulated by the TOP2 inhibitors in cardiac and cancer cells. Whereas dexrazoxane was upon hydrolysis able to significantly chelate intracellular labile iron ions, no such effect was noted for either sobuzoxane or merbarone. In conclusion, our data indicate that dexrazoxane may protect cardiomyocytes via its catalytic TOP2 inhibitory activity rather than iron-chelation activity. The differential expression and/or regulation of TOP2 isoforms in cardiac and cancer cells by catalytic inhibitors may be responsible for the selective modulation of anthracycline action observed.
Collapse
Affiliation(s)
- Anna Vavrova
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Jansova
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eliska Mackova
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavlina Haskova
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Tichotova
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Sterba
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tomas Simunek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
252
|
Abstract
Modern cancer therapies are highly effective in the treatment of various malignancies, but their use is limited by the potential for cardiotoxicity. The most frequent and typical clinical manifestation of cardiotoxicity is left ventricular dysfunction, induced not only by cytotoxic conventional cancer therapy like anthracyclines, but also by new antitumor targeted therapy such as trastuzumab. The current standard for monitoring cardiac function, based on periodic assessment of left ventricular ejection fraction detects cardiotoxicity only when a functional impairment has already occurred, precluding any chance of preventing its development. A novel approach, based on the use of cardiac biomarkers has emerged in the last decade, resulting in a cost-effective diagnostic tool for early, real-time identification, assessment and monitoring of cardiotoxicity. In particular, prophylactic treatment with enalapril in patients with an early increase in troponin after chemotherapy has been shown to be very effective in preventing left ventricular dysfunction and associated cardiac events. In patients developing cancer treatment induced-cardiomyopathy, complete left ventricular ejection fraction recovery and a reduction of cardiac events may be achieved only when left ventricular dysfunction is detected early after the end of cancer treatment and treatment with angiotensin-converting enzyme inhibitors, possibly in combination with beta-blockers, is promptly initiated.
Collapse
|
253
|
Jirkovský E, Lenčová-Popelová O, Hroch M, Adamcová M, Mazurová Y, Vávrová J, Mičuda S, Šimůnek T, Geršl V, Štěrba M. Early and delayed cardioprotective intervention with dexrazoxane each show different potential for prevention of chronic anthracycline cardiotoxicity in rabbits. Toxicology 2013; 311:191-204. [PMID: 23831762 DOI: 10.1016/j.tox.2013.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Despite incomplete understanding to its mechanism of action, dexrazoxane (DEX) is still the only clearly effective cardioprotectant against chronic anthracycline (ANT) cardiotoxicity. However, its clinical use is currently restricted to patients exceeding significant ANT cumulative dose (300mg/m(2)), although each ANT cycle may induce certain potentially irreversible myocardial damage. Therefore, the aim of this study was to compare early and delayed DEX intervention against chronic ANT cardiotoxicity and study the molecular events involved. The cardiotoxicity was induced in rabbits with daunorubicin (DAU; 3mg/kg/week for 10 weeks); DEX (60mg/kg) was administered either before the 1st or 7th DAU dose (i.e. after ≈300mg/m(2) cumulative dose). While both DEX administration schedules prevented DAU-induced premature deaths and severe congestive heart failure, only the early intervention completely prevented the left ventricular dysfunction, myocardial morphological changes and mitochondrial damage. Further molecular analyses did not support the assumption that DEX cardioprotection is based and directly proportional to protection from DAU-induced oxidative damage and/or deletions in mtDNA. Nevertheless, DAU induced significant up-regulation of heme oxygenase 1 pathway while heme synthesis was inversely regulated and both changes were schedule-of-administration preventable by DEX. Early and delayed DEX interventions also differed in ability to prevent DAU-induced down-regulation of expression of mitochondrial proteins encoded by both nuclear and mitochondrial genome. Hence, the present functional, morphological as well as the molecular data highlights the enormous cardioprotective effects of DEX and provides novel insights into the molecular events involved. Furthermore, the data suggests that currently recommended delayed intervention may not be able to take advantage of the full cardioprotective potential of the drug.
Collapse
Affiliation(s)
- Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, Hradec Králové 500 38, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 2013; 108:359. [PMID: 23740217 DOI: 10.1007/s00395-013-0359-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
Heart failure and many of the conditions that predispose to heart failure are associated with oxidative stress. This is considered to be important in the pathophysiology of the condition but clinical trials of antioxidant approaches to prevent cardiovascular morbidity and mortality have been unsuccessful. Part of the reason for this may be the failure to appreciate the complexity of the effects of reactive oxygen species. At one extreme, excessive oxidative stress damages membranes, proteins and DNA but lower levels of reactive oxygen species may exert much more subtle and specific regulatory effects (termed redox signalling), even on physiological signalling pathways. In this article, we review our current understanding of the roles of such redox signalling pathways in the pathophysiology of heart failure, including effects on cardiomyocyte hypertrophy signalling, excitation-contraction coupling, arrhythmia, cell viability and energetics. Reactive oxygen species generated by NADPH oxidase proteins appear to be especially important in redox signalling. The delineation of specific redox-sensitive pathways and mechanisms that contribute to different components of the failing heart phenotype may facilitate the development of newer targeted therapies as opposed to the failed general antioxidant approaches of the past.
Collapse
|
255
|
An T, Zhang Y, Huang Y, Zhang R, Yin S, Guo X, Wang Y, Zou C, Wei B, Lv R, Zhou Q, Zhang J. Neuregulin-1 protects against doxorubicin-induced apoptosis in cardiomyocytes through an Akt-dependent pathway. Physiol Res 2013; 62:379-85. [PMID: 23590603 DOI: 10.33549/physiolres.932516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In previous studies, it has been shown that recombinant human neuregulin-1(rhNRG-1) is capable of improving the survival rate in animal models of doxorubicin (DOX)-induced cardiomyopathy; however, the underlying mechanism of this phenomenon remains unknown. In this study, the role of rhNRG-1 in attenuating doxorubicin-induce apoptosis is confirmed. Neonatal rat ventricular myocytes (NRVMs) were subjected to various treatments, in order to both induce apoptosis and determine the effects of rhNRG-1 on the process. Activation of apoptosis was determined by observing increases in the protein levels of classic apoptosis markers (including cleaved caspase-3, cytochrome c, Bcl-2, BAX and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining). The activation of Akt was detected by means of western blot analysis. The study results showed that doxorubicin increased the number of TUNEL positive cells, as well as the protein levels of cleaved caspase-3 and cytochrome c, and reduced the ratio of Bcl-2/Bax. However, all of these effects were markedly antagonized by pretreament with rhNRG-1. It was then further demonstrated that the effects of rhNRG-1 could be blocked by the phosphoinositole-3-kinase inhibitor LY294002, indicating the involvement of the Akt process in mediating the process. RhNRG-1 is a potent inhibitor of doxorubicin-induced apoptosis, which acts through the PI3K-Akt pathway. RhNRG-1 is a novel therapeutic drug which may be effective in preventing further damage from occurring in DOX-induced damaged myocardium.
Collapse
Affiliation(s)
- T An
- Heart Failure Center, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Kovarikova P, Pasakova-Vrbatova I, Vavrova A, Stariat J, Klimes J, Simunek T. Development of LC–MS/MS method for the simultaneous analysis of the cardioprotective drug dexrazoxane and its metabolite ADR-925 in isolated cardiomyocytes and cell culture medium. J Pharm Biomed Anal 2013; 76:243-51. [DOI: 10.1016/j.jpba.2012.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/08/2012] [Accepted: 12/10/2012] [Indexed: 11/28/2022]
|
257
|
Zhao YZ, Dai DD, Lu CT, Chen LJ, Lin M, Shen XT, Li XK, Zhang M, Jiang X, Jin RR, Li X, Lv HF, Cai L, Huang PT. Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Lett 2013; 330:74-83. [PMID: 23186833 DOI: 10.1016/j.canlet.2012.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) is one of the major reasons for the failure of cancer chemotherapy. A newly reported liposome carrier, propylene glycol liposomes (EPI-PG-liposomes) were made to load epirubicin (EPI) which enhanced EPI absorption in MDR tumor cells to overcome the drug resistance. MDA-MB 435 and their mutant resistant (MDA-MB 435/ADR) cells were used to examine the cellular uptake and P-gp function in vitro for EPI-PG-liposomes by fluorescence microscopy and FCM, respectively. Mammary tumor model was also established to investigate the tumor growth inhibition and pharmacodynamics of EPI-PG-liposomes in vivo. Morphology evaluation showed that EPI-PG-liposomes had a homogeneous spherical shape with an average diameter of 182 nm. Based on cell viability assay, fluorescent microscopy examination, and EPI uptake assay, EPI-PG-liposomes exhibited an effective growth inhibition not only in MDA-MB-435 cells, but also in MDA-MB 435/ADR cells. EPI-PG-liposomes have high permeability not only on tumor cell membrane, but also on cell nucleus membrane. P-gp function assay showed that the anticancer action of EPI-PG-liposomes was not related to P-gp efflux pump, suggesting that PG-liposomes would not affect the normal physiological functions of membrane proteins. EPI-PG-liposomes also showed a better antitumor efficacy compared to EPI solution alone. With high entrapment efficiency, spherical morphology and effective inhibition on MDR cancer cells, EPI-PG-liposomes may represent a better chemotherapeutic vectors for cancer targeted therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Epirubicin/administration & dosage
- Epirubicin/chemistry
- Epirubicin/pharmacokinetics
- Epirubicin/pharmacology
- Female
- Humans
- Liposomes/administration & dosage
- Liposomes/chemistry
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Propylene Glycol/administration & dosage
- Propylene Glycol/chemistry
- Random Allocation
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Abstract
Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release prodeath proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant mitochondria that can cause harm to the cell. This mechanism involves selective sequestration and subsequent degradation of the dysfunctional mitochondrion before it causes activation of cell death. Induction of mitochondrial autophagy, or mitophagy, results in selective clearance of damaged mitochondria in cells. In response to stress such as ischemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in cardiac myocytes. Thus, there is a delicate balance between life and death in the myocytes during stress, and the final outcome depends on the complex cross-talk between these pathways. Mitophagy functions as an early cardioprotective response, favoring adaptation to stress by removing damaged mitochondria. In contrast, increased oxidative stress and apoptotic proteases can inactivate mitophagy, allowing for the execution of cell death. Herein, we discuss the importance of mitochondria and mitophagy in cardiovascular health and disease and provide a review of our current understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|