251
|
Abstract
Coat proteins allow the selective transfer of macromolecules from one membrane-enclosed compartment to another by concentrating macromolecules into specialized membrane patches and then deforming these patches into small coated vesicles. Recent findings indicate that coat proteins might also participate in the differentiation of membrane domains within organelles and large transport carriers, as well as in the association of the carriers with the cytosketelon and with acceptor organelles.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
252
|
Iversen TG, Skretting G, van Deurs B, Sandvig K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc Natl Acad Sci U S A 2003; 100:5175-80. [PMID: 12682302 PMCID: PMC154318 DOI: 10.1073/pnas.0534231100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of clathrin in coated vesicle formation, a cell line with inducible expression of clathrin heavy chain (CHC) antisense RNA was produced. After 18 h of CHC antisense RNA expression, the internalization of transferrin was inhibited by 90%. Although the amount of CHC was reduced by only 10%, the frequency of clathrin-coated pits at the cell surface increased by a factor of 3-5, and clathrin-coated structures also accumulated on a pleiomorphic, multivesicular, endosomal compartment. Remarkably, the coated pits were connected to the cell surface by long, tubular necks wrapped by dynamin rings, and the level of dynamin in the CHC antisense RNA-expressing cells was up-regulated 10-fold. In contrast, the amount of several other proteins associated with clathrin coat formation was unaffected. Thus, this study demonstrates that CHC antisense RNA causes accumulation of clathrin-coated pits with dynamin rings around the neck in intact cells not transfected with dynamin mutants, suggesting the existence of a previously uncharacterized functional interplay between clathrin and dynamin.
Collapse
Affiliation(s)
- T-G Iversen
- Institute for Cancer Research at the Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
253
|
Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J 2003; 371:233-41. [PMID: 12564953 PMCID: PMC1223314 DOI: 10.1042/bj20030139] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 02/04/2003] [Indexed: 11/17/2022]
Abstract
The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39008, Magdeburg, Germany
| | | |
Collapse
|
254
|
Bache KG, Raiborg C, Mehlum A, Stenmark H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 2003; 278:12513-21. [PMID: 12551915 DOI: 10.1074/jbc.m210843200] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
STAM1 and STAM2, which have been identified as regulators of receptor signaling and trafficking, interact directly with Hrs, which mediates the endocytic sorting of ubiquitinated membrane proteins. The STAM proteins interact with the same coiled-coil domain that is involved in the targeting of Hrs to endosomes. In this work, we show that STAM1 and STAM2, as well as an endocytic regulator protein, Eps15, can be co-immunoprecipitated with Hrs both from membrane and cytosolic fractions and that recombinant Hrs, STAM1/STAM2, and Eps15 form a ternary complex. We find that overexpression of Hrs causes a strong recruitment of STAM2 to endosome membranes. Moreover, STAM2, like Hrs and Eps15, binds ubiquitin, and Hrs, STAM2, and Eps15 colocalize with ubiquitinated proteins in clathrin-containing endosomal microdomains. The localization of Hrs, STAM2, Eps15, and clathrin to endosome membranes is controlled by the AAA ATPase mVps4, which has been implicated in multivesicular body formation. Depletion of cellular Hrs by small interfering RNA results in a strongly reduced recruitment of STAM2 to endosome membranes and an impaired degradation of endocytosed epidermal growth factor receptors. We propose that Hrs, Eps15, and STAM proteins function in a multivalent complex that sorts ubiquitinated proteins into the multivesicular body pathway.
Collapse
Affiliation(s)
- Kristi G Bache
- Department of Biochemistry, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
255
|
Hammond DE, Carter S, McCullough J, Urbé S, Vande Woude G, Clague MJ. Endosomal dynamics of Met determine signaling output. Mol Biol Cell 2003; 14:1346-54. [PMID: 12686592 PMCID: PMC153105 DOI: 10.1091/mbc.e02-09-0578] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteasomal activity is required for Met receptor degradation after acute stimulation with hepatocyte growth factor (HGF). Inhibition of proteasomal activity with lactacystin leads to a block in the endocytic trafficking of Met such that the receptor fails to reach late endosomes/lysosomes, where degradation by acid-dependent proteases takes place (). In this article, we have biochemically determined Met internalization rates from the cell surface and shown that lactacystin does not inhibit the initial HGF-dependent internalization step of Met. Instead, it promotes the recycling pathway from early endosomes at the expense of sorting to late endosomes, thereby ensuring rapid return of internalized Met to the cell surface. We have used this perturbation of Met endosomal sorting by lactacystin to examine the consequences for HGF-dependent signaling outputs. In control cells HGF-dependent receptor autophosphorylation reaches a maximal level over 5-10 min but then attenuates over the ensuing 50 min. Furthermore, Met dephosphorylation can be kinetically dissociated from Met degradation. In lactacystin-treated cells, we observe a failure of Met dephosphorylation as well as Met degradation. Elements of the mitogen-activated protein kinase cascade, downstream of receptor activation, show a normal kinetic profile of phosphorylation, indicating that the mitogen-activated protein kinase pathway can attenuate in the face of sustained receptor activation. The HGF-dependent phosphorylation of a receptor substrate that is localized to clathrin-coated regions of sorting endosomes, Hrs, is dramatically reduced by lactacystin treatment. Reduction of cellular Hrs levels by short interfering RNA modestly retards Met degradation and markedly prevents the attenuation of Met phosphorylation. HGF-dependent Hrs phosphorylation and Met dephosphorylation may provide signatures for retention of the receptor in coated regions of the endosome implicated in sorting to lysosomes.
Collapse
Affiliation(s)
- Dean E Hammond
- Physiological Laboratory, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
256
|
Wubbolts R, Leckie RS, Veenhuizen PTM, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 2003; 278:10963-72. [PMID: 12519789 DOI: 10.1074/jbc.m207550200] [Citation(s) in RCA: 659] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exosomes are 60-100-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular body fusion with the plasma membrane. Here we determined the protein and lipid compositions of highly purified human B cell-derived exosomes. Mass spectrometric analysis indicated the abundant presence of major histocompatibility complex (MHC) class I and class II, heat shock cognate 70, heat shock protein 90, integrin alpha 4, CD45, moesin, tubulin (alpha and beta), actin, G(i)alpha(2), and a multitude of other proteins. An alpha 4-integrin may direct B cell-derived exosomes to follicular dendritic cells, which were described previously as potential target cells. Clathrin, heat shock cognate 70, and heat shock protein 90 may be involved in protein sorting at multivesicular bodies. Exosomes were also enriched in cholesterol, sphingomyelin, and ganglioside GM3, lipids that are typically enriched in detergent-resistant membranes. Most exosome-associated proteins, including MHC class II and tetraspanins, were insoluble in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-containing buffers. Multivesicular body-linked MHC class II was also resistant to CHAPS whereas plasma membrane-associated MHC class II was solubilized readily. Together, these data suggest that recruitment of membrane proteins from the limiting membranes into the internal vesicles of multivesicular bodies may involve their incorporation into tetraspanin-containing detergent-resistant membrane domains.
Collapse
Affiliation(s)
- Richard Wubbolts
- Department of Cell Biology, Utrecht University Medical Centre and Institute of Biomembranes, Room G02.525, Heidelberglaan 100, 3585 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W. Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes. J Biol Chem 2003. [DOI: 10.1074/jbc.m207550200 m207550200 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
258
|
Hettema EH, Lewis MJ, Black MW, Pelham HR. Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 2003; 22:548-57. [PMID: 12554655 PMCID: PMC140746 DOI: 10.1093/emboj/cdg062] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endocytic pathway in yeast leads to the vacuole, but resident proteins of the late Golgi, and some endocytosed proteins such as the exocytic SNARE Snc1p, are retrieved specifically to the Golgi. Retrieval can occur from both a late pre-vacuolar compartment and early or 'post-Golgi' endosomes. We show that the endosomal SNARE Pep12p, and a mutant version that reaches the cell surface and is endocytosed, are retrieved from pre-vacuolar endosomes. As with Golgi proteins, this requires the sorting nexin Grd19p and components of the retromer coat, supporting the view that endosomal and Golgi residents both cycle continuously between the exocytic and endocytic pathways. In contrast, retrieval of Snc1p from post-Golgi endosomes requires the sorting nexin Snx4p, to which Snc1p can be cross-linked. Snx4p binds to Snx41p/ydr425w and to Snx42p/ydl113c, both of which are also required for efficient Snc1p sorting. Our findings suggest a general role for yeast sorting nexins in protein retrieval, rather than degradation, and indicate that different sorting nexins operate in different classes of endosomes.
Collapse
Affiliation(s)
| | | | - Michael W. Black
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
Present address: California Polytechnic State University, Biological Sciences Department, San Luis Obispo, CA 93407, USA Corresponding author e-mail:
| | - Hugh R.B. Pelham
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
Present address: California Polytechnic State University, Biological Sciences Department, San Luis Obispo, CA 93407, USA Corresponding author e-mail:
| |
Collapse
|
259
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|
260
|
Waguri S, Dewitte F, Le Borgne R, Rouillé Y, Uchiyama Y, Dubremetz JF, Hoflack B. Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol Biol Cell 2003; 14:142-55. [PMID: 12529433 PMCID: PMC140234 DOI: 10.1091/mbc.e02-06-0338] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have stably expressed in HeLa cells a chimeric protein made of the green fluorescent protein (GFP) fused to the transmembrane and cytoplasmic domains of the mannose 6-phosphate/insulin like growth factor II receptor in order to study its dynamics in living cells. At steady state, the bulk of this chimeric protein (GFP-CI-MPR) localizes to the trans-Golgi network (TGN), but significant amounts are also detected in peripheral, tubulo-vesicular structures and early endosomes as well as at the plasma membrane. Time-lapse videomicroscopy shows that the GFP-CI-MPR is ubiquitously detected in tubular elements that detach from the TGN and move toward the cell periphery, sometimes breaking into smaller tubular fragments. The formation of the TGN-derived tubules is temperature dependent, requires the presence of intact microtubule and actin networks, and is regulated by the ARF-1 GTPase. The TGN-derived tubules fuse with peripheral, tubulo-vesicular structures also containing the GFP-CI-MPR. These structures are highly dynamic, fusing with each other as well as with early endosomes. Time-lapse videomicroscopy performed on HeLa cells coexpressing the CFP-CI-MPR and the AP-1 complex whose gamma-subunit was fused to YFP shows that AP-1 is present not only on the TGN and peripheral CFP-CI-MPR containing structures but also on TGN-derived tubules containing the CFP-CI-MPR. The data support the notion that tubular elements can mediate MPR transport from the TGN to a peripheral, tubulo-vesicular network dynamically connected with the endocytic pathway and that the AP-1 coat may facilitate MPR sorting in the TGN and endosomes.
Collapse
Affiliation(s)
- Satoshi Waguri
- Institut de Biologie, EP CNRS 525, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
261
|
Raposo G, Fevrier B, Stoorvogel W, Marks MS. Lysosome-related organelles: a view from immunity and pigmentation. Cell Struct Funct 2002; 27:443-56. [PMID: 12576637 DOI: 10.1247/csf.27.443] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomes are ubiquitous organelles that carry out essential household functions. Certain cell types, however, contain lysosome-related organelles with specialized functions. Their specialized functions are usually reflected by specific morphological and compositional features. A number of diseases that develop due to genetic mutations, pathogen exposure or cell transformation are characterized by dysfunctional lysosomes and/or lysosome-related organelles. In this review we highlight adaptations and malfunction of the endosomal/lysosomal system in normal and pathological situations with special focus on MHC class II compartments in antigen presenting cells and melanosomes in pigment cells.
Collapse
Affiliation(s)
- Graça Raposo
- Centre National de la Recherche Scientifique, UMR 144, Institut Curie, 75005 Paris, France.
| | | | | | | |
Collapse
|
262
|
Katzmann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 2002; 3:893-905. [PMID: 12461556 DOI: 10.1038/nrm973] [Citation(s) in RCA: 955] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sorting of proteins into the inner vesicles of multivesicular bodies is required for many key cellular processes, which range from the downregulation of activated signalling receptors to the proper stimulation of the immune response. Recent advances in our understanding of the multivesicular-body sorting pathway have resulted from the identification of ubiquitin as a signal for the efficient sorting of proteins into this transport route, and from the discovery of components of the sorting and regulatory machinery that directs this complex process.
Collapse
Affiliation(s)
- David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
263
|
Raiborg C, Stenmark H. Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct Funct 2002; 27:403-8. [PMID: 12576633 DOI: 10.1247/csf.27.403] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endocytosed receptors are either recycled to the plasma membrane or trapped within intralumenal vesicles of multi-vesicular bodies for subsequent degradation in lysosomes. How the cell is able to sort receptors in endosomes has so far been largely unknown. The hepatocyte growth factor regulated tyrosine kinase substrate, Hrs, is an essential protein that has been implicated in cell signalling and intracellular membrane trafficking. Very recently, several reports have demonstrated a role for Hrs in endocytic sorting of ubiquitinated membrane proteins. Here, we review current knowledge about how Hrs recognises ubiquitinated cargo that is destined for lysosomal degradation, and how Hrs may act as a key regulator of the molecular machinery involved in receptor sorting and multivesicular body formation.
Collapse
Affiliation(s)
- Camilla Raiborg
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
264
|
Abstract
The 55(th) Harden Conference on the dynamics of membrane traffic convened on the 25(th) August 2002 in the English Lake District. This meeting, which was organized by Bob Burgoyne and Viki Allan under the auspices of the Biochemical Society, comprised a highly enjoyable mixture of well-presented talks with uncommonly good weather. Presentations covered a broad range of topics relating to the dynamics of protein transport along both the exocytic and endocytic pathways of eukaryotic cells.
Collapse
Affiliation(s)
- Martin Lowe
- School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
265
|
Strous GJ, Gent J. Dimerization, ubiquitylation and endocytosis go together in growth hormone receptor function. FEBS Lett 2002; 529:102-9. [PMID: 12354620 DOI: 10.1016/s0014-5793(02)03187-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Internalization of membrane proteins has been studied for more than three decades without solving all the underlying mechanisms. Our knowledge of the clathrin-coated endocytosis is sufficient to understand the basic principles. However, more detailed insight is required to recognize why different proteins enter clathrin-coated pits with different rates and affinities. In addition to clathrin coat components, several adapter systems and even more accessory proteins have been described to preselect membrane proteins before they can enter cells. Recent experimental data have identified the ubiquitin-proteasome system as a regulatory system both in endocytic and lysosomal membrane traffic. This system is well-known for its basic regulatory function in protein degradation, and controls a magnitude of key events. In this review, we will discuss the complexity and implications of this mechanism for membrane trafficking with emphasis on the growth hormone receptor.
Collapse
Affiliation(s)
- Ger J Strous
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | | |
Collapse
|
266
|
Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J 2002; 366:689-704. [PMID: 12061891 PMCID: PMC1222826 DOI: 10.1042/bj20020691] [Citation(s) in RCA: 491] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Revised: 06/05/2002] [Accepted: 06/13/2002] [Indexed: 11/17/2022]
Abstract
Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Collapse
Affiliation(s)
- Otilia V Vieira
- Programme in Cell Biology, Hospital for Sick Children and Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
267
|
De Mazière AM, Muehlethaler K, van Donselaar E, Salvi S, Davoust J, Cerottini JC, Lévy F, Slot JW, Rimoldi D. The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins. Traffic 2002; 3:678-93. [PMID: 12191019 DOI: 10.1034/j.1600-0854.2002.30909.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To delineate the role of the melanocyte lineage-specific protein Melan-A/MART-1 in melanogenic functions, a set of biochemical and microscopical studies was performed. Biochemical analysis revealed that Melan-A/MART-1 is post-translationally acylated and undergoes a rapid turnover in a pigmented melanoma cell line. Immunofluorescence and immunoelectron microscopy analyses indicated that Melan-A/MART-1 is mainly located in the Golgi area and only partially colocalizes with melanosomal proteins. Quantitative immunoelectron microscopy showed that the highest proportion of the cellular content of Melan-A/MART-1 was found in small vesicles and tubules throughout the cell, whereas the concentration was maximal in the Golgi region, particularly the trans-Golgi network. Substantial labeling was also present on melanosomes, endosomes, ER, nuclear envelope, and plasma membrane. In early endosomes, Melan-A was enriched in areas of the limiting membrane covered by a bi-layered coat, a structural characteristic of melanosomal precursor compartments. Upon melanosome maturation, Melan-A concentration decreased and its predominant localization shifted from the limiting membrane to internal vesicle membranes. In conjunction with its acylation, the high expression levels of Melan-A in the trans-Golgi network, in dispersed vesicles, and on the limiting membrane of premelanosomes indicate that the protein may play a role during the early stage of melanosome biogenesis.
Collapse
Affiliation(s)
- Ann M De Mazière
- Department of Cell Biology, University Medical Center, Institute of Biomembranes, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Lysosomally directed receptors are concentrated at a 'bilayered' clathrin coat on the face of sorting endosomes. This coat is highly enriched in Hrs protein, which can potentially serve as an adaptor between ubiquitinated receptors and clathrin.
Collapse
Affiliation(s)
- Michael J Clague
- Physiological Laboratory, University of Liverpool, Crown Street, L69 3BX, Liverpool, UK.
| |
Collapse
|
269
|
Murk JL, Stoorvogel W, Kleijmeer MJ, Geuze HJ. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin Cell Dev Biol 2002; 13:303-11. [PMID: 12243730 DOI: 10.1016/s1084952102000605] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.
Collapse
Affiliation(s)
- Jean-Luc Murk
- Department of Cell Biology, Center for Biomedical Genetics and Institute of Biomembranes, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
270
|
Abstract
The endosomal system of yeast is simpler than that of animal cells, but as it is mapped more similarities are emerging. A key role for ubiquitin in sorting proteins to and into multivesicular bodies has been demonstrated. The finding that Phox homology domains recognise phosphatidylinositol 3-phosphate explains how sorting nexins are recruited to endosomes, where they mediate the retrieval of membrane proteins from the endocytic pathway.
Collapse
Affiliation(s)
- Hugh R B Pelham
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
271
|
Abstract
An ever more complete picture of the organization and function of the endocytic pathway is emerging. New mechanisms, and in particular lipid-based mechanisms that couple membrane dynamics and sorting, are being unraveled. But the final picture is still coming into focus as new membrane domains, cell entry pathways and compartments come into view. Of special interest are the recent findings that pathogenic agents, in contrast to scientists, seem to have long discovered how to subvert membrane specialization to their own advantage.
Collapse
Affiliation(s)
- F Gisou van der Goot
- Dept of Genetics and Microbiology, CMU, 1 rue Michel Servet, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|