251
|
Wennberg R, Cheyne D. EEG source imaging of anterior temporal lobe spikes: Validity and reliability. Clin Neurophysiol 2014; 125:886-902. [DOI: 10.1016/j.clinph.2013.09.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/29/2013] [Accepted: 09/15/2013] [Indexed: 11/26/2022]
|
252
|
Custo A, Vulliemoz S, Grouiller F, Van De Ville D, Michel C. EEG source imaging of brain states using spatiotemporal regression. Neuroimage 2014; 96:106-16. [PMID: 24726337 DOI: 10.1016/j.neuroimage.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022] Open
Abstract
Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method has the unique advantage of seamlessly integrating a statistical significance of the source estimate while efficiently eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes). After determining the electrophysiological states in terms of stable topographies using established methods (e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial regression of a General Linear Model (GLM). These time courses are then used to find EEG sources that have a similar time-course (using temporal regression of a second GLM). We validate our method using both simulated and experimental data. Simulated data allows us to assess the difference between source maps obtained by the proposed method and those obtained by applying conventional source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit activity in the alpha frequency range. Our results indicate that the proposed EEG source imaging method accurately localizes the sources for each of the electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting states or otherwise weak spontaneous activity states, a problem not adequately solved before.
Collapse
Affiliation(s)
- Anna Custo
- Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland.
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Clinic, University Hospital, Geneva, Switzerland; Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Frederic Grouiller
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Christoph Michel
- Functional Brain Mapping Lab, University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
253
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014. [PMID: 24715886 DOI: 10.3389/fneur.2014.00031.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
254
|
Rikir E, Koessler L, Gavaret M, Bartolomei F, Colnat-Coulbois S, Vignal JP, Vespignani H, Ramantani G, Maillard LG. Electrical source imaging in cortical malformation-related epilepsy: A prospective EEG-SEEG concordance study. Epilepsia 2014; 55:918-32. [DOI: 10.1111/epi.12591] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Estelle Rikir
- Neurology Department; University Hospital of Nancy; Nancy France
- Neurology Department; University Hospital of Sart-Tilman; Liege Belgium
- Medical Faculty; Liege University; Liege Belgium
| | - Laurent Koessler
- CRAN; UMR 7039; Lorraine University; Vandœuvre-lès-Nancy Cedex France
- CNRS; CRAN; UMR 7039; Vandœuvre-lès-Nancy Cedex France
| | - Martine Gavaret
- Clinical Neurophysiology Department; AP-HM; University Hospital la Timone; Marseille France
- INSERM UMR 1106; Institut de Neurosciences des Systèmes; Marseille France
- Medical Faculty; Aix-Marseille University; Marseille France
| | - Fabrice Bartolomei
- Clinical Neurophysiology Department; AP-HM; University Hospital la Timone; Marseille France
- INSERM UMR 1106; Institut de Neurosciences des Systèmes; Marseille France
- Medical Faculty; Aix-Marseille University; Marseille France
| | - Sophie Colnat-Coulbois
- Medical Faculty; Lorraine University; Nancy France
- Neurosurgery Department; University Hospital of Nancy; Nancy France
| | - Jean-Pierre Vignal
- Neurology Department; University Hospital of Nancy; Nancy France
- CRAN; UMR 7039; Lorraine University; Vandœuvre-lès-Nancy Cedex France
- CNRS; CRAN; UMR 7039; Vandœuvre-lès-Nancy Cedex France
| | - Herve Vespignani
- Neurology Department; University Hospital of Nancy; Nancy France
- CRAN; UMR 7039; Lorraine University; Vandœuvre-lès-Nancy Cedex France
- CNRS; CRAN; UMR 7039; Vandœuvre-lès-Nancy Cedex France
- Medical Faculty; Lorraine University; Nancy France
| | | | - Louis G. Maillard
- Neurology Department; University Hospital of Nancy; Nancy France
- CRAN; UMR 7039; Lorraine University; Vandœuvre-lès-Nancy Cedex France
- CNRS; CRAN; UMR 7039; Vandœuvre-lès-Nancy Cedex France
- Medical Faculty; Lorraine University; Nancy France
| |
Collapse
|
255
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014; 5:31. [PMID: 24715886 PMCID: PMC3970017 DOI: 10.3389/fneur.2014.00031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
256
|
Zhao Y, Tang D, Hu L, Zhang L, Hitchman G, Wang L, Chen A. Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations. Neuroscience 2014; 262:92-106. [DOI: 10.1016/j.neuroscience.2013.12.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 01/17/2023]
|
257
|
Heers M, Hedrich T, An D, Dubeau F, Gotman J, Grova C, Kobayashi E. Spatial correlation of hemodynamic changes related to interictal epileptic discharges with electric and magnetic source imaging. Hum Brain Mapp 2014; 35:4396-414. [PMID: 24615912 DOI: 10.1002/hbm.22482] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Blood oxygenation level-dependent (BOLD) signal changes at the time of interictal epileptic discharges (IEDs) identify their associated vascular/hemodynamic responses. BOLD activations and deactivations can be found within the epileptogenic zone but also at a distance. Source imaging identifies electric (ESI) and magnetic (MSI) sources of IEDs, with the advantage of a higher temporal resolution. Therefore, the objective of our study was to evaluate the spatial concordance between ESI/MSI and BOLD responses for similar IEDs. METHODS Twenty-one patients with similar IEDs in simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) and in simultaneous EEG/magnetoencephalogram (MEG) recordings were studied. IEDs in EEG/fMRI acquisition were analyzed in an event-related paradigm within a general linear model (GLM). ESI/MSI of averaged IEDs was performed using the Maximum Entropy on the Mean. We assessed the spatial concordance between ESI/MSI and clusters of BOLD activations/deactivations with surface-based metrics. RESULTS ESI/MSI were concordant with one BOLD cluster for 20/21 patients (concordance with activation: 14/21 patients, deactivation: 6/21 patients, no concordance: 1/21 patients; concordance with MSI only: 3/21, ESI only: 2/21). These BOLD clusters exhibited in 19/20 cases the most significant voxel. BOLD clusters that were spatially concordant with ESI/MSI were concordant with IEDs from invasive recordings in 8/11 patients (activations: 5/8, deactivations: 3/8). CONCLUSION As the results of BOLD, ESI and MSI are often concordant, they reinforce our confidence in all of them. ESI and MSI confirm the most significant BOLD cluster within BOLD maps, emphasizing the importance of these clusters for the definition of the epileptic focus.
Collapse
Affiliation(s)
- Marcel Heers
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
258
|
Machado A, Marcotte O, Lina JM, Kobayashi E, Grova C. Optimal optode montage on electroencephalography/functional near-infrared spectroscopy caps dedicated to study epileptic discharges. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:026010. [PMID: 24525860 DOI: 10.1117/1.jbo.19.2.026010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 05/23/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS), acquired simultaneously with electroencephalography (EEG), allows the investigation of hemodynamic brain responses to epileptic activity. Because the presumed epileptogenic focus is patient-specific, an appropriate source/detector (SD) montage has to be reconfigured for each patient. The combination of EEG and fNIRS, however, entails several constraints on montages, and finding an optimal arrangement of optodes on the cap is an important issue. We present a method for computing an optimal SD montage on an EEG/fNIRS cap that focuses on one or several specific brain regions; the montage maximizes the spatial sensitivity. We formulate this optimization problem as a linear integer programming problem. The method was evaluated on two EEG/fNIRS caps. We simulated absorbers at different locations on a head model and generated realistic optical density maps on the scalp. We found that the maps of optimal SD montages had spatial resolution properties comparable to those of regular SD arrangements for the whole head with significantly fewer sensors than regular SD arrangements. In addition, we observed that optimal montages yielded improved spatial density of fNIRS measurements over the targeted regions together with an increase in signal-to-noise ratio.
Collapse
Affiliation(s)
- Alexis Machado
- McGill University, Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, H3A 2B4, Québec, Canada
| | - Odile Marcotte
- GERAD, École des HEC, Montréal, H3T 2A7, Québec, CanadaeUniversité du Québec à Montréal, Département d'informatique, H3C 3P8 Québec Canada
| | - Jean Marc Lina
- École de Technologie Supérieure de l'Université du Québec, H3C 1K3, Québec, Canada
| | - Eliane Kobayashi
- McGill University, Montreal Neurological Institute, Department of Neurology and Neurosurgery, H3A 2B4, Québec, Canada
| | - Christophe Grova
- McGill University, Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, H3A 2B4, Québec, CanadabMcGill University, Montreal Neurological Institute, Department of Neurology and Neurosurgery, H3A 2B4, Québec, Canada
| |
Collapse
|
259
|
Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis. Epilepsy Res 2014; 108:267-79. [DOI: 10.1016/j.eplepsyres.2013.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/04/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
260
|
|
261
|
Ictal EEG Source Imaging in Frontal Lobe Epilepsy Leads to Improved Lateralization Compared With Visual Analysis. J Clin Neurophysiol 2014; 31:10-20. [DOI: 10.1097/wnp.0000000000000022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
262
|
Mégevand P, Spinelli L, Genetti M, Brodbeck V, Momjian S, Schaller K, Michel CM, Vulliemoz S, Seeck M. Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 2014; 85:38-43. [PMID: 23899624 DOI: 10.1136/jnnp-2013-305515] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE It remains controversial whether interictal spikes are a surrogate of the seizure onset zone (SOZ). Electric source imaging (ESI) is an increasingly validated non-invasive approach for localising the epileptogenic focus in patients with drug-resistant epilepsy undergoing evaluation for surgery, using high-density scalp EEG and advanced source localisation algorithms that include the patient's own MRI. Here we investigate whether localisation of interictal spikes by ESI provides valuable information on the SOZ. METHODS In 38 patients with focal epilepsy who later underwent intracranial EEG monitoring, we performed ESI of interictal spikes recorded with 128-256-channel EEG. We measured the distance between the ESI maximum and the nearest intracranial electrodes in the SOZ and irritative zone (IZ, the source of interictal spikes). The resection of the region harbouring the ESI maximum was correlated to surgical outcome. RESULTS The median distance from the ESI maximum to the nearest electrode involved in the SOZ was 17 mm (IQR 8-27). The IZ and SOZ colocalised in most patients (median distance 0 mm, IQR 0-14), supporting the notion that localising interictal spikes is a valid surrogate for the SOZ. There was no difference in accuracy among patients with temporal or extratemporal epilepsy. In the 32 patients who underwent resective surgery, including the ESI maximum in the resection correlated with favourable outcome (p=0.03). CONCLUSIONS Localisation of interictal spikes provides an excellent estimate of the SOZ in the majority of patients. ESI should be taken into account for the management of patients undergoing intracranial recordings.
Collapse
Affiliation(s)
- Pierre Mégevand
- EEG and Epilepsy Unit, Department of Neurology, Geneva University Hospitals, , Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox. PLoS One 2013; 8:e79442. [PMID: 24244506 PMCID: PMC3828402 DOI: 10.1371/journal.pone.0079442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022] Open
Abstract
The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.
Collapse
|
264
|
An D, Fahoum F, Hall J, Olivier A, Gotman J, Dubeau F. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia 2013; 54:2184-94. [PMID: 24304438 DOI: 10.1111/epi.12434] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE Simultaneous electroencephalography/functional magnetic resonance imaging (EEG/fMRI) recording can noninvasively map in the whole brain the hemodynamic response following an interictal epileptic discharge. EEG/fMRI is gaining interest as a presurgical evaluation tool. This study aims to determine how hemodynamic responses related to epileptic activity can help predict surgical outcome in patients considered for epilepsy surgery. METHODS Thirty-five consecutive patients with focal epilepsy who had significant hemodynamic responses and eventually surgical resection, were studied. The statistical map of hemodynamic responses were generated and co-registered to postoperative anatomic imaging. Patients were classified into four groups defined by the relative relationship between the location of the maximum hemodynamic response and the resection: group 1, fully concordant; group 2, partially concordant; group 3, partially discordant; and group 4, fully discordant. These findings were correlated with surgical outcome with at least 12-month follow-up. KEY FINDINGS Ten patients in group 1 had the maximum t value (t-max) inside the resection; nine in group 2 had the t-max outside but close to the resection and the cluster with t-max overlapped the resection; five in group 3 had the t-max remote from resection, but with another less significant cluster in the resection; and 11 in group 4 had no response in the resection. The degree of concordance correlated largely with surgical outcome: a good surgical outcome (Engel's class I) was found in 7 of 10 patients of group 1, 4 of 9 of group 2, 3 of 5 of group 3, and only 1 of 11 of group 4. These results indicate that the partially concordant and partially discordant groups are best considered as inconclusive. In contrast, in the fully concordant and fully discordant groups, the sensitivity, specificity, positive predictive value, and negative predictive value were high, 87.5%, 76.9%, 70%, and 90.9%, respectively. SIGNIFICANCE This study demonstrates that hemodynamic responses related to epileptic activity can help delineate the epileptogenic region. Full concordance between maximum response and surgical resection is indicative of seizure freedom, whereas a resection leaving the maximum response intact is likely to lead to a poor outcome. EEG/fMRI is noninvasive but is limited to patients in whom interictal epileptic discharges can be recorded during the 60-90 min scan.
Collapse
Affiliation(s)
- Dongmei An
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
265
|
Schettino A, Loeys T, Pourtois G. Multiple synergistic effects of emotion and memory on proactive processes leading to scene recognition. Neuroimage 2013; 81:81-95. [DOI: 10.1016/j.neuroimage.2013.04.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/17/2013] [Accepted: 04/27/2013] [Indexed: 11/30/2022] Open
|
266
|
Elshoff L, Muthuraman M, Anwar AR, Deuschl G, Stephani U, Raethjen J, Siniatchkin M. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures. PLoS One 2013; 8:e78422. [PMID: 24194931 PMCID: PMC3806832 DOI: 10.1371/journal.pone.0078422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022] Open
Abstract
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.
Collapse
Affiliation(s)
- Lydia Elshoff
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | | | - Abdul Rauf Anwar
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
- Digital Signal Processing and System Theory, Technical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Jan Raethjen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Michael Siniatchkin
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University of Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
267
|
Scalp EEG is not a Blur: It Can See High Frequency Oscillations Although Their Generators are Small. Brain Topogr 2013; 27:683-704. [DOI: 10.1007/s10548-013-0321-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
|
268
|
Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. Neuroimage 2013; 86:280-93. [PMID: 24103850 DOI: 10.1016/j.neuroimage.2013.09.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 11/22/2022] Open
Abstract
Accurate estimation of location and extent of neuronal sources from EEG/MEG remain challenging. In the present study, a new source imaging method, i.e. variation and wavelet based sparse source imaging (VW-SSI), is proposed to better estimate cortical source locations and extents. VW-SSI utilizes the L1-norm regularization method with the enforcement of transform sparseness in both variation and wavelet domains. The performance of the proposed method is assessed by both simulated and experimental MEG data, obtained from a language task and a motor task. Compared to L2-norm regularizations, VW-SSI demonstrates significantly improved capability in reconstructing multiple extended cortical sources with less spatial blurredness and less localization error. With the use of transform sparseness, VW-SSI overcomes the over-focused problem in classic SSI methods. With the use of two transformations, VW-SSI further indicates significantly better performance in estimating MEG source locations and extents than other SSI methods with single transformations. The present experimental results indicate that VW-SSI can successfully estimate neural sources (and their spatial coverage) located in close areas while responsible for different functions, i.e. temporal cortical sources for auditory and language processing, and sources on the pre-bank and post-bank of the central sulcus. Meantime, all other methods investigated in the present study fail to recover these phenomena. Precise estimation of cortical source locations and extents from EEG/MEG is of significance for applications in neuroscience and neurology.
Collapse
|
269
|
|
270
|
Influence of skull modeling approaches on EEG source localization. Brain Topogr 2013; 27:95-111. [PMID: 24002699 DOI: 10.1007/s10548-013-0313-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Electroencephalographic source localization (ESL) relies on an accurate model representing the human head for the computation of the forward solution. In this head model, the skull is of utmost importance due to its complex geometry and low conductivity compared to the other tissues inside the head. We investigated the influence of using different skull modeling approaches on ESL. These approaches, consisting in skull conductivity and geometry modeling simplifications, make use of X-ray computed tomography (CT) and magnetic resonance (MR) images to generate seven different head models. A head model with an accurately segmented skull from CT images, including spongy and compact bone compartments as well as some air-filled cavities, was used as the reference model. EEG simulations were performed for a configuration of 32 and 128 electrodes, and for both noiseless and noisy data. The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling. This suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment. We recommend the following guidelines to be taken into account for skull modeling in the generation of subject-specific head models: (i) If CT images are available, i.e., if the geometry of the skull and its different tissue types can be accurately segmented, the conductivity should be modeled as isotropic heterogeneous. The spongy bone might be segmented as an erosion of the compact bone; (ii) when only MR images are available, the skull base should be represented as accurately as possible and the conductivity can be modeled as isotropic heterogeneous, segmenting the spongy bone directly from the MR image; (iii) a large number of EEG electrodes should be used to obtain high spatial sampling, which reduces the localization errors at realistic noise levels.
Collapse
|
271
|
Beniczky S, Lantz G, Rosenzweig I, Åkeson P, Pedersen B, Pinborg LH, Ziebell M, Jespersen B, Fuglsang-Frederiksen A. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria. Epilepsia 2013; 54:1743-52. [PMID: 23944234 DOI: 10.1111/epi.12339] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. METHODS Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. KEY FINDINGS Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. SIGNIFICANCE Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method is feasible in clinical practice and has a good diagnostic accuracy. Our findings encourage clinical neurophysiologists assessing ictal EEGs to include this method in their armamentarium.
Collapse
Affiliation(s)
- Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark; Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Del Felice A, Arcaro C, Storti SF, Fiaschi A, Manganotti P. Slow spindles' cortical generators overlap with the epileptogenic zone in temporal epileptic patients: an electrical source imaging study. Clin Neurophysiol 2013; 124:2336-44. [PMID: 23849700 DOI: 10.1016/j.clinph.2013.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether temporal epileptic patients and normal volunteers display similar sleep spindles' cortical generators as determined by electrical source imaging (ESI), and whether such generators overlap in epilepsy patients with the epileptogenic zone identified by ESI. METHODS Twelve healthy subjects and twelve temporal lobe pharmaco-resistant epileptic patients underwent a 256-channel EEG recording during a daytime nap. Sleep spindles were analyzed off line, distinguishing slow (10-12 Hz) and fast (12-14 Hz) ones, and the final averaged signal was projected onto a MNI (Montreal Neurological Institute) space to localize cortical generators. The same procedure was performed for averaged epileptic spikes, obtaining their cortical source. Intra- and inter-group statistical analyses were conducted. RESULTS Multiple, concomitant generators were detected in both populations for slow and fast spindles. Slow spindles in epileptics displayed higher source amplitude in comparison to healthy volunteers (Z=0.001), as well as a preferential localization over the affected temporal cortices (p=0.039). Interestingly, at least one of slow spindles' generators overlapped with the epileptogenic zone. CONCLUSION Slow spindles, but not fast ones, in temporal epilepsy are mainly generated by the affected temporal lobe. SIGNIFICANCE These results point to the strict relation between sleep and epilepsy and to the possible cognitive implications of spikes arising from memory-encoding brain structures.
Collapse
Affiliation(s)
- Alessandra Del Felice
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Neurology, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
273
|
Tracking the source of cerebellar epilepsy: Hemifacial seizures associated with cerebellar cortical dysplasia. Epilepsy Res 2013; 105:245-9. [DOI: 10.1016/j.eplepsyres.2012.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 11/18/2022]
|
274
|
Cecchini M, Aceto P, Altavilla D, Palumbo L, Lai C. The role of the eyes in processing an intact face and its scrambled image: a dense array ERP and low-resolution electromagnetic tomography (sLORETA) study. Soc Neurosci 2013; 8:314-25. [PMID: 23706064 DOI: 10.1080/17470919.2013.797020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to test whether the eyes of an intact face produced a specific brain response compared to the mouth, nose, or hair and whether their specificity was also maintained in a scrambled face. Fifteen subjects were asked to focus visual attention on global and single elements in intact faces and in their scrambled image. EEG data were recorded from 256-Hydrocel Geodesic Sensor-Net200. Event-related potentials (ERPs) analyses showed a difference between the intact face and the scrambled face from N170 component until 600 ms on the occipito-temporal montage and at 400-600 ms on the frontal montage. Only the eyes showed a difference between conditions (intact/scrambled face) at 500 ms. The most activated source detected by sLORETA was the right middle temporal gyrus (BA21) for both conditions and for all elements. Left BA21 resulted in significantly more activation in response to eyes in the intact face compared to the eyes in the scrambled face at 500 ms. The left BA21 has a central role in high-level visual processing and in understanding others' intentions. These findings suggest a specificity of the eyes and indicate that the eyes play the social and communicative role of comprehending the nonverbal intentions of others only when inserted in an intact face.
Collapse
Affiliation(s)
- Marco Cecchini
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Roma, Italy
| | | | | | | | | |
Collapse
|
275
|
Yamazaki M, Tucker DM, Terrill M, Fujimoto A, Yamamoto T. Dense array EEG source estimation in neocortical epilepsy. Front Neurol 2013; 4:42. [PMID: 23717298 PMCID: PMC3652005 DOI: 10.3389/fneur.2013.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/15/2013] [Indexed: 11/13/2022] Open
Abstract
RATIONALE Dense array EEG (dEEG) evenly covers the whole head surface with over 100 channels contributing to more accurate electrical source imaging due to the higher spatial and temporal resolution. Several studies have shown the clinical utility of dEEG in presurgical clinical evaluation of epilepsy. However validation studies measuring the accuracy of dEEG source imaging are still needed. This can be achieved through simultaneously recording both scalp dEEG with intracranial electrodes (icEEG), which is considered as the true measure of cortical activity at the source. The purpose of this study is to evaluate the accuracy of 256-channel dEEG electrical source estimation for interictal spikes. METHODS Four patients with medically refractory neocortical epilepsy, all surgical candidates, underwent subdural electrode implantation to determine ictal onset and define functional areas. One patient showed a lesion on the magnetic resonance imaging in the right parietal lobe. The patient underwent simultaneous recording of interictal spikes by both scalp 256-channelsvdEEG and icEEG. The dEEG was used to non-invasively estimate the source of the interictal spikes detected by the 256-channel dEEG array, which was then compared to the activity measured directly at the source by the icEEG. RESULTS From the four patients, a total of 287 interictal spikes were measured with the icEEG. One hundred fifty-five of the 287 spikes (54%) were visually detected by the dEEG upon examination of the 256 channel head surface array. The spike amplitudes detected by the 256-channel dEEG correlated with icEEG spike amplitudes (p < 0.01). All spikes detected in dEEG were localized to the same lobe correctly. CONCLUSION Our study demonstrates that 256-channel dEEG can reliably detect interictal spikes and localize them with reasonable accuracy. Two hundred fifty-six-channel dEEG may be clinically useful in the presurgical workup for epilepsy and also reduce the need for invasive EEG evaluation.
Collapse
Affiliation(s)
- Madoka Yamazaki
- Department of Health Science, Daito Bunka UniversitySaitama, Japan
- Comprehensive Epilepsy Center, Seirei Hamamatsu General HospitalShizuoka, Japan
| | - Don M. Tucker
- Department of Psychology, University of OregonEugene, OR, USA
- Electrical Geodesics, Inc.Eugene, OR, USA
| | | | - Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General HospitalShizuoka, Japan
| | - Takamichi Yamamoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General HospitalShizuoka, Japan
| |
Collapse
|
276
|
Abstract
Mesial frontal lobe epilepsies can be divided into epilepsies arising from the anterior cingulate gyrus and those of the supplementary sensorimotor area. They provide diagnostic challenges because they often lack lateralizing or localizing features on clinical semiology and interictal and ictal scalp electroencephalographic (EEG) recordings. A number of unique semiologic features have been described over the last decade in patients with mesial frontal lobe epilepsy (FLE). There are few reports of applying advanced neurophysiologic techniques such as electrical source imaging, magnetoencephalography, EEG/functional magnetic resonance imaging, or analysis of high-frequency oscillations in patients with mesial FLE. Despite these diagnostic challenges, it seems that patients with mesial FLE benefit from epilepsy surgery to the same extent or even better than patients with FLE do, as a whole.
Collapse
|
277
|
Ramantani G, Cosandier-Rimélé D, Schulze-Bonhage A, Maillard L, Zentner J, Dümpelmann M. Source reconstruction based on subdural EEG recordings adds to the presurgical evaluation in refractory frontal lobe epilepsy. Clin Neurophysiol 2013; 124:481-91. [DOI: 10.1016/j.clinph.2012.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 11/17/2022]
|
278
|
Yamazaki M, Terrill M, Fujimoto A, Yamamoto T, Tucker DM. Integrating dense array EEG in the presurgical evaluation of temporal lobe epilepsy. ISRN NEUROLOGY 2012; 2012:924081. [PMID: 23209939 PMCID: PMC3504419 DOI: 10.5402/2012/924081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 11/23/2022]
Abstract
Purpose. To evaluate the clinical utility of dense array electroencephalography (dEEG) for detecting and localizing interictal spikes in temporal lobe epilepsy. Methods. Simultaneous invasive and noninvasive recordings were performed across two different groups. (1) The first group underwent both noninvasive recording with 128 channels of (scalp) dEEG and invasive sphenoidal electrode recording. (2) The second group underwent both noninvasive recording with 256 channels of (scalp) dEEG and invasive intracranial EEG (icEEG) involving coverage with grids and strips over the lateral and mesial temporal lobe. A noninvasive to noninvasive comparison was made comparing the overall spike detection rate of the dEEG to that of conventional 10/20 EEG. A noninvasive to invasive comparison was made comparing the spike detection rate of dEEG to that of conventional 10/20 EEG plus sphenoidal electrodes. And finally, a noninvasive to invasive evaluation measuring the source localization ability of the dEEG using the icEEG as validation. Results. In the 128-channel dEEG study (1), 90.4% of the interictal spikes detected by the dEEG were not detected in the 10/20 montage. 91% of the dEEG-detected spikes were accurately localized to the medial temporal lobe. In the 256-channel dEEG study (2), 218 of 519 interictal spikes (42%) were detected by dEEG. 85% of these spikes were accurately localized to the medial temporal lobe, close to the position confirmed by subdural electrodes. Conclusion. Dense array EEG may provide more precise information than conventional EEG and has a potential for providing an alternative to sphenoidal electrode monitoring in patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Madoka Yamazaki
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka 4308558, Japan
| | | | | | | | | |
Collapse
|
279
|
On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue). Neuroimage 2012; 64:703-11. [PMID: 22982584 DOI: 10.1016/j.neuroimage.2012.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 11/20/2022] Open
Abstract
The cruciform model posits that if a Visual Evoked Potential component originates in cortical area V1, then stimuli placed in the upper versus lower visual field will generate responses with opposite polarity at the scalp. In our original paper (Ales et al., 2010b) we showed that the cruciform model provides an insufficient criterion for identifying V1 sources. This conclusion was reached on the basis of simulations that used realistic 3D models of early visual areas to simulate scalp topographies expected for stimuli of different sizes and shapes placed in different field locations. The simulations indicated that stimuli placed in the upper and lower visual field produce polarity inverting scalp topographies for activation of areas V2 and V3, but not for area V1. As a consequence of the non-uniqueness of the polarity inversion criterion, we suggested that past studies using the cruciform model had not adequately excluded contributions from sources outside V1. In their comment on our paper, Kelly et al. (this issue) raise several concerns with this suggestion. They claim that our initial results did not use the proper stimulus locations to constitute a valid test of the cruciform model. Kelly et al., also contend that the cortical source of the initial visually evoked component (C1) can be identified based on latency and polarity criteria derived from intracranial recordings in non-human primates. In our reply we show that simulations using the suggested critical stimulus locations are consistent with our original findings and thus do not change our conclusions regarding the use of the polarity inversion criterion. We further show that the anatomical assumptions underlying the putatively optimal locations are not consistent with available V1 anatomical data. We then address the non-human primate data, describing how differences in stimuli across studies and species confound an effective utilization of the non-human primate data for interpreting human evoked potential responses. We also show that, considered more broadly, the non-human primate literature shows that multiple visual areas onset simultaneously with V1. We suggest several directions for future research that will further clarify how to make the best use of scalp data for inferring cortical sources.
Collapse
|
280
|
Bourquin NMP, Spierer L, Murray MM, Clarke S. Neural plasticity associated with recently versus often heard objects. Neuroimage 2012; 62:1800-6. [DOI: 10.1016/j.neuroimage.2012.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/18/2012] [Accepted: 04/29/2012] [Indexed: 10/28/2022] Open
|
281
|
Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD. EEG source imaging in epilepsy--practicalities and pitfalls. Nat Rev Neurol 2012; 8:498-507. [PMID: 22868868 DOI: 10.1038/nrneurol.2012.150] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the generating source of electrical potentials recorded on the scalp. Recent advances in computer technologies have made the analysis of ESI data less time-consuming, and have rekindled interest in this technique as a clinical diagnostic tool. On the basis of the available body of evidence, ESI seems to be a promising tool for epilepsy evaluation; however, the precise clinical value of ESI in presurgical evaluation of epilepsy and in localization of eloquent cortex remains to be investigated. In this Review, we describe two fundamental issues in ESI; namely, the forward and inverse problems, and their solutions. The clinical application of ESI in surgical planning for patients with medically refractory focal epilepsy, and its use in source reconstruction together with invasive recordings, is also discussed. As ESI can be used to map evoked responses, we discuss the clinical utility of this technique in cortical mapping-an essential process when planning resective surgery for brain regions that are in close proximity to eloquent cortex.
Collapse
Affiliation(s)
- Kitti Kaiboriboon
- Epilepsy Center, Neurological Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Lakeside 3200, Cleveland, OH 44106, USA. kitti.kaiboriboon@ uhhospitals.org
| | | | | | | | | |
Collapse
|
282
|
Toth M, Faludi B, Kondakor I. Effects of CPAP-Therapy on Brain Electrical Activity in Obstructive Sleep Apneic Patients: A Combined EEG Study Using LORETA and Omega Complexity. Brain Topogr 2012; 25:450-60. [DOI: 10.1007/s10548-012-0243-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
283
|
Laufs H. A personalized history of EEG–fMRI integration. Neuroimage 2012; 62:1056-67. [DOI: 10.1016/j.neuroimage.2012.01.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/07/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022] Open
|
284
|
Bartoli A, Vulliemoz S, Haller S, Schaller K, Seeck M. Imaging techniques for presurgical evaluation of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
285
|
Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012; 61:371-85. [DOI: 10.1016/j.neuroimage.2011.12.039] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
|
286
|
Storti SF, Formaggio E, Franchini E, Bongiovanni LG, Cerini R, Fiaschi A, Michel CM, Manganotti P. A multimodal imaging approach to the evaluation of post-traumatic epilepsy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:345-60. [PMID: 22592963 PMCID: PMC3458199 DOI: 10.1007/s10334-012-0316-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/11/2022]
Abstract
Object Electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration and high-density EEG (hdEEG) can be combined to map noninvasively abnormal brain activation elicited by epileptic processes. By combining noninvasive imaging techniques in a multimodal approach, we sought to investigate pathophysiological mechanisms underlying epileptic activity in seven patients with severe traumatic brain injury. Materials and methods Standard EEG and fMRI data were acquired during a single scanning session. The EEG-fMRI data were analyzed using the general linear model and independent component analysis. Source localization of interictal epileptiform discharges (IEDs) was performed using 256-channel hdEEG. Blood oxygenation level dependent (BOLD) localizations were then compared to EEG source reconstruction. Results On hdEEG, focal source localization was detected in all seven patients; in six out of seven it was concordant with the expected epileptic activity as defined by EEG data and clinical evaluation; and in four out of seven in whom IEDs were recorded, BOLD signal changes were observed. These activities were partially concordant with the source localization. Conclusion Multimodal integration of EEG-fMRI and hdEEG combining two different methods to localize the same epileptic foci appears to be a promising tool to noninvasively map abnormal brain activation in patients with post-traumatic brain injury.
Collapse
Affiliation(s)
- Silvia F Storti
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134, Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Scherg M, Ille N, Weckesser D, Ebert A, Ostendorf A, Boppel T, Schubert S, Larsson PG, Henning O, Bast T. Fast evaluation of interictal spikes in long-term EEG by hyper-clustering. Epilepsia 2012; 53:1196-204. [PMID: 22578143 DOI: 10.1111/j.1528-1167.2012.03503.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The burden of reviewing long-term scalp electroencephalography (EEG) is not much alleviated by automated spike detection if thousands of events need to be inspected and mentally classified by the reviewer. This study investigated a novel technique of clustering and 24-h hyper-clustering on top of automated detection to assess whether fast review of focal interictal spike types was feasible and comparable to the spikes types observed during routine EEG review in epilepsy monitoring. METHODS Spike detection used a transformation of scalp EEG into 29 regional source activities and adaptive thresholds to increase sensitivity. Our rule-based algorithm estimated 18 parameters around each detected peak and combined multichannel detections into one event. Similarity measures were derived from equivalent location, scalp topography, and source waveform of each event to form clusters over 2-h epochs using a density-based algorithm. Similar measures were applied to all 2-h clusters to form 24-h hyper-clusters. Independent raters evaluated electroencephalography data of 50 patients with epilepsy (25 children) using traditional visual spike review and optimized hyper-cluster inspection. Congruence between visual spike types and epileptiform hyper-clusters was assessed on a sublobar level using three-dimensional (3D) peak topographies. KEY FINDINGS Visual rating found 126 different epileptiform spike types (2.5 per patient). Independently, 129 hyper-clusters were classified as epileptiform and originating in separate sublobar regions (2.6 per patient). Ninety-one percent of visual spike types matched with hyper-clusters (temporal lobe spikes 94%, extratemporal 89%). Conversely, 11% of hyper-clusters rated epileptiform had no corresponding visual spike type. Numbers were comparable in adults and children. On average, 15 hyper-clusters had to be inspected and rated per patient with an evaluation time of around 5 min. SIGNIFICANCE Hyper-clustering over 24 h provides an independent tool for rapid daily evaluation of interictal spikes in long-term video-EEG monitoring. If used in addition to routine review of 2-5 min EEG per hour, sensitivity and reliability in noninvasive diagnosis of focal epilepsy increases.
Collapse
|
288
|
Malpass K. Epilepsy: Electric source imaging--an inexpensive and reliable method to estimate the epileptic focus. Nat Rev Neurol 2011; 7:658. [PMID: 22083173 DOI: 10.1038/nrneurol.2011.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|