251
|
Roh MH, Margolis B. Composition and function of PDZ protein complexes during cell polarization. Am J Physiol Renal Physiol 2003; 285:F377-87. [PMID: 12890661 DOI: 10.1152/ajprenal.00086.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Complexes consisting of PDZ proteins have been implicated in a variety of cellular processes. In recent years, it has become increasingly clear that PDZ proteins play essential roles during the establishment of spatial asymmetry in various metazoan cell types such as epithelial cells. Epithelial cells possess asymmetry with respect to the apicobasal axis reflected by the differential distribution of proteins and lipids in the apical and basolateral surfaces. In Drosophila, three PDZ protein complexes have been shown to play crucial functions during the establishment of cell-cell adhesions and epithelial cell polarity: Bazooka/Dm-Par6/DaPKC, Crumbs/Stardust/Discs Lost, and Scribble/Discs Large/Lethal Giant Larvae. In this review, we focus primarily on our current knowledge of the localization and function of these complexes in Drosophila epithelia. We also discuss recent data that enhance our understanding of the homologous protein complexes and their roles during junctional assembly and polarization of mammalian epithelial cells.
Collapse
Affiliation(s)
- Michael H Roh
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0650, USA
| | | |
Collapse
|
252
|
Mizuno K, Suzuki A, Hirose T, Kitamura K, Kutsuzawa K, Futaki M, Amano Y, Ohno S. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem 2003; 278:31240-50. [PMID: 12756256 DOI: 10.1074/jbc.m303593200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PAR-3 is a scaffold-like PDZ-containing protein that forms a complex with PAR-6 and atypical protein kinase C (PAR-3-atypical protein kinase C-PAR-6 complex) and contributes to the establishment of cell polarity in a wide variety of biological contexts. In mammalian epithelial cells, it localizes to tight junctions, the most apical end of epithelial cell-cell junctions, and contributes to the formation of functional tight junctions. However, the mechanism by which PAR-3 localizes to tight junctions and contributes to their formation remains to be clarified. Here we show that the N-terminal conserved region, CR1-(1-86), and the sequence 937-1,024 are required for its recruitment to the most apical side of the cell-cell contact region in epithelial Madin-Darby canine kidney cells. We also show that CR1 self-associates to form an oligomeric complex in vivo and in vitro. Further, overexpression of CR1 in Madin-Darby canine kidney cells disturbs the distribution of atypical protein kinase C and PAR-6 as well as PAR-3 and delays the formation of functional tight junctions. These results support the notion that the CR1-mediated self-association of the PAR-3-containing protein complex plays a role during the formation of functional tight junctions.
Collapse
Affiliation(s)
- Keiko Mizuno
- Department of Molecular Biology, Yokohama City University School of Medicine, Fuku-ura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
253
|
Benton R, St Johnston D. A conserved oligomerization domain in drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity. Curr Biol 2003; 13:1330-4. [PMID: 12906794 DOI: 10.1016/s0960-9822(03)00508-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The PAR-3/PAR-6/aPKC complex is required to establish polarity in many different cell types, including the C. elegans zygote and epithelial and neuronal cells in Drosophila and mammals. In each context, the components of this complex display a mutually dependent asymmetric cortical localization. PAR-6 is a direct effector of Rho family GTPases and binds to and regulates aPKC. Mammalian PAR-3 (mPar3) can associate with transmembrane proteins and may link the complex to the membrane, but this can account for only part of the requirement for this protein in the complex. Here we investigate the function of a novel conserved domain, CR1, of PAR-3 using computational, biochemical, and genetic approaches. Sequence-structure comparison by FUGUE predicts that CR1 has the same structural fold as a bacterial oligomerization domain. We show that CR1 of the Drosophila homolog, Bazooka (BAZ), mediates oligomerization in vitro and in vivo. Furthermore, deletion of CR1 disrupts BAZ localization in both epithelial cells and the germline and strongly impairs BAZ function in epithelial polarity. These results indicate that this domain is important for the localization and activity of the PAR-3/PAR6/aPKC complex and define a new role for PAR-3 in assembling higher order protein complexes.
Collapse
Affiliation(s)
- Richard Benton
- The Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, CB2 1QR, Cambridge, United Kingdom
| | | |
Collapse
|
254
|
Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol 2003; 23:4267-82. [PMID: 12773569 PMCID: PMC156145 DOI: 10.1128/mcb.23.12.4267-4282.2003] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MAGI-1 is a membrane-associated guanylate kinase protein at tight junctions in epithelial cells. It interacts with various molecules and functions as a scaffold protein at cell junctions. We report here a novel MAGI-1-binding protein that we named junctional adhesion molecule 4 (JAM4). JAM4 belongs to an immunoglobulin protein family. JAM4 was colocalized with ZO-1 in kidney glomeruli and in intestinal epithelial cells. Biochemical in vitro studies revealed that JAM4 bound to MAGI-1 but not to ZO-1, whereas JAM1 did not bind to MAGI-1. JAM4 and MAGI-1 interacted with each other and formed clusters in COS-7 cells when coexpressed. JAM4 mediated calcium-independent homophilic adhesion and was accumulated at cell-cell contacts when expressed in L cells. MAGI-1, ZO-1, and occludin were recruited to JAM4-based cell contacts. JAM4 also reduced the permeability of CHO cell monolayers. MAGI-1 strengthened JAM4-mediated cell adhesion in L cells and sealing effects in CHO cells. These findings suggest that JAM4 together with MAGI-1 provides an adhesion machinery at tight junctions, which may regulate the permeability of kidney glomerulus and small intestinal epithelial cells.
Collapse
Affiliation(s)
- Susumu Hirabayashi
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
255
|
Abdelilah-Seyfried S, Cox DN, Jan YN. Bazooka is a permissive factor for the invasive behavior of discs large tumor cells in Drosophila ovarian follicular epithelia. Development 2003; 130:1927-35. [PMID: 12642496 DOI: 10.1242/dev.00420] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drosophila Bazooka and atypical protein kinase C are essential for epithelial polarity and adhesion. We show here that wild-type bazooka function is required during cell invasion of epithelial follicle cells mutant for the tumor suppressor discs large. Clonal studies indicate that follicle cell Bazooka acts as a permissive factor during cell invasion, possibly by stabilizing adhesion between the invading somatic cells and their substratum, the germline cells. Genetic epistasis experiments demonstrate that bazooka acts downstream of discs large in tumor cell invasion. In contrast, during the migration of border cells, Bazooka function is dispensable for cell invasion and motility, but rather is required cell-autonomously in mediating cell adhesion within the migrating border cell cluster. Taken together, these studies reveal Bazooka functions distinctly in different types of invasive behaviors of epithelial follicle cells, potentially by regulating adhesion between follicle cells or between follicle cells and their germline substratum.
Collapse
Affiliation(s)
- Salim Abdelilah-Seyfried
- Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Robert-Rössle Strasse 10, D-13125 Berlin-Buch, Germany.
| | | | | |
Collapse
|
256
|
Abstract
The sequencing of complete genomes provides a list that includes the proteins responsible for cellular regulation. However, this does not immediately reveal what these proteins do, nor how they are assembled into the molecular machines and functional networks that control cellular behavior. The regulation of many different cellular processes requires the use of protein interaction domains to direct the association of polypeptides with one another and with phospholipids, small molecules, or nucleic acids. The modular nature of these domains, and the flexibility of their binding properties, have likely facilitated the evolution of cellular pathways. Conversely, aberrant interactions can induce abnormal cellular behavior and disease. The fundamental properties of protein interaction domains are discussed in this review and in detailed reviews on individual domains at Science's STKE at http://www.sciencemag.org/cgi/content/full/300/5618/445/DC1.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | |
Collapse
|
257
|
Plant PJ, Fawcett JP, Lin DCC, Holdorf AD, Binns K, Kulkarni S, Pawson T. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 2003; 5:301-8. [PMID: 12629547 DOI: 10.1038/ncb948] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Revised: 01/13/2003] [Accepted: 02/06/2003] [Indexed: 12/27/2022]
Abstract
The evolutionarily conserved proteins Par-6, atypical protein kinase C (aPKC), Cdc42 and Par-3 associate to regulate cell polarity and asymmetric cell division, but the downstream targets of this complex are largely unknown. Here we identify direct physiological interactions between mammalian aPKC, murine Par-6C (mPar-6C) and Mlgl, the mammalian orthologue of the Drosophila melanogaster tumour suppressor Lethal (2) giant larvae. In cultured cell lines and in mouse brain, aPKC, mPar-6C and Mlgl form a multiprotein complex in which Mlgl is targeted for phosphorylation on conserved serine residues. These phosphorylation sites are important for embryonic fibroblasts to polarize correctly in response to wounding and may regulate the ability of Mlgl to direct protein trafficking. Our data provide a direct physical and regulatory link between proteins of distinct polarity complexes, identify Mlgl as a functional substrate for aPKC in cell polarization and indicate that aPKC is directed to cell polarity substrates through a network of protein-protein interactions.
Collapse
Affiliation(s)
- Pamela J Plant
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5 Canada
| | | | | | | | | | | | | |
Collapse
|
258
|
Lui WY, Mruk D, Lee WM, Cheng CY. Sertoli cell tight junction dynamics: their regulation during spermatogenesis. Biol Reprod 2003; 68:1087-97. [PMID: 12606453 DOI: 10.1095/biolreprod.102.010371] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During spermatogenesis, developing preleptotene and leptotene spermatocytes must translocate from the basal to the adluminal compartment of the seminiferous epithelium so that fully developed spermatids (spermatozoa) can be released to the tubular lumen at spermiation. It is conceivable that the opening and closing of the inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier are regulated by an array of intriguingly coordinated signaling pathways and molecules. Several molecules have been shown to regulate Sertoli cell TJ dynamics; they include, for example, transforming growth factor beta3 (TGFbeta3), occludin, protein kinase A, protein kinase C, and signaling pathways such as the TGFbeta3/p38 mitogen-activated protein kinase pathway. Yet the mechanisms that regulate these events are essentially not known. This minireview summarizes some of the recent advances in the study of TJ dynamics in the testis and reviews several models that can be used to study TJ dynamics. It also highlights specific areas for future research toward understanding the precise physiological relationship between junction dynamics and spermatogenesis.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
259
|
Abstract
Tight junctions have long been regarded as simple barriers that separate compartments of different compositions, but recent research indicates that different types of signalling proteins and transduction pathways are associated with these junctions. They receive and convert signals from the cell interior to regulate junction assembly and function, and transmit signals to the cell interior to modulate gene expression and cell behaviour.
Collapse
Affiliation(s)
- Karl Matter
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
260
|
Abstract
Cohesive sheets of epithelial cells are a fundamental feature of multicellular organisms and are largely a product of the varied functions of adherens junctions. These junctions and their cytoskeletal associations contribute heavily to the distinct shapes, polarity, spatially oriented mitotic spindle planes, and cellular movements of developing tissues. Deciphering the underlying mechanisms that govern these conserved cellular rearrangements is a prerequisite to understanding vertebrate morphogenesis.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
261
|
Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y. Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 2003; 278:5497-500. [PMID: 12515806 DOI: 10.1074/jbc.c200707200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAR-3 is a cell polarity protein that localizes at tight junctions (TJs) by direct binding to an immunoglobulin (Ig)-like cell-cell adhesion molecule JAM-1 in mammalian epithelial cells. Another Ig-like cell-cell adhesion molecule nectin plays a role in the localization of JAM-1 at TJs in epithelial cells. Nectin furthermore plays a role in the organization of adherens junctions (AJs) and TJs. Nectin comprises a family of four members, nectin-1, -2, -3, and -4. Nectins are associated with the actin cytoskeleton through afadin, of which the PDZ domain binds to nectins through their C-terminal four amino acids. We show here that PAR-3 binds to nectin-1 and -3 in neuroepithelial cells of the embryonic telencephalon, which are equipped with AJs, but not with typical TJs. Nectin-1, -2, -3, and afadin, but not JAM-1, were concentrated at AJs in neuroepithelial cells of the embryonic telencephalon at E13.5 and PAR-3 co-localized with nectins. PAR-3 was co-immunoprecipitated with nectin-1 and -3, but not with nectin-2 or JAM-1, from the mouse whole brain at E13.5. Recombinant PAR-3 stoichiometrically bound to recombinant nectin-1 and -3. The first one of the three PDZ domains of PAR-3 bound to the C-terminal four amino acids of nectin-1 and -3. The affinities of PAR-3 and afadin for nectin-1 and -3 were similar. Cadherin-deficient L cells expressing nectin-1 and -3 formed nectin-1- and -3-based cell-cell junctions, respectively, where PAR-3 as well as afadin was recruited. These results indicate that nectin-1 and -3 are involved in the localization of PAR-3 at AJs in the neuroepithelial cells of the embryonic telencephalon.
Collapse
Affiliation(s)
- Kyoji Takekuni
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
262
|
Abstract
Cell polarity is an essential feature of many animal cells. It is critical for epithelial formation and function, for correct partitioning of fate-determining molecules, and for individual cells to chemotax or grow in a defined direction. For some of these processes, the position and orientation of the mitotic spindle must be coupled to cell polarity for correct positioning of daughter cells and inheritance of localised molecules. Recent work in several different systems has led to the realisation that similar mechanisms dictate the establishment of polarity and subsequent spindle positioning in many animal cells. Microtubules and conserved PAR proteins are essential mediators of cell polarity, and mitotic spindle positioning depends on heterotrimeric G protein signalling and the microtubule motor protein dynein.
Collapse
Affiliation(s)
- Julie Ahringer
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
263
|
Abstract
Par6 and atypical protein kinase C are key players in the establishment of cell polarity. First discovered in Caenorhabditis elegans, the function of this protein complex is conserved in all multicellular organisms. Recent work is beginning to throw light on how it converts information generated by extracellular cues into intracellular asymmetry.
Collapse
|
264
|
Cereijido M, Contreras RG, Shoshani L, García-Villegas MR. Membrane targeting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:81-115. [PMID: 12565697 DOI: 10.1016/s0079-6107(02)00047-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M Cereijido
- Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, México D.F. 07300, Mexico.
| | | | | | | |
Collapse
|
265
|
Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5:137-42. [PMID: 12545177 DOI: 10.1038/ncb923] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 11/06/2002] [Accepted: 11/25/2002] [Indexed: 12/20/2022]
Abstract
Tight junctions help establish polarity in mammalian epithelia by forming a physical barrier that separates apical and basolateral membranes. Two evolutionarily conserved multi-protein complexes, Crumbs (Crb)-PALS1 (Stardust)-PATJ (DiscsLost) and Cdc42-Par6-Par3-atypical protein kinase C (aPKC), have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. Here we identify a biochemical and functional link between these two complexes that is mediated by Par6 and PALS1 (proteins associated with Lin7). The interaction between Par6 and PALS1 is direct, requires the amino terminus of PALS1 and the PDZ domain of Par6, and is regulated by Cdc42-GTP. The transmembrane protein Crb can recruit wild-type Par6, but not Par6 with a mutated PDZ domain, to the cell surface. Expression of dominant-negative PALS1-associated tight junction protein (PATJ) in MDCK cells results in mis-localization of PALS1, members of the Par3-Par6-aPKC complex and the tight junction marker, ZO-1. Similarly, overexpression of Par6 in MDCK cells inhibits localization of PALS1 to the tight junction. Our data highlight a previously unrecognized link between protein complexes that are essential for epithelial polarity and formation of tight junctions.
Collapse
Affiliation(s)
- Toby W Hurd
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | |
Collapse
|
266
|
González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:1-44. [PMID: 12475568 DOI: 10.1016/s0079-6107(02)00037-8] [Citation(s) in RCA: 832] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the basolateral domains of the plasma membrane. In recent years more than 40 different proteins have been discovered to be located at the TJs of epithelia, endothelia and myelinated cells. This unprecedented expansion of information has changed our view of TJs from merely a paracellular barrier to a complex structure involved in signaling cascades that control cell growth and differentiation. Both cortical and transmembrane proteins integrate TJs. Among the former are scaffolding proteins containing PDZ domains, tumor suppressors, transcription factors and proteins involved in vesicle transport. To date two components of the TJ filaments have been identified: occludin and claudin. The latter is a protein family with more than 20 members. Both occludin and claudins are integral proteins capable of interacting adhesively with complementary molecules on adjacent cells and of co-polymerizing laterally. These advancements in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.
Collapse
Affiliation(s)
- L González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Politécnico Nacional 2508, México DF, 07000, Mexico.
| | | | | | | |
Collapse
|
267
|
Nüesch JPF, Lachmann S, Corbau R, Rommelaere J. Regulation of minute virus of mice NS1 replicative functions by atypical PKClambda in vivo. J Virol 2003; 77:433-42. [PMID: 12477848 PMCID: PMC140590 DOI: 10.1128/jvi.77.1.433-442.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed with a variety of enzymatic and regulatory activities necessary for progeny virus particle production. To regulate all of its different functions in the course of a viral infection, NS1 has been proposed to be modulated by posttranslational modifications, in particular, phosphorylation. Indeed, it was shown that the NS1 phosphorylation pattern is altered during the infectious cycle and that the biochemical profile of the protein is dependent on the phosphorylation state of the polypeptide. Moreover, in vitro approaches have identified members of the protein kinase C (PKC) family, in particular, atypical PKC, as regulators of viral DNA replication through the phosphorylation of NS1 residues T435 and S473, thereby activating the protein for DNA unwinding activities. In order to substantiate these findings in vivo, we produced NS1 in the presence of a dominant-negative PKClambda mutant and characterized the purified protein in vitro. The NS1 protein produced under these conditions was found to be only partially phosphorylated and as a consequence to be deficient for viral DNA replication. However, it could be rescued for this viral function by treatment with recombinant activated PKClambda. Our data clearly demonstrate that NS1 is a target for PKClambda phosphorylation in vivo and that this modification is essential for the helicase activity of the viral polypeptide. In addition, the phosphorylation of NS1 at residues T435 and S473 appeared to occur mainly in the nucleus, providing further evidence for the involvement of PKClambda which, unlike PKCzeta, accumulates in the nuclear compartment of infected cells.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | |
Collapse
|
268
|
Abstract
The cadherin superfamily plays key roles in intercellular adhesion. An emerging intercellular adhesion system, consisting of nectin and afadin, also has roles in organization of a variety of intercellular junctions either in cooperation with, or independently of, cadherin. Nectin is a Ca(2+)-independent immunoglobulin-like intercellular adhesion molecule, and afadin is a nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton. This novel intercellular adhesion system has roles in the organization of E-cadherin-based adherens junctions and claudin-based tight junctions in epithelial cells. The adhesion system is furthermore involved in the formation of synapses in neurons and the organization of heterotypic junctions between Sertoli cells and spermatids in the testis.
Collapse
Affiliation(s)
- Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan.
| | | |
Collapse
|
269
|
Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H. PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem Biophys Res Commun 2002; 299:641-6. [PMID: 12459187 DOI: 10.1016/s0006-291x(02)02698-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cell polarity protein PAR3, conserved from the nematode to the vertebrate, forms a complex with PAR6 and atypical protein kinase C (aPKC), and the protein complex occurs at the tight junctions in mammalian epithelial cells. Here we have cloned human cDNA for a novel PAR3 homologue, designated PAR3beta, whose messages are present in a variety of tissues and most abundantly expressed in the adult and fetal kidneys. The encoded protein of 1,205 amino acids contains a region homologous to the aPKC-binding domain of PAR3alpha, another human homologue previously identified, and three PDZ domains; the first PDZ domain of PAR3alpha is considered to interact with PAR6. Unexpectedly, in contrast to other PAR3s found in various species, PAR3beta is incapable of binding to any isotypes of PAR6 or aPKC. Nevertheless PAR3beta, expressed intrinsically or extrinsically, localizes to the tight junctions, indicating that the localization does not require the ternary complex formation.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
Rho GTPases are molecular switches that control a wide variety of signal transduction pathways in all eukaryotic cells. They are known principally for their pivotal role in regulating the actin cytoskeleton, but their ability to influence cell polarity, microtubule dynamics, membrane transport pathways and transcription factor activity is probably just as significant. Underlying this biological complexity is a simple biochemical idea, namely that by switching on a single GTPase, several distinct signalling pathways can be coordinately activated. With spatial and temporal activation of multiple switches factored in, it is not surprising to find Rho GTPases having such a prominent role in eukaryotic cell biology.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
271
|
Abstract
The polarized nature of epithelial cells is manifested by the nonrandom partitioning of organelles within the cells, the concentration of intercellular junctions at one pole, and the asymmetric distribution of proteins and lipids within the plasma membrane. These features allow epithelia to fulfill their specific tasks, such as targeted uptake and secretion of molecules and the segregation of different tissue compartments. The accessibility of Drosophila melanogaster and Caenorhabditis elegans to genetic and cell biological analyses, combined with the study of mammalian cells in culture, provides an ideal basis for understanding the mechanisms that control the establishment and maintenance of epithelial cell polarity and tissue integrity. Here, we focus on some of the best-studied junctions and membrane-associated protein complexes and their relation to cell polarity. Comparisons between fly, worm, and vertebrate epithelia reveal marked similarities with respect to the molecules used, and pronounced differences in the organization of the junctions themselves.
Collapse
Affiliation(s)
- Elisabeth Knust
- Institut für Genetik, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
272
|
Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 2002; 16:1835-7. [PMID: 12354695 DOI: 10.1096/fj.02-0121fje] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zonula occludens (ZO)-1 is a member of the MAGUK (membrane-associated guanylate kinase homologs) family of membrane-associated signaling molecules that binds directly to both cytosolic and transmembrane components of the tight junction and is believed to organize these proteins within the apical junctional complex. It also binds directly to F-actin, although the functional relevance of this interaction is unknown. To address this issue, we have used VSVG-tagged transgenes to dissect ZO-1 and have identified a 220 amino acid region of ZO-1 that is necessary for its association with F-actin in MDCK cell pull-down assays. A GST fusion expressing this region can bind directly to F-actin in vitro, whereas a GFP fusion expressing this domain decorates actin stress fibers when expressed in MDCK cells. These results indicate that this actin-binding region (ABR) is both necessary and sufficient for binding to F-actin in vitro and in vivo. VSVG-tagged transgenes that lack the ABR still accumulate at both early and late cell-cell contacts in MDCK cells, suggesting that the ABR is not required for tight junction localization. However, accumulation of constructs lacking the ABR is markedly reduced at tight junctions in confluent cells, suggesting that the ABR does play an important role in the localization of ZO-1 at junctions. Furthermore, the ABR is required for localization to a novel actin-rich pool of ZO-1 that accumulates in puncta at the free edge of cells before initiation of cell-cell contact. We conclude that direct interactions between ZO-1 and F-actin play a role in several different steps of junction assembly.
Collapse
Affiliation(s)
- Alan S Fanning
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, North Carolina 27599-7545, USA.
| | | | | |
Collapse
|
273
|
Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 2002; 7:1161-71. [PMID: 12390250 DOI: 10.1046/j.1365-2443.2002.00590.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent studies have revealed that aPKC (atypical protein kinase C), PAR-3 and PAR-6 play indispensable roles in the regulation of various cell polarization events, from worms to mammals, suggesting that they comprise an evolutionarily conserved protein machinery which is essential for cell polarization. The three proteins interact with each other to form a ternary complex and thus mutually regulate their functionality and localization. Here, we investigated the biochemical nature of the aPKC-PAR-3 interaction in detail to clarify its functional importance in cell polarity. RESULTS The highly conserved 26 amino acid sequence 816-841, in PAR-3 was found to be necessary and sufficient for the tight association with aPKC. Among several conserved serine/threonine residues within the region, aPKC preferentially phosphorylates serine-827 in vitro, and this phosphorylation reduces the stability of the PAR-3-aPKC interaction. Several analyses using a phospho-serine 827 specific antibody have established that this phosphorylation by aPKC occurs in vivo. Over-expression of a point mutant of PAR-3 (S827A), which is predicted to form a stable complex with aPKC, causes defects in the cell-cell contact-induced cell polarization of epithelial MDCK cells, similarly to a dominant negative mutant of aPKC. CONCLUSIONS These results imply that serine 827 in the aPKC binding site of PAR-3 is a target of aPKC and that the regulated interaction between a protein kinase, aPKC, and its substrate, PAR-3, plays an essential role in the establishment of cell polarity.
Collapse
Affiliation(s)
- Yoko Nagai-Tamai
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | |
Collapse
|
274
|
Aurrand-Lions M, Johnson-Léger C, Imhof BA. Role of interendothelial adhesion molecules in the control of vascular functions. Vascul Pharmacol 2002; 39:239-46. [PMID: 12747963 DOI: 10.1016/s1537-1891(03)00012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The function of endothelium is the lining of the vessel wall and the control of vascular permeability, homeostasis and leukocyte emigration from the blood into the surrounding tissue. Different adhesion molecules expressed in a coordinated and regulated way control this function. In this review, we discuss adhesion molecules involved in endothelial junctions and their involvement in leukocyte transendothelial migration. Passage of the leukocyte across the endothelium appears to require delocalization of certain vascular adhesion molecules whereas other molecules interact directly with leukocyte ligands. Understanding of the function of vascular adhesion molecules is further complicated as they transduce signals to the endothelium and interact with the cytoskeleton and adaptor proteins.
Collapse
Affiliation(s)
- Michel Aurrand-Lions
- Department of Pathology, Centre Médical Universitaire, 1 Rue Michel-Servet, 1204 Geneva, Switzerland.
| | | | | |
Collapse
|
275
|
Fukuhara A, Irie K, Nakanishi H, Takekuni K, Kawakatsu T, Ikeda W, Yamada A, Katata T, Honda T, Sato T, Shimizu K, Ozaki H, Horiuchi H, Kita T, Takai Y. Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 2002; 21:7642-55. [PMID: 12400007 DOI: 10.1038/sj.onc.1205875] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 07/08/2002] [Accepted: 07/15/2002] [Indexed: 11/08/2022]
Abstract
Junctional adhesion molecule (JAM) is a Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which localizes at tight junctions (TJs). Claudin is a key cell-cell adhesion molecule that forms TJ strands at TJs. JAM is associated with claudin through their cytoplasmic tail-binding protein, ZO-1. JAM is furthermore associated with Par-3, a cell polarity protein which forms a ternary complex with Par-6 and atypical protein kinase C. Nectin is another Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which localizes at adherens junctions (AJs). Nectin is associated with E-cadherin through their respective cytoplasmic tail-binding proteins, afadin and catenins, and involved in the formation of AJs cooperatively with E-cadherin. We show here that nectin is furthermore involved in the localization of JAM at TJs. During the formation of the junctional complex consisting of AJs and TJs in Madin-Darby canine kidney (MDCK) cells, JAM was recruited to the nectin-based cell-cell adhesion sites. This recruitment of JAM was inhibited by nectin inhibitors, which inhibited the trans-interaction of nectin. Microbeads coated with the extracellular fragment of nectin, that interacted with cellular nectin, also recruited JAM to the bead-MDCK cell contact sites. Furthermore, when cadherin-deficient L fibroblasts stably expressing both exogenous JAM and nectin (nectin-JAM-L cells) were co-cultured with L fibroblasts expressing only nectin (nectin-L cells), JAM was concentrated at the cell-cell adhesion sites between nectin-JAM-L and nectin-L cells without the trans-interaction of JAM. Analyses of the localization and immunoprecipitation of JAM revealed that it was associated with nectin through afadin and ZO-1. These results suggest that nectin has a role in the localization of JAM at TJs in the process of the formation of the junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Atsunori Fukuhara
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 2002; 159:361-72. [PMID: 12403818 PMCID: PMC2173042 DOI: 10.1083/jcb.200207050] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2000] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 12/18/2022] Open
Abstract
The apposed membranes of myelinating Schwann cells are joined by several types of junctional specializations known as autotypic or reflexive junctions. These include tight, gap, and adherens junctions, all of which are found in regions of noncompact myelin: the paranodal loops, incisures of Schmidt-Lanterman, and mesaxons. The molecular components of autotypic tight junctions have not been established. Here we report that two homologues of Discs Lost-multi PDZ domain protein (MUPP)1, and Pals-associated tight junction protein (PATJ), are differentially localized in myelinating Schwann cells and associated with different claudins. PATJ is mainly found at the paranodal loops, where it colocalized with claudin-1. MUPP1 and claudin-5 colocalized in the incisures, and the COOH-terminal region of claudin-5 interacts with MUPP1 in a PSD-95/Disc Large/zona occludens (ZO)-1 (PDZ)-dependent manner. In developing nerves, claudin-5 and MUPP1 appear together in incisures during the first postnatal week, suggesting that they coassemble during myelination. Finally, we show that the incisures also contain four other PDZ proteins that are found in epithelial tight junctions, including three membrane-associated guanylate-kinase proteins (membrane-associated guanylate-kinase inverted-2, ZO-1, and ZO-2) and the adaptor protein Par-3. The presence of these different tight junction proteins in regions of noncompact myelin may be required to maintain the intricate cytoarchitecture of myelinating Schwann cells.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
277
|
Abstract
The molecular mechanisms that control the opening and formation of endothelial cell contacts are of central importance for leukocyte extravasation, endothelial permeability and angiogenesis. Progress has been made in identifying novel membrane proteins at endothelial cell contacts as well as novel mechanisms that control interendothelial adhesiveness and transendothelial migration of leukocytes.
Collapse
Affiliation(s)
- Dietmar Vestweber
- Max-Planck-Institute of Vascular Biology, Institute of Cell Biology, ZMBE University of Münster, Von-Esmarch-Strasse 56, D-48149 Muenster, Germany.
| |
Collapse
|
278
|
Fukuhara A, Irie K, Yamada A, Katata T, Honda T, Shimizu K, Nakanishi H, Takai Y. Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 2002; 7:1059-72. [PMID: 12354099 DOI: 10.1046/j.1365-2443.2002.00578.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND In polarized epithelial cells, cell-cell adhesion forms specialized membrane structures comprised of claudin-based tight junctions (TJs) and of E-cadherin-based adherens junctions (AJs). These structures are aligned from the apical to the basal side of the lateral membrane, but the mechanism of this organization remains unknown. Nectin is a Ca2+ independent immunoglobulin-like cell-cell adhesion molecule which localizes at AJs. Nectin is associated with E-cadherin through their respective cytoplasmic tail-binding proteins, afadin and catenins, and involved in the formation of AJs in cooperation with E-cadherin. We show here that nectin is also involved in the formation of TJs. RESULTS During the formation of the junctional complex consisting of AJs and TJs in Madin-Darby canine kidney (MDCK) cells, claudin and occludin accumulated at the apical sites of the nectin-based cell-cell adhesion sites. This accumulation of claudin and occludin was inhibited by inhibitors acting on the trans interaction of nectin. The barrier function of TJs was also impaired by the nectin inhibitors. It has been shown that a phorbol ester promotes the formation of a TJ-like structure in an E-cadherin-independent manner. This phorbol ester-induced formation of the TJ-like structure was also inhibited by the nectin inhibitors. CONCLUSIONS These results suggest a role of the nectin-afadin system in the organization of TJs as well as AJs in epithelial cells.
Collapse
Affiliation(s)
- Atsunori Fukuhara
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 2002; 115:3565-73. [PMID: 12186943 DOI: 10.1242/jcs.00032] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that aPKC interacts with cell polarity proteins PAR-3 and PAR-6 and plays an indispensable role in cell polarization in the C. elegans one-cell embryo as well as in mammalian epithelial cells. Here, to clarify the molecular basis underlying this aPKC function in mammalian epithelial cells, we analyzed the localization of aPKC and PAR-3 during the cell repolarization process accompanied by wound healing of MTD1-A epithelial cells. Immunofluorescence analysis revealed that PAR-3 and aPKClambda translocate to cell-cell contact regions later than the formation of the primordial spot-like adherens junctions (AJs) containing E-cadherin and ZO-1. Comparison with three tight junction (TJ) membrane proteins, JAM, occludin and claudin-1, further indicates that aPKClambda is one of the last TJ components to be recruited. Consistently, the expression of a dominant-negative mutant of aPKClambda (aPKClambdakn) in wound healing cells does not inhibit the formation of the spot-like AJs; rather, it blocks their development into belt-like AJs. These persistent spot-like AJs in aPKClambda-expressing cells contain all TJ membrane proteins and PAR-3, indicating that aPKC kinase activity is not required for their translocation to these premature junctional complexes but is indispensable for their further differentiation into belt-like AJs and TJs. Cortical bundle formation is also blocked at the intermediate step where fine actin bundles emanating from premature cortical bundles link the persistent spot-like AJs at apical tips of columnar cells. These results suggest that aPKC contributes to the establishment of epithelial cell polarity by promoting the transition of fibroblastic junctional structures into epithelia-specific asymmetric ones.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
280
|
Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL, Sontag E. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 2002; 158:967-78. [PMID: 12196510 PMCID: PMC2173154 DOI: 10.1083/jcb.200206114] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tight junctions (TJs) play a crucial role in the establishment of cell polarity and regulation of paracellular permeability in epithelia. Here, we show that upon calcium-induced junction biogenesis in Madin-Darby canine kidney cells, ABalphaC, a major protein phosphatase (PP)2A holoenzyme, is recruited to the apical membrane where it interacts with the TJ complex. Enhanced PP2A activity induces dephosphorylation of the TJ proteins, ZO-1, occludin, and claudin-1, and is associated with increased paracellular permeability. Expression of PP2A catalytic subunit severely prevents TJ assembly. Conversely, inhibition of PP2A by okadaic acid promotes the phosphorylation and recruitment of ZO-1, occludin, and claudin-1 to the TJ during junctional biogenesis. PP2A negatively regulates TJ assembly without appreciably affecting the organization of F-actin and E-cadherin. Significantly, inhibition of atypical PKC (aPKC) blocks the calcium- and serum-independent membrane redistribution of TJ proteins induced by okadaic acid. Indeed, PP2A associates with and critically regulates the activity and distribution of aPKC during TJ formation. Thus, we provide the first evidence for calcium-dependent targeting of PP2A in epithelial cells, we identify PP2A as the first serine/threonine phosphatase associated with the multiprotein TJ complex, and we unveil a novel role for PP2A in the regulation of epithelial aPKC and TJ assembly and function.
Collapse
Affiliation(s)
- Viyada Nunbhakdi-Craig
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
281
|
Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG. Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 2002; 13:3218-34. [PMID: 12221127 PMCID: PMC124154 DOI: 10.1091/mbc.e02-03-0134] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Epithelial tight junctions (TJs) provide an important route for passive electrolyte transport across airway epithelium and provide a barrier to the migration of toxic materials from the lumen to the interstitium. The possibility that TJ function may be perturbed by airway inflammation originated from studies reporting (1) increased levels of the proinflammatory cytokines interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma), and IL-1beta in airway epithelia and secretions from cystic fibrosis (CF) patients and (2) abnormal TJ strands of CF airways as revealed by freeze-fracture electron microscopy. We measured the effects of cytokine exposure of CF and non-CF well-differentiated primary human airway epithelial cells on TJ properties, including transepithelial resistance, paracellular permeability to hydrophilic solutes, and the TJ proteins occludin, claudin-1, claudin-4, junctional adhesion molecule, and ZO-1. We found that whereas IL-1beta treatment led to alterations in TJ ion selectivity, combined treatment of TNF-alpha and IFN-gamma induced profound effects on TJ barrier function, which could be blocked by inhibitors of protein kinase C. CF bronchi in vivo exhibited the same pattern of expression of TJ-associated proteins as cultures exposed in vitro to prolonged exposure to TNF-alpha and IFN-gamma. These data indicate that the TJ of airway epithelia exposed to chronic inflammation may exhibit parallel changes in the barrier function to both solutes and ions.
Collapse
Affiliation(s)
- Carolyn B Coyne
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
282
|
Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK. The role of endothelial cell lateral junctions during leukocyte trafficking. Immunol Rev 2002; 186:57-67. [PMID: 12234362 DOI: 10.1034/j.1600-065x.2002.18606.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An essential function of the inflammatory response is selective targeting of appropriate leukocyte types to a site of infection or injury. The past decade has witnessed an explosion in the level of detail concerning the identification and deciphering of the molecular mechanisms that capture leukocytes from flowing blood and promote leukocyte arrest on the vessel wall. In contrast, less information is known about the migration of adherent blood leukocytes through endothelial cell-to-cell borders (transendothelial migration, TEM) and into the underlying tissues. This article reviews the endothelial-dependent mechanisms that coordinate TEM in peripheral vasculature and highlights the role of certain lateral junctional proteins and protein complexes.
Collapse
Affiliation(s)
- Francis W Luscinskas
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
283
|
Roh MH, Liu CJ, Laurinec S, Margolis B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 2002; 277:27501-9. [PMID: 12021270 DOI: 10.1074/jbc.m201177200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mammalian homologues of the Drosophila polarity proteins Stardust, Discs Lost, and Crumbs have been identified as Pals1, Pals1-associated tight junction protein (PATJ), and human Crumbs homologue 1 (CRB1), respectively. We have previously demonstrated that PATJ, Pals1, and CRB1 can form a tripartite tight junction complex in epithelial cells and that PATJ recruits Pals1 to tight junctions. Here, we observed that the Pals1/PATJ interaction was not crucial for the ultimate targeting of PATJ itself to tight junctions. This prompted us to examine if any of the 10 post-synaptic density-95/Discs Large/zona occludens-1 (PDZ) domains of PATJ could bind to the carboxyl termini of known tight junction constituents. We found that the 6th and 8th PDZ domains of PATJ can interact with the carboxyl termini of zona occludens-3 (ZO-3) and claudin 1, respectively. PATJ missing the 6th PDZ domain was found to mislocalize away from cell contacts. Surprisingly, deleting the 8th PDZ domain had little effect on PATJ localization. Finally, reciprocal co-immunoprecipitation experiments revealed that full-length ZO-3 can associate with PATJ. Hence, the PATJ/ZO-3 interaction is likely important for recruiting PATJ and its associated proteins to tight junctions.
Collapse
Affiliation(s)
- Michael H Roh
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
284
|
Gao L, Macara IG, Joberty G. Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene 2002; 294:99-107. [PMID: 12234671 DOI: 10.1016/s0378-1119(02)00681-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The partitioning-defective 3 (par3) gene encodes a protein with three postsynaptic density90/DiscslargeA/ZO-1 (PDZ) domains that is required for cell polarity establishment in metazoans. Par3 is a component of a protein complex that can include Cdc42-GTP, Par6 and atypical protein kinase Cs (aPKCs). We now describe the identification of a related human gene, Par3L. Both Par3L and Par3 are expressed as numerous alternatively spliced variants. Although Par3 expression appears to be ubiquitous, that of Par3L is more restricted. Multiple variants are often expressed simultaneously within a specific cell type or tissue. Although all of the Par3L/Par3 isoforms can associate with tight junctions in epithelial cells, they show different binding properties. No Par3L isoforms and only a subset of Par3 isoforms detectably bind aPKCs. These data suggest that aPKC binding or phosphorylation is not required for targeting of Par3/Par3L to cell-cell contacts. Par3L isoforms also show differential binding to Par6. Despite these differences, the N-terminal region of Par3L, like that of Par3, can disrupt the formation of tight junctions when ectopically expressed in Madin-Darby canine kidney (MDCK) cells.
Collapse
Affiliation(s)
- Lin Gao
- Center for Cell Signaling and Department of Pharmacology, University of Virginia Health Science Center, P.O. Box 800577, Charlottesville, VA 22908-0577, USA.
| | | | | |
Collapse
|
285
|
Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, Samulowitz U, Kuster B, Engelhardt B, Vestweber D, Butz S. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 2002; 277:16294-303. [PMID: 11847224 DOI: 10.1074/jbc.m111999200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Searching for cell surface proteins expressed at interendothelial cell contacts, we have raised monoclonal antibodies against intact mouse endothelial cells. We obtained two monoclonal antibodies, 1G8 and 4C10, that stain endothelial cell contacts and recognize a protein of 55 kDa. Purification and identification by mass spectrometry of this protein revealed that it contains two extracellular Ig domains, reminiscent of the JAM family, but a much longer 120-amino acid cytoplasmic domain. The antigen is exclusively expressed on endothelial cells of various organs as was analyzed by immunohistochemistry. Immunogold labeling of ultrathin sections of brain as well as skeletal muscle revealed that the antigen strictly colocalizes in capillaries with the tight junction markers occludin, claudin-5, and ZO-1. Upon transfection into MDCK cells, the antigen was restricted to the most apical tip of the lateral cell surface, where it colocalized with ZO-1 but not with beta-catenin. In contrast to JAM-1, however, the 1G8 antigen does not associate with the PDZ domain proteins ZO-1, AF-6, or ASIP/PAR-3, despite the presence of a PDZ-binding motif. The 1G8 antigen was not detected on peripheral blood mouse leukocytes, whereas similar to JAM-1 it was strongly expressed on platelets and megakaryocytes. The 1G8 antigen supports homophilic interactions on transfected Chinese hamster ovary cells. Based on the similarity to the JAM molecules, it is plausible that the 1G8 antigen might be involved in interendothelial cell adhesion.
Collapse
Affiliation(s)
- Ines Nasdala
- Institute of Cell Biology, ZMBE, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Affiliation(s)
- Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
287
|
Abstract
A critical function of the inflammatory response is delivery of leukocytes to a site of injury, immune reaction or infection. Considerable information is available concerning the molecular mechanisms that capture flowing leukocytes and initiate their stable arrest on the lumenal surface of the blood vessel wall. In comparison, much less is known about the subsequent step(s) in migration of circulating blood leukocytes across endothelial cell-to-cell lateral borders to underlying tissues. This article will focus on the endothelial-dependent processes that coordinate transmigrations in peripheral vasculature during the inflammatory response.
Collapse
Affiliation(s)
- Francis W Luscinskas
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
288
|
Nishimura M, Kakizaki M, Ono Y, Morimoto K, Takeuchi M, Inoue Y, Imai T, Takai Y. JEAP, a novel component of tight junctions in exocrine cells. J Biol Chem 2002; 277:5583-7. [PMID: 11733531 DOI: 10.1074/jbc.m110154200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tight junctions (TJs) consist of transmembrane proteins and many peripheral membrane proteins. To further characterize the molecular organization of TJs, we attempted here to screen for novel TJ proteins by the fluorescence localization-based expression cloning method. We identified a novel peripheral membrane protein at TJs and named it junction-enriched and -associated protein (JEAP). JEAP consists of 882 amino acids with a calculated molecular weight of 98,444. JEAP contained a polyglutamic acid repeat at the N-terminal region, a coiled-coil domain at the middle region, and a consensus motif for binding to PDZ domains at the C-terminal region. Exogenously expressed JEAP co-localized with ZO-1 and occludin at TJs in polarized Madin-Darby canine kidney cells, but not with claudin-1, JAM, or ZO-1 in L cells. Endogenous JEAP localized at TJs of exocrine cells including pancreas, submandibular gland, lacrimal gland, parotid gland, and sublingual gland, but not at TJs of epithelial cells of small intestine or endothelial cells of blood vessels. The present results indicate that JEAP is a novel component of TJs, which is specifically expressed in exocrine cells.
Collapse
Affiliation(s)
- Miyuki Nishimura
- KAN Research Institute Inc., 1 Chudoji-Awata-cho, Shimogyo-ku, Kyoto 600-8815, Japan
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Abstract
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.
Collapse
Affiliation(s)
- Lin Gao
- Center for Cell Signaling and Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | | | |
Collapse
|
290
|
Abstract
Polarity is a common feature of many different cell types, including the Caenorhabditis elegans zygote, the Drosophila oocyte and mammalian epithelial cells. The initial establishment of cell polarity depends on asymmetric cues that lead to reorganization of the cytoskeleton and polarized localization of several cortical proteins that act downstream of the polarization cues. The past year revealed that homologs of the C. elegans par (partitioning defective) genes are also essential for establishing polarity in Drosophila and vertebrate cells. There is growing evidence that the proteins encoded by these genes interact with key regulators of both the actin and the microtubule cytoskeletons.
Collapse
Affiliation(s)
- Andreas Wodarz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
291
|
Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002; 277:455-61. [PMID: 11689568 DOI: 10.1074/jbc.m109005200] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Claudins, most of which end in valine at their COOH termini, constitute tight junction (TJ) strands, suggesting that TJ strands strongly attract PDZ-containing proteins. Indeed, ZO-1, -2, and -3, each of which contains three PDZ domains, were shown to directly bind to claudins. Using the yeast two-hybrid system, we identified ZO-1 and MUPP1 (multi-PDZ domain protein 1) as binding partners for the COOH terminus of claudin-1. MUPP1 has been identified as a protein that contains 13 PDZ domains, but it has not been well characterized. In vitro binding assays with recombinant MUPP1 confirmed the interaction between MUPP1 and claudin-1 and identified PDZ10 as the responsible domain for this interaction. A polyclonal antibody specific for MUPP1 was then generated. Immunofluorescence confocal microscopy as well as immunoelectron microscopy with this antibody revealed that in polarized epithelial cells MUPP1 was exclusively concentrated at TJs. Furthermore, in vitro binding and transfection experiments showed that junctional adhesion molecule, another TJ adhesion molecule, also bound to the PDZ9 domain of MUPP1. These findings suggested that MUPP1 is concentrated at TJs in epithelial cells through its binding to claudin and junctional adhesion molecule and that it may function as a multivalent scaffold protein that recruits various proteins to TJs.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
292
|
Kawabe H, Nakanishi H, Asada M, Fukuhara A, Morimoto K, Takeuchi M, Takai Y. Pilt, a novel peripheral membrane protein at tight junctions in epithelial cells. J Biol Chem 2001; 276:48350-5. [PMID: 11602598 DOI: 10.1074/jbc.m107335200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tight junctions (TJs) serve as a barrier that prevents solutes and water from passing through the paracellular pathway, and as a fence between the apical and basolateral plasma membranes in epithelial cells. TJs consist of transmembrane proteins (claudin, occludin, and JAM) and many peripheral membrane proteins, including actin filament (F-actin)-binding scaffold proteins (ZO-1, -2, and -3), non-F-actin-binding scaffold proteins (MAGI-1), and cell polarity molecules (ASIP/PAR-3 and PAR-6). We identified here a novel peripheral membrane protein at TJs from a human cDNA library and named it Pilt (for protein incorporated later into TJs), because it was incorporated into TJs later after the claudin-based junctional strands were formed. Pilt consists of 547 amino acids with a calculated M(r) of 60,704. Pilt has a proline-rich domain. In cadherin-deficient L cells stably expressing claudin or JAM, Pilt was not recruited to claudin-based or JAM-based cell-cell contact sites, suggesting that Pilt does not directly interact with claudin or JAM. The present results indicate that Pilt is a novel component of TJs.
Collapse
Affiliation(s)
- H Kawabe
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
293
|
Ohno S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13:641-8. [PMID: 11544035 DOI: 10.1016/s0955-0674(00)00264-7] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two PDZ-domain-containing adapter-like proteins, PAR-3 and PAR-6, and a protein kinase, atypical protein kinase C (PKC), cooperate together to establish cell polarity in a variety of biological contexts. These include asymmetric cell division in early Caenorhabditis elegans embryo and Drosophila neuroblasts, as well as the establishment and maintenance of apical-basal polarity in Drosophila and mammalian epithelial cells. Recent studies on the role of this PAR-aPKC complex in epithelial cell polarization provide new insights into the molecular basis of epithelial junctional formation and cell polarity.
Collapse
Affiliation(s)
- S Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
294
|
Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R, Nagai Y, Yamashita A, Hirose T, Ishikawa H, Ohno S. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 2001; 6:721-31. [PMID: 11532031 DOI: 10.1046/j.1365-2443.2001.00453.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND PAR-6, aPKC and PAR-3 are polarity proteins that co-operate in the establishment of cell polarity in Caenorhabditis elegans and Drosophila embryos. We have recently shown that mammalian aPKC is required for the formation of the epithelia-specific cell-cell junctional structure. We have also revealed that a mammalian PAR-6 forms a ternary complex with aPKC and ASIP/PAR-3, and localizes at the most apical end of the junctional complex in epithelial cells. RESULTS The ternary complex formation and junctional co-localization of PAR-6 with aPKC and ASIP/PAR-3 are observed during the early stage of epithelial cell polarization. In addition, over-expression of the PAR-6 mutant with CRIB/PDZ domain in MDCK cells disturbs the cell-cell contact-induced junctional localization of tight junction proteins, as well as inhibiting TER development. Furthermore, the binding of Cdc42:GTP to the CRIB/PDZ domain of PAR-6 enhances the kinase activity of PAR-6-bound aPKC. Detailed analyses suggest that the binding of PAR-6 to aPKC has the intrinsic potential to activate aPKC, which is only released when Cdc42:GTP binds to the CRIB/PDZ domain. CONCLUSION The results indicate the involvement of PAR-6 in the aPKC function which is required for the cell-cell adhesion-induced formation of epithelial junctional structures, possibly through the cooperative regulation of aPKC activity with Cdc42.
Collapse
Affiliation(s)
- T Yamanaka
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|